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ABSTRACT The genome sequence of Rhizobium sophoriradicis H4, a nitrogen-fixing
bacterium isolated from the common bean (Phaseolus vulgaris) in Peru, is reported
here. The genome assembly revealed a 6.44-Mbp genome which was distributed
into 95 contigs, with N50 and L50 values of 293 kbp and 9, respectively. The genome
contained 6,312 coding sequence (CDS) genes and 52 RNA genes (49 tRNAs and 3
rRNAs).

Rhizobium sophoriradicis is an alphaproteobacterial species first isolated in China as a
root-nodule symbiont of the leguminous plant Sophora flavescens (1). This rhizo-

bium was later found to be associated with the common bean (Phaseolus vulgaris) in
Iran (2) and South Africa (3). During a study of the rhizobial diversity of common bean
symbionts on the coast of Peru, we found that R. sophoriradicis is present in some areas
where this leguminous plant is cultivated. Here, we report the genome sequence of a
Peruvian strain of this species.

Sequencing was performed using the Illumina MiSeq platform with 300-bp paired-
end reads. Reads were quality trimmed with Trimmomatic (4) and assembled with
SPAdes (5). Genome completeness was evaluated using the program BUSCO (6). The
sequences were sent to the Rapid Annotations using Subsystems Technology (RAST)
server (7) for functional annotation. The genome assembly of R. sophoriradicis H4
consisted of 95 contigs ranging in size from 237 bp to 539,995 bp, with a mean
coverage of 122�. The N50 and L50 values were 293 kbp and 9, respectively. A
completeness score of 100% was obtained for the assembly, indicating that all of the
genome of strain H4 was recovered. The genome size was estimated at 6.44 Mbp, and
the GC content was 61.4%. The number of predicted CDS genes was 6,312, while the
RNA genes included 49 tRNAs and 3 rRNAs.

Functions could be assigned to 74% of the CDS genes of R. sophoriradicis H4. An
abundance of genes involved in the metabolism of carbon and nitrogen sources
revealed that strain H4 is a metabolically versatile bacterium. The traits related to plant
root colonization encoded in its genome included flagellar motility, chemotaxis, surface
adhesion via a type IV pilus, siderophore production and uptake, type VI secretion, and
exopolysaccharide biosynthesis.

When aligned against symbiotic plasmids of other rhizobia, R. sophoriradicis H4
contigs showed high homology to symbiovar phaseoli plasmids. Within these contigs,
we found all the nodulation and nitrogen fixation genes required to establish a
successful symbiotic relationship with legumes. Among nodulation genes, we found
nodZ, noeI, and nolL, whose presence indicates that nodulation factors produced by
strain H4 bear methylated and acetylated fucose residues at the reducing end, while
genes nolO, nodS, and nodU indicate methyl and carbamoyl decorations at the nonre-
ducing end (8). Also, putative symbiotic plasmid contigs included genes for a type III
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secretion system, which may be required for an optimal association (9), a type IV
secretion system probably for conjugal transfer of the symbiotic plasmid (10), an uptake
ABC transporter for nopaline, which may confer competitive ability (11), the genes
teuBAC1C2, required for utilization of root exudates (12), and genes for the biosyn-
thesis of gibberellins.

This study reports the first genome sequence of a rhizobial symbiont of the common
bean isolated in Peru, which is also the first genome sequence of a strain of the R.
sophoriradicis species.

Accession number(s). The nucleotide sequence for strain H4 has been deposited in

GenBank under the accession number PSOW00000000.
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