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Loss of SNORA73 reprograms cellular metabolism
and protects against steatohepatitis
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Dyslipidemia and resulting lipotoxicity are pathologic signatures of metabolic syndrome and
type 2 diabetes. Excess lipid causes cell dysfunction and induces cell death through pleio-
tropic mechanisms that link to oxidative stress. However, pathways that regulate the
response to metabolic stress are not well understood. Herein, we show that disruption of the
box H/ACA SNORA73 small nucleolar RNAs encoded within the small nucleolar RNA hosting
gene 3 (Snhg3) causes resistance to lipid-induced cell death and general oxidative stress in
cultured cells. This protection from metabolic stress is associated with broad reprogramming
of oxidative metabolism that is dependent on the mammalian target of rapamycin signaling
axis. Furthermore, we show that knockdown of SNORA73 in vivo protects against hepatic
steatosis and lipid-induced oxidative stress and inflammation. Our findings demonstrate a
role for SNORA73 in the regulation of metabolism and lipotoxicity.
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n states of nutrient excess, lipid overload exceeds the capacity

of adipose tissue to store triglycerides and the ability of non-

adipose tissues to metabolize fatty acids. This leads to ectopic
lipid storage in tissues such as the liver, heart, and skeletal muscle.
Although triglyceride stores in non-adipose cells initially serve a
cytoprotective rolel, ectopic steatosis is ultimately associated with
cell dysfunction and cell death that impairs organ function
through the process of lipotoxicity?. Studies in animal models
provide compelling evidence that lipotoxicity contributes to the
pathogenesis of non-alcoholic fatty liver disease (NAFLD), the
most common complication of type 2 diabetes and metabolic
syndrome>4,

Lipotoxicity is characterized by activation of stress response
pathways as a consequence of excessive supply of substrates to
physiological pathways of lipid utilization. Saturated fatty acids
fuel the de novo synthetic pathway for ceramides, which can
initiate signaling that leads to cell death®. Excessive lipid uptake,
particularly saturated fatty acids, causes rapid remodeling of
endoplasmic reticulum (ER) membranes that impairs organelle
integrity and leads to activation of the ER stress response®’.
Mitochondrial dysfunction, precipitated by both adverse mem-
brane remodeling and by augmented substrate metabolism,
impairs energy production and initiates mitochondrial programs
of apoptosis®®. Both ER stress and mitochondrial dysfunction
lead to production of reactive oxygen species (ROS) that over-
whelm endogenous antioxidant mechanisms!?. ROS propagation
is further compounded by saturated fatty acid-induced activation
of NADPH oxidase, NF-kB-mediated transcription of pro-
inflammatory cytokines, and death receptor signaling!!-13. The
observation that antioxidants mitigate lipotoxicity supports the
notion that oxidative stress is a critical factor that promotes
lipotoxic cell death!4. Systemically, the intersection of ER and
oxidative stress signaling pathways with inflammatory signaling
also leads to chronic low-grade inflammation!®. Nonetheless, the
proximal molecular transducers that control the lipotoxic
response remain incompletely characterized.

Unbiased genetic screens have elucidated a number of reg-
ulators of the response to metabolic overload!®~1%, These studies
have established important roles for enzymes in phospholipid and
triglyceride synthesis pathways and protein modulators of lipid
droplet function. Furthermore, through a retroviral promoter trap
mutagenesis screen for palmitate-resistance in Chinese hamster
ovary (CHO) cells, our lab has discovered noncoding RNAs that
control responses to lipotoxic stress. These RNAs include the long
noncoding RNA (IncRNA), Gadd7, and the box C/D snoRNAs
encoded within the ribosomal protein L13a locus29-22, Herein, we
describe a mutant cell line from this screen in which the locus
encoding small nucleolar RNA hosting gene 3 (Snhg3) has been
disrupted. This locus produces the IncRNA, SNHG3, and two
highly conserved snoRNAs, SNORA73A and SNORA73B (U17A
and U17B in prior nomenclature). While the molecular function
of the IncRNA is not well understood, SNORA73A and
SNORA73B direct one of several steps in the processing of pre-
rRNAs to produce mature 18S, 5.8S, and 28S rRNAs?3. We show
that these snoRNAs, but not the SNHG3 IncRNA, are critical for
metabolic stress responses and regulate cell metabolism through
the mammalian target of rapamycin (mTOR) pathway. Our
findings in cultured cells and in vivo elucidate a role for
SNORA73 in the regulation of metabolic stress.

Results

Snhg3 mutants are resistant to lipotoxic cell death. Mutant 2E4
cells were isolated from a loss-of-function screen in CHO cells,
designed to identify genes critical for fatty acid-induced cell
death?0. Cells were mutagenized by transduction with the

ROSAPgeo retroviral promoter trap to achieve, on average, <1
integration per cell. Mutants were screened for the ability to grow
in standard culture medium supplemented with 500 uM palmitic
acid. Under these conditions, mutant 2E4 cells, but not wild-type
(WT) CHO cells, survived. To assess the specificity of resistance
to established inducers of cell death, we quantified cell death
following treatment of 2E4 cells with palmitate, actinomycin D,
or staurosporine. As expected, 2E4 cells were protected from
palmitate-induced cell death compared to WT cells (Fig. 1a).
However, sensitivity to staurosporine and actinomycin D was
similar to WT, indicating that general apoptosis is intact in 2E4
mutants. Consistent with resistance to lipotoxicity, mutant 2E4
cells generated less ROS than WT cells in response to lipotoxic
concentrations of palmitate (Fig. 1b). 2E4 cells are thus resistant
to both lipid-induced oxidative stress and lipid-induced cell
death.

Rapid amplification of cDNA ends (RACE) indicated that the
retroviral promoter trap in 2E4 cells had integrated into one of
two alleles of the small nucleolar RNA hosting gene 3 (Snhg3).
This locus encodes a IncRNA, SNHG3, and two intronic box H/
ACA snoRNAs, SNORA73A and SNORA73B, which are 97%
identical (Fig. 1c). Among eukaryotes, SNORA73A/B are highly
conserved, although the SNHG3 IncRNA sequence diverges
widely?*, The SNHG3 IncRNA is ubiquitously expressed in
murine and human tissues®>. Given that the IncRNA and
snoRNAs are processed from the same pre-RNA, SNORA73A/B
are also likely to be widely expressed in human and mouse tissues.
Consistent with a model of haploinsufficiency at this locus,
mutant 2E4 cells have 50% reduction in expression of both RNA
components, SNHG3 IncRNA and SNORA73A/B, compared to
WT cells (Fig. 1d). Since qPCR cannot distinguish between the
highly related SNORA73A and SNORA73B, our quantification
throughout refers to total SNORA73. This level of reduction in
expression from the Snhg3 locus was similar to I5 cells, an
independently isolated mutant CHO line with disruption of
Snhg3, previously shown by our group to manifest altered cellular
cholesterol trafficking?®. As with the 2E4 mutant, I5 cells are
resistant to lipid-induced cell death and oxidative stress,
providing independent confirmation of a role for the Snhg3
locus in lipotoxicity (Fig. 1e, f).

To determine whether the IncRNA was the element from this
locus that is required for lipotoxicity, we selectively depleted
SNHG3 IncRNA in WT CHO cells and measured cell death in
response to palmitate. We transduced WT cells with short hairpin
constructs targeting SNHG3 IncRNA (shSNHG3) or a scrambled
sequence (shSCR). Relative to shSCR cell lines, shSNHG3 cells
showed 50% SNHG3 knockdown, similar to its expression in 2E4
cells, without altering abundance of SNORA73 (Fig. 1g). Upon
treatment with lipotoxic concentrations of palmitate, shSNHG3
and shSCR cell lines showed no difference in cell death (Fig. 1h).
This indicates that haploinsufficiency of the SNHG3 IncRNA
alone is insufficient for protection from lipotoxic cell death.

Although shRNAs are highly effective for silencing RNAs in
the cytoplasm, such as the SNHG3 IncRNA, an alternate
approach was required to knockdown snoRNAs, which reside
primarily in the nucleolus. We designed locked nucleic acid
(LNA) oligomers complementary to the 3’ hairpin of SNORA73,
a region that is accessible to nucleases in box H/ACA snoRNA
ribonucleoproteins?’. As controls, we designed a non-targeting
LNA against GFP and an LNA to selectively deplete SNHG3
IncRNA by tiling across the exon 1-exon 2 splice junction of the
mature SNHG3 IncRNA. Transfection of WT murine NIH 3T3
fibroblasts with SNORA73 LNAs resulted in 50% knockdown of
SNORAZ73 as well as the SNHG3 IncRNA relative to the control
GFP LNA, comparable to expression of these transcripts in the
2E4 mutant (Fig. 1i). This suggests that the SNORA73 LNA can
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Fig. 1 Snhg3 mutants are resistant to lipotoxicity. a Cell death in CHO wild-type (WT) and mutant 2E4 cells treated with palmitate complexed to BSA
(PALM) vs. BSA carrier alone, or treated with actinomycin D (ACT) or staurosporine (STR) vs. vehicle. b ROS by CM-H,DCFDA (DCF) staining in cells
treated with PALM or BSA. RU, relative units. € Snhg3 locus showing exons as gray rectangles, snoRNAs as black ovals, arrows for ROSApgeo (ROSA)
proviral integration sites in mutants 2E4 and 15. d RT-gPCR of SNHG3 IncRNA and SNORA73 relative to Rplp0 mRNA in WT and mutant cells using gPCR
primers that amplify shared regions of SNORA73A and SNORA73B. e, f PALM-induced cell death (e) and ROS (f) in WT and I5 cells. g RT-gPCR of SNHG3
IncRNA and SNORA73 in WT CHO and 2E4 cells, and in WT CHO cells stably expressing scrambled (shSCR, control) or SNHG3 (shSNHG3) shRNA
constructs. h Cell death following treatment of cells in (g) with PALM vs. BSA. i RT-gPCR of SNHG3 IncRNA and SNORA73 in NIH 3T3 cells transfected
with LNAs targeting GFP (control), SNHG3 IncRNA, or SNORA73. j Cell death following treatment of cells in (i) with PALM vs. BSA. Means + standard
error (SE) for n=3 independent experiments. *p < 0.05 for indicated comparisons (with p-values above brackets) by multiple unpaired t-tests with two-
stage step-up method of Benjamini, Krieger, and Yuketieli (FDR 1%; a, b, e, ) or two-way ANOVA with Tukey's multiple comparison test (d, g, h, i, j).
Source data are provided as a Source data file.
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Fig. 2 Snhg3 mutants are resistant to oxidative stress. a Cell death following treatment of WT and 2E4 cells for 16 h with H,0O,. NT, non-treated. b ROS in
cells treated for 1h with H,0,. c-e Glutathione (GSH, ¢), glutathione disulfide (GSSG, d), and the GSSG:GSH ratio (e) in WT and 2E4 cells. f-h NADPH (),
total NADP pool (NADPt, g), and NADP-+:NADPH ratio (h) in WT and 2E4 cells. Means + SE for n=3 (a-e) or 4 (f-h) independent experiments.

*p < 0.05 for indicated comparisons (with p-values above brackets) by multiple unpaired t-tests with two-stage step-up method of Benjamini, Krieger, and
Yuketieli (FDR 5%; a, b) or by unpaired two-tailed t-test (c, e, f). ¥p < 0.05 by paired two-tailed t-test (h). Source data are provided as a Source data file.

target both the mature snoRNA and the Snhg3 pre-RNA.
However, transfection with the LNA targeting the splice junction
of SNHG3 caused 75% knockdown of the IncRNA without
affecting expression of SNORA73. Importantly, only transfection
of NIH 3T3 cells with the SNORA73 LNA, but not the SNHG3
LNA, protected cells from palmitate-induced cell death (Fig. 1j).
Together, our results in fibroblast lines from two different species
support the hypothesis that SNORA73A/B are the elements of the
Snhg3 locus required for lipotoxicity and that the SNHG3
IncRNA is dispensable for lipotoxicity.

Snhg3 mutants are resistant to oxidative stress. Our finding that
Snhg3 mutants show reduced levels of palmitate-induced ROS
raised the possibility that these cells are more broadly resistant to
oxidative stress. Indeed, 2E4 cells treated with hydrogen peroxide
show reduced cell death and ROS amplification relative to
WT cells (Fig. 2a, b). Glutathione (GSH), a critical antioxidant for
cell survival during oxidative stress®, is regenerated from its
oxidized form, glutathione disulfide (GSSG), by glutathione

reductases in a reaction that requires NADPH. Thus, to gauge
cellular antioxidant capacity, we quantified the abundance of
GSH and NADPH pools. 2E4 cells show higher GSH and a lower
ratio of oxidized:reduced GSH relative to WT cells (Fig. 2c-e).
They also have higher NADPH and a lower ratio of oxidize-
d:reduced NADP(H) (Fig. 2f-h). These data suggest that reduced
expression of the Snhg3 locus leads to protection from oxidative
stress by modulating the cellular redox environment.

SNORA73 deficiency increases oxidative phosphorylation.
Glucose flux through glycolysis and the pentose phosphate
pathway (PPP) are major contributors to cellular redox balance
and NADPH levels?®. Moreover, in many tumors, a dramatic shift
toward aerobic glycolysis and augmented PPP activity, a phe-
nomenon known as the Warburg effect, contribute to increased
NADPH production and oxidative stress resistance30. We hypo-
thesized that these pathways might also be upregulated in 2E4
cells, as an explanation for their altered redox state. However, 2E4
cells showed significantly lower glucose-stimulated extracellular
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acidification rates, a proxy for rates of glycolysis, compared to
WT cells, despite similar rates of glucose uptake (Fig. 3a-c). We
also assessed the abundance of glycolysis metabolites by liquid
chromatography-mass spectrometry (LC-MS). While there was a
20% increase in 2/3-phosphoglycerate levels in 2E4 compared to
WT cells, other metabolites in the glycolysis pathway were not
significantly increased (Supplementary Fig. la). Stable isotope
tracer analysis with uniformly 13C-labeled ([U-13C]) glucose did
not reveal any differences in the enrichment of glucose-6-phos-
phate, glyceraldehyde phosphate, 2/3-phosphoglycerate, or lactate
(Supplementary Fig. 1b-e). PPP metabolites were not reliably
detected in either WT or mutant CHO cells, consistent with prior
tracing studies showing low PPP activity in CHO cell lines during
the growth phase3!.

Mitochondrial metabolism is another critical regulator of
cellular redox balance through production of reducing equiva-
lents, generation of GSH precursors, and neutralization of ROS.
Electron transport chain integrity is also particularly critical in
mounting  defenses against hydrogen peroxide-induced
cytotoxicity>2. We reasoned that increased mitochondrial sub-
strate oxidation could contribute to changes in redox balance and
oxidative stress resistance. To assess whether Snhg3 mutant cells
have alterations in oxidative metabolism, we quantified oxygen
consumption rates (OCR) in WT and 2E4 cells in response to
glucose. Respiration on glucose was increased in 2E4 compared to
WT cells (Fig. 3d). Oligomycin-sensitive respiration, proportional
to ATP turnover, and FCCP-induced respiration, reflective of
maximal oxidative capacity, were also higher in 2E4 cells than in
WT cells. In addition, pool sizes of citrate and a-ketoglutarate
were higher in 2E4 cells than WT cells (Fig. 3e). To determine
whether this increased glucose oxidation represented augmented
flux of glucose into the TCA cycle, we repeated metabolic tracing
with [U-13C]glucose in WT and 2E4 cells and focused on TCA
intermediates. 2E4 cells demonstrated significant increases in
13C-enrichment of citrate and a-ketoglutarate (Fig. 3f, g).
Consistent with the notion that increased TCA metabolism
augments GSH synthesis, we observed increased [U-13C]glucose
enrichment in glutamate and GSH in 2E4 mutants relative to
WT cells (Fig. 3h, i). Together, these data indicate that Snhg3 loss-
of-function rewires mitochondrial glucose metabolism toward
increased oxidative phosphorylation and GSH biogenesis, result-
ing in an expanded GSH pool.

To ascertain whether this increased oxidative phosphorylation
was specific to glucose, we quantified oxidation of additional
substrates that feed into the TCA cycle. Consistent with a general
upregulation of oxidative phosphorylation, respiration of gluta-
mine was also significantly higher in 2E4 cells compared to
WT cells (Fig. 4a). In fatty acid oxidation assays using
radiolabeled palmitate, 2E4 mutants liberated significantly more
14CO, from [1-14C]palmitate than WT cells, despite similar fatty
acid uptake between these cell lines (Fig. 4b, c). Enhanced fatty
acid oxidation was associated with lower cellular triglyceride
content under both basal and lipotoxic conditions (Fig. 4d). Thus,
in addition to changes in cellular redox regulation, 2E4 cells have
an enhanced capacity to dispose of excess fatty acids under
lipotoxic conditions. Also consistent with augmented mitochon-
drial oxidative capacity, we observed greater abundance of cellular
NAD+ and NADH in 2E4 cells (Fig. 4e, f). NAD+ pool size is
linked to mitochondrial function during oxidative stress®3. In line
with this, 2E4 cells were protected from mitochondrial ROS
following challenge with H,O, (Fig. 4g). The reprogramming of
mitochondrial metabolism in 2E4 cells occurred in the absence of
increases in expression of fatty acid oxidation or TCA cycle
enzymes, increases in mitochondrial abundance, or altered gross
mitochondrial morphology (Supplementary Fig. 2).

Deficient rRNA processing remodels metabolism through
mTOR. We next explored the mechanism through which
SNORA73 deficiency leads to metabolic reprogramming.
Although the canonical function of the box H/ACA class of
snoRNAs is to direct isomerization of uridine to pseudouridine
on nascent rRNAs, snRNAs, and tRNAs>4, vertebrate SNORA73
and its yeast homolog snR30 are instead required for cleavage of
pre-tTRNAs during production of mature rRNAs?3. However, we
did not observe altered steady-state rRNA abundance in 2E4 cells,
which are haploinsufficient for SNORA73 (Supplementary
Fig. 3a, b). To evaluate the effects of SNORA73 deficiency on the
kinetics of rRNA biosynthesis, we performed pulse-chase
experiments with 5-ethynyl uridine (EU) to label newly synthe-
sized rRNAs. During a 30 min pulse, compared to WT cells, 2E4
cells showed increased label incorporation into the 47/45S pre-
cursor species (Supplementary Fig. 3c). During a 6-h chase, the
proportion of labeled 28S and 18S products steadily increased in
WT cells (Supplementary Fig. 3d), whereas the proportion of
labeled products failed to increase in 2E4 cells over the same time
course (Supplementary Fig. 3e). These data are consistent with a
model in which steady-state rRNA abundance is maintained in
2E4 cells in part through increased transcription of precursor
rRNAs. The observation that labeled 28S and 18S increase over
6 h, while initial processing of the 47S rRNA precursor is essen-
tially complete at 2h is a function of the complex processing
pathway that involves numerous endonucleolytic and exonu-
cleolytic cleavages beyond the initial processing by SNORA73%.
Inability to detect changes in the decay of the 47S rRNA species
likely reflects the limited resolution of metabolic labeling in the
setting of rapid Xrn2-mediated degradation of aberrantly cleaved
pre-TRNAs3°,

Ribosome biogenesis is a major energy-requiring pathway that
is regulated by mTOR. In turn, defects in rRNA production
activate mTOR signaling®’. Because mTOR is also a master
regulator of cellular energetics and metabolism38, we hypothe-
sized that mTOR signaling might serve as a link between
decreased SNORA73 and changes in cellular metabolism. Thus,
we assessed signaling downstream of mTOR in WT and 2E4 cells.
S6 kinase (S6K) phosphorylation at T389, a canonical target of
mTORCI1 signaling, was upregulated in 2E4 compared to
WT cells after 16 h serum deprivation followed by administration
of insulin (Fig. 5a). AKT phosphorylation at S473, mediated by
mTORC?2, is increased during oxidative stress where it orches-
trates pro-survival responses®®*0. We also observed increased
AKT S473 phosphorylation in 2E4 relative to WT cells under
both basal growth conditions and during treatment with H,0,
(Fig. 5b). In addition, expression of mTOR protein was increased
in 2E4 mutants (Fig. 5c). Similarly, we observed that LNA-
mediated knockdown of SNORA73 in normal human skin
fibroblasts led to enhanced AKT phosphorylation, increased
mTOR expression, and protection from metabolic stress (Sup-
plementary Fig. 4). Consistent with the known function of mTOR
to relieve inhibition of translational elongation and stimulate
assembly of monosomes into polysomes, we observed a shift in
the distribution of ribosomes toward polysomes in 2E4 cells
compared to WT cells (Fig. 5d). Together, these results
demonstrate that signaling pathways downstream of mTOR are
activated by reduced SNORA73 expression in rodent and human
cells.

To determine the contributions of mTOR activity to the
phenotype of cells deficient in SNORA73, we treated cells with
250nM Torin 1 to inhibit the mTOR signaling axis (Fig. 5e).
Torin 1 abrogated both resistance to H,0,-induced cell death
(Fig. 5f) and increased glucose oxidation (Fig. 5g) in 2E4 cells
relative to WT cells. Torin 1 treatment also unmasked deficiencies
in processing of pre-rRNA and caused significant decreases in
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Fig. 3 SNORA73 haploinsufficiency enhances oxidative glucose metabolism. a, b Extracellular acidification rates (ECAR) in WT and 2E4 cells in XF base
medium supplemented with 2 mM glutamine (a). Arrows indicate injections of glucose, oligomycin (OM), and 2-deoxyglucose (2-DG). Quantification of
ECAR in (b). ¢ Glucose uptake, normalized to cellular protein content. d Oxygen consumption rates (OCR) in XF base medium following introduction of
5mM glucose. Serial injections of oligomycin, FCCP, and antimycin A were used to calculate ATP turnover, maximal respiration (max), and proton leak.
e TCA cycle intermediates (citrate, a-ketoglutarate (a-KG), malate, succinate), pyruvate, and lactate quantified by LC-MS and normalized to cellular
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values indicated above brackets for panels (b) and (d-i). In panel a, p-values from left to right: 0.0456, 0.0157, 0.014, 0.0083, and 0.0124. Source data are
provided as a Source data file.
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rRNAs in cells with knockdown of SNORA73 (Fig. 5h, i),
indicating that maintenance of rRNA production during
SNORA73 deficiency requires mTOR signaling. Our findings
support a model in which deficiency of SNORA73 impairs rRNA
biogenesis. Resulting low levels of 18S and 28S rRNA activate
mTOR signaling to restore rRNA levels. In the process, mTOR
signaling drives metabolic rewiring and leads to lipotoxicity
resistance.

SNORA73 regulates redox and lipid homeostasis in vivo. To
extend our findings in vivo, we examined the effects of SNORA73
loss-of-function in the liver, where metabolic and oxidative stress
responses are critical for organ homeostasis. We injected mice
with LNAs targeting SNORA73 or GFP (control). Relative to
control LNAs, SNORA73-1 and SNORA73-2 LNAs achieved 37%
and 68% knockdown of SNORA?73, respectively (Fig. 6a). In
chow-fed animals, knockdown of SNORA73 in the liver led to
higher NADPH levels, a lower NADP+:NADPH ratio, and a

lower GSSG:GSH ratio, indicative of more robust antioxidant
defenses (Fig. 6b-d, Supplementary Fig. 5a-d). We further
examined in vivo effects of knockdown with SNORA73-2 LNA,
which is more potent and does not alter expression of SNHG3
IncRNA (Fig. 6a). Knockdown of SNORA?73 in the liver increased
abundance of pre-rRNA, but did not impact abundance of 28S
and 18S product species, leading to a higher 47S to 18S rRNA
ratio (Fig. 6e, f). Consistent with our observations in SNORA73
haploinsufficient cells, SNORA73 knockdown increased AKT
S473 phosphorylation and elevated mTOR expression in the
livers of ad libitum-fed mice (Fig. 6g). Activation of mTOR sig-
naling led to a concomitant shift of ribosome populations toward
polysomes in the livers of mice treated with SNORA73 LNAs
(Fig. 6h, i). Taken together, our findings demonstrate that loss of
SNORAZ73 also activates mTOR signaling in vivo, and the asso-
ciated increased transcription of precursor 47S rRNA species
compensates to maintain wild-type levels of mature 18S and 28S
rRNAs.
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a Immunoblot of S6é kinase (S6K) and p-S6K (T389) in WT and 2E4 cells cultured 5% FBS medium (F), serum-free medium (S), or serum-free medium
followed by treatment with insulin (S + ); quantification from independent experiments. b Immunoblot of AKT and p-AKT (S473) in cells treated with
H,0, with quantification. ¢ Immunoblot of mTOR protein with quantification. d Representative polysome profiles of WT and 2E4 cells (left) with
quantification of polysome to monosome peak areas (P/M ratio) for n =5. e Representative immunoblot of P-AKT (5473), AKT, phospho-S6K (T389),
S6K, and GAPDH in WT CHO cells treated for 24 h with vehicle (VEH, DMSO) or 250 nM Torin 1 (TOR). f Cell death in WT and 2E4 cells treated with
H,0, for 16 h in the presence of VEH or TOR. g OCR in XF base medium following introduction of 5 mM glucose in WT and 2E4 cells pre-treated with VEH
or TOR for 24 h. h RT-gPCR of SNORA73 and SNHG3 IncRNA in WT cells treated with SNORA73 or GFP LNAs for 24 h. i RT-gPCR of 475, 28S, 18S, and
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To determine whether SNORA73 knockdown impacted
hepatic steatosis under conditions of lipid excess, mice fed a
60% high-fat diet (HFD) for 17 weeks were treated with
SNORA73 or control LNA for the final four weeks of diet
intervention. Levels of SNORA73 were unchanged by HFD and
LNA targeting SNORA73 achieved 64% knockdown (Fig. 7a).

10

rovided as a Source data file.

Expression of SNHG3 was induced by HFD, and this was
unaffected by SNORA73 LNA. HFD-fed mice were obese, and
knockdown of SNORA73 did not impact body weight or liver
mass, both of which were increased in HFD-treated mice (Fig. 7b,
c). As expected, HFD-treated mice developed hepatic steatosis
(Fig. 7d, e). However, liver triglycerides were reduced by 38% in
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animals receiving SNORA73 LNAs, indicating that depletion of
SNORA73 can reverse hepatic steatosis in the setting of lipid
overload. Together, our findings demonstrate that selective
knockdown of SNORA73 in vivo is sufficient to recapitulate
central phenotypic aspects of Snhg3 mutant cells.

It is well established that mTOR signaling has pleiotropic
effects on mitochondrial metabolism that could contribute to
increased disposal of excess lipid substrates. Mitochondrial
biogenesis is unlikely the mechanism of increased mitochondrial
metabolism*!, because mitochondrial to nuclear DNA ratios were
unchanged in SNORA73 knockdown versus control livers
(Fig. 7f). Previous studies have shown that mTOR controls the
abundance of mitochondrial oxidative function transcripts in
skeletal muscle tissues and cells*?. Thus, to comprehensively
screen for changes in gene expression, we analyzed the
transcriptomes of livers with SNORA73 knockdown vs. control
from mice maintained on a chow diet (Fig. 7g, Supplementary
Table I, n =4 mice/condition). There were 74 transcriptionally
upregulated genes (log, = 0.50, FDR < 0.05). In pathway analyses,
genes related to transmembrane receptor protein phosphatase
activity, cell adhesion, and cell-cell junctions were over-
represented. There were 20 transcriptionally downregulated genes
(log, <0, FDR <0.05). Pathways related to cytokine responses,
response to hormone, and alpha-actinin binding were over-
represented in this group. Among genes related to mitochondrial
metabolism, we observed upregulation of mt-ND6 (1.97-fold) and
downregulation of PPARy (—1.67-fold). Expression of mt-ND6 is
critical for mitochondrial complex IV activity in skeletal muscle*3
and disruption of hepatic PPARy improves hepatic steatosis in
ob/ob mice**, prompting us to consider whether changes in these
mRNAs might underlie enhanced mitochondrial metabolism and
decreased steatosis. Nonetheless, the changes we observed in
abundance of these protein-coding transcripts are of uncertain
significance in the absence of corresponding changes for these
genes in the translatome (see below). Abundance of mRNAs for
other metabolic transcription factors, enzymes, and oxidative
phosphorylation complexes was not significantly changed.

mTOR activation can also act downstream of transcription to
increase translation of mRNAs that promote mitochondrial
oxidative function®>. To address the possibility that mTOR
activation of translation may drive enhanced mitochondrial
metabolism, independent of transcriptional regulation, we
sequenced polysomal RNAs from the livers of SNORA73 and
control LNA-treated mice (Fig. 7h, Supplementary Table I).
There were 30 genes whose translation was upregulated (log, >
0.5 FDR<0.05), and in pathway analyses, genes related to
transmembrane receptor protein phosphatase activity and cell
adhesion were enriched. Translation was downregulated (log, < 0;
FDR < 0.05) for only 3 genes (pathway analysis not performed).
Among genes related to mitochondrial metabolism, none were
significantly upregulated in the polysomes (FDR <0.05). While
we observed a trend for reduced translation of PPARy in
SNORA73 LNA-treated livers (—1.99-fold), this did not reach
statistical significance (FDR > 0.1). Thus, in contrast to findings in
cultured breast cancer and embryonic fibroblast cell lines, we did
not find broad genome-wide changes in gene expression that are
likely to underlie increases in mitochondrial oxidative function.
This suggests that mTOR signaling in our model impacts
metabolism downstream of gene expression, through signaling
nodes such as AKT that converge on the mitochondria%6:47,

Knockdown of SNORA73 ameliorates diet-induced lipotoxi-
city. In cultured cells, knockdown or haploinsufficiency of
SNORA73 protects against lipid-induced oxidative stress and cell
death. While the 60% HFD-fed model develops steatosis, this is

well-tolerated up to 19 weeks, without robust inflammation or
progression to fibrosis®S. To test whether knockdown of
SNORAZ73 protects against lipid-induced liver injury, we exam-
ined the effects of SNORA73 knockdown in mice fed a methio-
nine- and choline-deficient diet (MCD). We administered LNAs
targeting SNORA73 or control LNAs targeting GFP to C57BL6/J
male mice and placed these animals on the MCD for 3 weeks.
LNAs achieved effective knockdown of SNORA73 in mice on
both control and MCD diets (Fig. 8a). Relative to animals
receiving control diet, expression of the SNHG3 IncRNA, but not
SNORA?73, was significantly induced by the MCD diet, consistent
with our findings in the 60% HFD. MCD diet feeding caused
similar weight loss and elevations of plasma transaminases in
animals that received control and SNORA73 LNAs (Supple-
mentary Fig. 6a, b). Liver sections of MCD-fed control knock-
down animals showed marked steatosis and inflammatory
mononuclear and polymorphonuclear (PMN) infiltrates (Fig. 8b).
In comparison, liver tissue of MCD-fed animals with SNORA73
knockdown showed less lipid accumulation and fewer PMNs
(Fig. 8¢c). Overall F4/80 staining intensity was increased in ani-
mals on the MCD diet but was not affected by SNORA73
knockdown (Supplementary Fig. 6c). However, the abundance of
crown-like structures of F4/80 positive cells surrounding dying
hepatocytes was decreased with SNORA73 knockdown compared
to control. Biochemical analyses confirmed that knockdown of
SNORA73 significantly reduced hepatic triglyceride content
(Fig. 8d). Furthermore, cholestane-3p, 5a, 6p-triol, and 7-keto-
cholesterol, robust lipid markers of tissue oxidative stress#?, were
diminished by SNORA73 knockdown in animals on the MCD
diet (Fig. 8e, f). Treatment with the MCD diet for this short
duration produced minimal fibrosis (Supplementary Fig. 6d).
However, transcripts associated with stellate cell activation and
fibrosis, including collagens and matrix remodeling proteins, were
significantly increased in MCD-fed animals that received control
LNAs relative to MCD-fed animals receiving SNORA73 LNAs
(Fig. 8g). The observations that knockdown of SNORA73 in vivo
reduced steatosis and markers of tissue damage are consistent
with a model in which depletion of SNORA73 protects against
lipotoxicity.

Discussion

In this study to identify regulators of the response to lipid-
induced metabolic stress, we establish links between snoRNAs,
oxidative metabolism, and cellular redox regulation. We show
that cells deficient in SNORA73—generated by promoter trap
mutagenesis and independently confirmed by knockdown—are
protected from lipotoxic and oxidative stress. This resistance is
associated with increased levels of the major antioxidant, GSH,
with a shift in the GSSG:GSH ratio away from oxidation and
increased cellular levels of NADPH and NADH. Mutant cells
haploinsufficient for SNORA73 have increased mitochondrial
oxidative metabolism that drives GSH biogenesis. We demon-
strate that the critical link between loss of SNORA73 and this
metabolic rewiring is altered kinetics of rRNA production that
leads to enhanced mTOR signaling. In cells deficient in
SNORA73, mTOR signaling compensates to maintain cellular
rRNA levels, and in the process drives metabolic rewiring that
confers resistance to metabolic stress. We extend these findings
in vivo in a setting in which lipotoxicity plays a key role in
pathogenesis. Our studies show that selective knockdown of
SNORA73 in mice confers protection from HFD-induced stea-
tosis, and from steatosis, inflammation, and oxidative stress
induced by the MCD diet. Thus, our study provides a link
between snoRNA loss of function and amelioration of lipotoxicity
in vivo.
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Fig. 8 SNORA73 knockdown ameliorates steatohepatitis. Mice were treated with control (GFP) or SNORA73 (SNORA73-2) LNAs during feeding with
control or MCD diets for 3 weeks. a RT-gPCR of SNHG3 and SNORA73. b Representative hematoxylin/eosin-stained liver tissue. Arrows indicate
polymorphonuclear (PMN) infiltrates. Scale bar, 50 um. ¢ Quantification of PMN infiltrates in (b). d Liver TG. e, f LC/MS-MS quantification of liver
cholestane-3p, 5a, 6B-triol (C-triol, @), and 7-ketocholesterol (7-KC, f). g RT-qPCR of transcripts associated with fibrogenic response. Collal, collagen type
1 alpha 1; Col2al, collagen type 2 alpha 1; Col3al, collagen 3 alpha 1; Timp], tissue inhibitor matrix metalloprotease 1. Each data point derives from one
mouse that received GFP LNA and control (n=7) or MCD (n =10) diet, or SNORA73 LNA and control (n = 8) or MCD (N =10) diet. In ¢, 5 representative
control diet samples were quantified. In e and f, samples were analyzed from GFP LNA and control (n=7) or MCD (n=9) diet, or SNORA73 LNA and
control (n=8) or MCD (N =9) diet. In g, RNA was not available for one GFP LNA mouse (n = 6). Data point outliers were excluded based on Grubbs or
Rout test. Means + SE. *p < 0.05 for indicated comparisons (with p-values above brackets) by unpaired two-tailed t-test (a, g), or by one-way ANOVA with
Tukey's multiple comparison test (c-f). Source data are provided as a Source data file.

Rewiring of mitochondrial oxidative metabolism in 2E4 cells
may protect against lipotoxicity in several ways. First, similar to
observations in cells treated with the AMPK activator AICAR’,
increased fatty acid oxidation enables 2E4 cells to dispose of
excess fatty acid substrates through p-oxidation. Diminished
cellular triglyceride stores in 2E4 cells under lipotoxic conditions
are a reflection of this enhanced utilization. Second, TCA meta-
bolism fuels mitochondrial ROS-neutralizing enzymes, including

superoxide dismutases, GSH peroxidases, and thioredoxins
through the generation of a-ketoglutarate, a precursor for GSH
synthesis, and through NADPH-producing enzymes including
malic enzyme, isocitrate dehydrogenase 2, glutamine dehy-
drogenase, and NADP(H) transhydrogenase>%°!. The importance
of these mitochondrial antioxidant defenses is underscored by the
observations that mitochondrial dysfunction is associated with
insulin resistance, NAFLD, and development of type 2
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diabetes®?~>%. In the present study, we show that the 2E4 mutant
has an expanded pool of a-ketoglutarate with greater contribution
of carbons from labeled glucose into this intermediate, findings
indicative of enhanced TCA flux. In addition, 2E4 cells have
enhanced production of GSH and a diminished GSSG/GSH ratio.
Although fatty acid and glucose metabolism are often regulated
reciprocally, 2E4 cells have upregulation of oxidative metabolism
of both fatty acids and glucose, consistent with previous findings
in a number of physiological stresses>>.

Both metabolic reprogramming and protection from oxidative
stress in 2E4 cells require activation of mTOR signaling pathways.
In the setting of SNORA73 deficiency, mTOR signaling is also
required for maintenance of cellular rRNA content. It is well
appreciated that signaling via mTOR regulates rRNA biogenesis.
In the presence of mitogenic stimuli, mTORCI associates with
promoters of rRNA genes and recruits RNA polymerase I to
increase transcription of new rRNA®®. At the same time,
mTORCI activates numerous rRNA processing events that lead
to mature 185, 28S, and 5.8S rRNA®’. Our findings in the 2E4
mutant are consistent with a model in which communication
between mTOR signaling pathways and rRNA synthesis is
bidirectional, such that 2E4 cells sense low levels of 18S and 28S
rRNA and provide feedback to activate mTOR signaling pathways
in a compensatory manner37->8,

Our study provides mechanistic insights regarding SNORA73
and lipid metabolism in vivo. Both the 60% HFD and the MCD
diet produce robust steatosis, and the MCD diet induces rapid
steatohepatitis with oxidative stress that has been used as a model
of NAFLD#8:5960, Here, we show that deficiency of SNORA73
reduces lipid accumulation in both models and limits tissue
damage with MCD. We used a 3-week study endpoint in the
MCD model to focus on the early consequences of hepatic stea-
tosis and to avoid the increased mortality associated with longer
MCD treatments. While we cannot fully assess the function of
SNORA?73 in development of fibrosis due to the short duration of
our MCD study, SNORA73 knockdown blunted MCD diet-
induced expression of stellate cell activation markers. We
acknowledge limitations of these models. The 60% HFD induces
weight gain, hyperlipidemia, and insulin resistance, and leads to
hepatic steatosis in C57BL6] mice over weeks*8, However, there is
little evidence for multifocal inflammatory infiltrates, fibrosis, or
hepatocellular damage, unless exposures are carried out for
extended periods (~50 weeks), and there is no evidence for
hepatocellular ballooning. Thus, while this model recapitulated
many of the systemic features of early NAFLD, it does not pro-
gress to NASH. The MCD diet exhibits many features of the
intrahepatic pathology of human NAFLD including steatosis with
lobular and periportal inflammation, oxidative stress, and hepa-
tocellular injury that progresses to fibrosis®®. However, substantial
weight loss and insulin sensitivity are features of this model that
do not reflect systemic features of NAFLD. Despite these lim-
itations, we chose the HFD and MCD models and the short
duration of studies, because our goal was to evaluate the effects of
SNORA73 deficiency on steatosis and early markers of lipotoxic
injury (e.g., oxidative stress and inflammation). Moreover, we
sought a time frame suitable for achieving SNORA73 deficiency
via LNA-mediated knockdown, as several attempts by our group
to use CRISPR/Cas9 to insert LoxP sites into this locus have been
unsuccessful. An important extension of this work will be to
move to models such as the fructose, palmitate, cholesterol (FPC)
diet, which better recapitulates both hepatocellular and systemic
features of NASH®! and to achieve stable haploinsufficiency of
the intronic snoRNAs (e.g., by knockin of a locus lacking the
snoRNAs®2).

Our data links snoRNAs from the Snhg3 locus to the pro-
gression of NAFLD. To our knowledge, there are no prior reports

linking SNORA73 abundance to human NAFLD and no known
variants, SNP, or eQTL associations for SNORA73. Previous
studies have correlated levels of more than 20 IncRNAs with
NAFLD by virtue of up or downregulation of the IncRNA in
mouse models of the disease or in samples from affected human
subjects, but notably the SNHG3 IncRNA is not among this list®3.
Our finding that abundance of SNHG3 is increased following 17
weeks of HFD, along with the presence of multiple metabolically
regulated transcriptional response elements upstream of the
promotor (e.g., CREB, PPARa, SREBP), suggest that the Snhg3
locus could be subject to transcriptional regulation in response to
nutrients. However, HFD has no impact on levels of SNORA73,
implicating distinct post-transcriptional mechanisms for regula-
tion of steady-state abundance of the two classes of RNAs pro-
duced from the same precursor RNA. Studies of hepatocellular
carcinoma tumor tissues have reported increased abundance of
RNA from the Snhg3 locus compared to normal liver tissue that
predicts worse clinical outcomes®4-%, and gain- and loss- of an
SNHG3 c¢DNA in hepatoma cells impacts proliferation and
expression of genes involved in epithelial-mesenchymal
transition®®-¢7. However, these studies examined tumors outside
the context of NAFLD, and the methods employed neither
quantified nor targeted SNORA73.

Disruption of the Snhg3 locus was previously reported by our
group in the I5 mutant, which was isolated in a screen for
mutants defective in intracellular cholesterol trafficking2°. While
both the I5 mutant and the 2E4 mutant in the present study are
protected against lipotoxicity, resistance is stronger in 2E4 cells,
despite similar decreases in SNORA73 as detected by a qPCR
assay that quantifies total SNORA73. In I5 cells, promotor trap
integration occurred within SNORA73A sequences in the first
intron, whereas promotor trap integration in 2E4 cells occurred
within intron 2 that contains SNORA73B. Subtle differences in
phenotypes of the cells may relate to the functional differences
between the two SNORAs. Nonetheless, our previous studies
established that haploinsufficiency of SNORA73 is associated
with remodeling of mitochondria-associated ER membranes
(MAM), with evidence for an important role of the mRNA
encoding HUMMR, an outer mitochondrial membrane adapter
whose expression is regulated by SNORA73. In the present study,
we show that haploinsufficiency of SNORA73 upregulates mTOR
signaling to maintain rRNA levels and drives mitochondrial
metabolism. mTOR signaling has been shown to be required for
MAM formation, which is important for mitochondrial glucose
and lipid metabolism*°,

Our genetic screen identified a role for SNORA73 in mod-
ulating the cellular response to lipotoxic and oxidative stress. The
promoter trap mutagenesis strategy we used enabled disruption of
noncoding elements that are not typically targeted in standard
genome-wide shRNA or CRISPR screens and may have been
facilitated by the propensity of snoRNA hosting loci to serve as
sites for integration of proviruses and other mobile genetic
elements®®. Demonstration that loss of SNORA73 leads to
metabolic rewiring and abrogates lipotoxicity in vitro and in vivo
reveals a way in which snoRNAs regulate cellular metabolism and
metabolic stress. Our findings raise the possibilities that variation
in snoRNA abundance or function could underlie metabolic
phenotypic variability in humans and that these noncoding RNAs
could serve as therapeutic targets for metabolic diseases.

Methods
Further information and requests for resources should be addressed to the Lead
Contact, Jean Schaffer (jean.schaffer@joslin.harvard.edu).

Mice. All experimental procedures were approved by the Washington University
and Joslin Diabetes Center Animal Studies Committees and conducted in
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accordance with the Public Health Service Policy for the Humane Care and Use of
Laboratory Animals.

Cell culture. CHO-K1 cells (ATCC CCL-61) and CHO-derived cell lines were
cultured in a 1:1 mixture of Dulbecco’s modified Eagle’s medium and Ham’s F-12
nutrient medium (Sigma N6658) supplemented with 5% fetal bovine serum (Sigma
F2442), 2 mM L-glutamine, and 1 mM sodium pyruvate. NIH 3T3 cells (ATCC
CRL-1658) were maintained in DMEM with 10% fetal calf serum and 2 mM
glutamine. For lipotoxicity experiments, growth medium was supplemented with
500 uM palmitate (Nu-Chek Prep) complexed to BSA (Sigma A8806) at a 2:1 molar
ratio, as described previously!4. Normal human skin fibroblasts (NSF, ATCC CRL-
1474) were grown in DMEM supplemented with 10% inactivated fetal

bovine serum.

Chow diet study. Male C57BL/6] mice were obtained from the Jackson Laboratory
(JAX 000664). Mice were housed with a 12 h:12 h light:dark cycle and fed standard
chow ad libitum. For in vivo knockdown experiments, locked nucleic acids (LNA,
Qiagen) targeting SNORA73 or GFP (control) were injected intraperitoneally into
8-week-old mice at a dose of 3 mg/kg every other day for 3 injections (see Sup-
plementary Table 2). Animals were euthanized 2 days after the final injection for
analyses.

High-fat diet study. C57BL/6] male mice fed ad libitum a 60% high-fat diet (HFD,
Research Diets D12492) or low-fat diet (LFD, Research Diets D12450B) beginning
at 6 weeks of age. Beginning at 19 weeks, animals on HFD were injected intra-
peritoneally with U17 snoRNA or control LNAs at a dose of 3 mg/kg every other
day for 3 injections and once weekly thereafter, while being maintained on study
diet. Animals were euthanized for tissue analyses at 23 weeks, 1 week after final
injection.

Methionine-choline-deficient (MCD) diet study. Seven-week-old C57BL/6] male
mice were injected intraperitoneally with SNORA73 or control LNAs (3 mg/kg
every other day for 3 injections, once weekly thereafter for 3 weeks). Following the
first week of LNA treatment, animals were placed on MCD diet (MP Biomedicals
960439) or matched control diet (MP Biomedicals 960441) for 3 weeks. Animals
were euthanized one week after the final LNA injection for analyses. Livers were
fixed in neutral buffered formalin and processed for immunohistochemistry.
Plasma AST and ALT activity was quantified using the UV-kinetic method (Teco
Diagnostics, AST: A559, ALT: A524).

Genetic screen. The loss-of-function genetic screen in CHO-K1 cells to isolate
lipotoxicity-resistant mutants was described previously®. Genes disrupted at the
site of retroviral insertion were identified by 5 RACE using an oligonucleotide tag
and ROSAPgeo sequences. 5" RACE products were TA-cloned, sequenced, and
analyzed by NCBI BLASTN 2.2.16 [Mar-25-2007].

In vitro Snhg3 knockdown. LNAs (Qiagen) were designed to target SNORA73 and
the SNHG3 IncRNA, or GFP as a control. pGFP-C-shLENTI lentiviral shRNA
constructs (Origene TR30023) were designed to target hamster SNHG3 IncRNA or
GFP as a control. See Supplementary Table 2. For LNA knockdown experiments in
NIH 3T3 cells, 4.0 x 10* cells were seeded per well in a 6-well dish and transfected
the following day with 25 nM LNA using Lipofectamine 3000 (ThermoFisher
L3000015). SNHG3 and SNORA73 expression and palmitate-induced cell death
were analyzed 48 h following transfection. For LNA knockdown in CHO cells,
2.5 % 10° cells were plated in 6-cm dishes and transfected the next day with 25 nM
LNA using Lipofectamine 3000. For LNA knockdown in primary human fibro-
blasts, 5.0 x 10% cells were plated in 6-well plates, or 1.5 x 10° cells were seeded in
6-cm dishes. Cells were transfected with 25 nM LNA the following day using
Lipofectamine 3000. For shRNA transduction experiments, virus was harvested
from HEK293T cells (ATCC CRL-3216) that were transfected using Lipofectamine
3000 with shRNA constructs and Mission helper plasmids (Sigma SHP001).

5.0 x 10° CHO cells were seeded in 6-cm dishes, grown for 24 h, and transduced
with shSCR or shSNHG3 lentiviral particles. After expansion of the population, the
top 20 percent of cells were flow-sorted and maintained as the transduced
population.

Cell death assays. WT and mutant CHO cells were treated for 48 h with 500 uM
palmitate complexed to BSA (PALM) vs. BSA carrier alone, or treated for 24 h with
2 uM actinomycin D or 80 nM staurosporine vs. DMSO vehicle, or treated for 16 h
with 2 mM H,0,. NIH 3T3 cells transfected with LNAs were treated for 24 h with
400 uM PALM vs. BSA. NSFs transfected with LNAs were treated for 48 h with

1 mM PALM vs. BSA or with 750 uM H,O, for 16 h. Cell death was quantified by
flow cytometric analysis (10* cells/sample) of annexin V-EGFP (BioVision 1004)
and propidium iodide (ThermoFisher 1304MP) staining using a BD LSRFortessa
and BD FACSDiva software and using FlowJo v10.6.1 for analyses (Supplementary
Fig. 7). Annexin V-EGFP and/or propidium iodide positive cells were

considered dead.

Detection of ROS. Following treatment of WT and mutant CHO cells with PALM
or BSA for 16 h, or with 2 mM H,0O, for 1h, cells were rinsed with PBS and
incubated in PBS containing 0.5 mM MgCl,, 0.92mM CaCl,, and 3 uM CM-
H,DCFDA (ThermoFisher C6827) for 1h at 37 °C or 2.5 uM MitoSox Red
(ThermoFisher M36008) for 20 min at 37 °C. Cells were trypsinized and mean
fluorescence was determined by flow cytometric analysis of 10* cells/sample.

Live cell imaging. CHO and 2E4 cells were transduced with retroviral particles
containing plasmids encoding roGFP1 tagged with a mitochondrial localization
sequence’?. 1 x 107 cells were seeded in 35 mm glass-bottom culture dishes and
visualized using a Zeiss LSM 880 Airyscan microscope.

Cellular respiration assays. Oxygen consumption rates (OCR) were measured
using a Seahorse XF24 analyzer (Agilent). 4.0 x 10* cells were seeded per well in
Seahorse culture plates (Agilent 100850) and incubated overnight in growth
medium. Cells were incubated in XF base medium (Agilent 102353) for 1 h at 37 °C
in a CO,-free incubator. OCR was determined after injection of 5 mM glucose or
2 mM glutamine, and following serial additions of 1 uM oligomycin (Sigma 75351),
2 uM fluorocarbonyl cyanide phenylhydrazone (FCCP, Sigma C2920), and 2 uM
antimycin A (Sigma A8674) in order to calculate ATP turnover, maximal
respiration, and proton leak, respectively. After the assay, cells were rinsed with
PBS, trypsinized, and quantified by trypan blue staining. For experiments mea-
suring OCR with mTOR inhibitors, 2.0 x 104 cells were seeded per well in Seahorse
culture plates. The following day, cells were treated with DMSO or Torin 1

(250 nM, Tocris 4247) for 24 h prior to measurement of OCR as described above.

Measurement of NAD(H) and NADP(H). Nicotinamide adenine nucleotides
were quantified in CHO and 2E4 cells (1 x 10° cells) and liver tissue (10 mg) using
an NAD + /NADH Assay Kit (Abcam ab65348) and an NADP/NADPH Assay Kit
(Abcam ab65349) according to manufacturer instructions.

LC-MS metabolite analysis. 1 x 106 CHO and 2E4 cells were seeded in 6-cm
dishes and incubated overnight in growth medium. Cells were rinsed in PBS and
incubated in growth medium (DMEM-low glucose (Sigma D6046), 5% FBS, 2 mM
glutamine) containing 15 mM [U-13C]glucose (Cambridge Isotope Laboratories
CLM-1396) for 6 h. Polar metabolites were extracted from cellular and culture
medium samples with 80% methanol in water (v/v). Samples were analyzed on a
Dionex UltiMate 3000 UHPLC coupled to a Thermo Scientific Q Exactive Plus
Orbitrap. 3 uL of the reconstituted cell extracts and 2 uL of media samples (1:100
and 1:1000 dilution) were injected onto a SeQuant ZIC-pHILIC column

(2.1 x 100 mm, 5 pm) at 40 °C. Mobile phase A was 95% water, 5% acetonitrile
(v/v) with 20 mM ammonium bicarbonate, 0.1% ammonium hydroxide, and 4 uM
medronic acid. Mobile phase B was 95% acetonitrile, 5% water (v/v). The flow rate
was set to 0.25 mL/min and the following gradient was applied: 0-1 min, 90% B;
1-14 min, 90-25% B; 14-15.5 min, 25% B; 15.5-18 min, 25-90% B; 18-31 min,
90% B. From 19.5-27.5 min, the flow rate was increased to 0.4 mL/min for faster
equilibration. Electrospray ionization (ESI) was used in negative polarity with

2.8 kV spray voltage. High-resolution mass spectrometry data were acquired in full
scan mode from 65 to 900 m/z with 140,000 resolution and an automatic gain
control (AGC) target of le6. The data were analyzed using Skyline 4.27! and
natural isotope abundance correction was performed with AccuCor2. For glucose
uptake, glucose depletion from the culture medium was determined by LC-MS over
6h and used to calculate relative glucose uptake, normalized to cellular protein
content.

Glutathione quantification. GSH and GSSG were extracted from 1 x 106 cells or
5 mg liver tissue with 50% acetonitrile in water (v/v) spiked with 500 ng internal
standards (GSH-d5 (Santa Cruz sc-489493) and 13C1>N-GSSG (Toronto Research
Chemicals G597972)) and derivatized with 310 mM N-methylmaleimide. Samples
were analyzed using a 20AD Shimadzu HPLC system coupled to an Applied
Biosystems API 4000 tandem mass spectrometer. Samples (3 uL) were injected
onto a ThermoFisher Hypercarb column (3 um, 150 mm x 3 mm). Mobile phase A
was 1% formic acid in water and mobile phase B was 1% formic acid in 1:1
acetonitrile:methanol (v/v). The HPLC gradient was started at 30% of solvent B and
70% of solvent A and increased to 100% of B in 4 min, which was held for 2 min.
The MS analysis was conducted in positive ion electrospray ionization with mul-
tiple reaction monitoring (MRM) using methods previously described’>.

Oxysterol quantification. Liver tissues were homogenized in PBS buffer (4x
volume of tissue wet weights) using an Omni Bead Ruptor homogenizer (Omni
International, Inc). Oxysterols (cholestane-3(, 5a, 6B-triol, and 7-keto-cholesterol)
were extracted with 200 puL of methanol from 50 uL of the homogenate. Deuterated
oxysterol compounds (7-keto-cholesterol-d7 and triol-d7, 10 ng each) were used as
internal standards and were added to the samples before extraction. The calibration
standards of these two oxysterols containing their deuterated internal standards
were also prepared for the absolute quantification of the oxysterols in liver tissues.
Oxysterols and their standards were derivatized with N, N-dimethylglycine (DMG)
to increase the MS sensitivity. Sample analysis was performed with a Shimadzu
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20AD HPLC system, a Shimadzu autosampler coupled to a triple quadrupole mass
spectrometer (Sciex 65004Qtrap: Applied Biosystems) operated in MRM mode.
The positive ion ESI mode was used for detection of derivatized oxysterols. An
Agilent C18 HPLC column (Eclipse XDB-C18 3.0 x 100 mm, 3.5 um) was used
with mobile phases (A: 1 % formic acid in water, B: 1% formic acid in 1:1 acet-
onitrile/methanol). The study samples were injected in duplicate for data averaging.
Data processing was conducted with Analyst 1.6.3 (Applied Biosystems).

Triglyceride quantification. 1 x 105 CHO and 2E4 cells were seeded in 6-cm
dishes and incubated overnight in growth medium. Cells were treated for 16 h with
500 uM PALM or control BSA medium, as described above. After rinsing with PBS,
cells were harvested and lysed in 5% NP-40. Lysates were incubated at 85 °C for
3 min to solubilize triglycerides. Samples were treated with lipase and total glycerol
quantified using a Triglyceride Assay Kit (Abcam ab65336).

Fatty acid uptake. Fluorescent fatty acid uptake was performed as previously
described®. 1 x 105 CHO and 2E4 cells were seeded in 6-cm dishes. The following
day, cells were trypsinized and counted by trypan blue staining. 2 x 10° cells were
incubated at 37 °C for 1 min in fatty acid uptake solution (20 pM fatty acid-free
BSA and 6 uM BODIPY-3821 (ThermoFisher D3821). Cells were washed with ice-
cold PBS, pelleted, resuspended in growth medium. Mean BODIPY fluorescence
was determined by flow cytometry (10* cells/sample).

14C-palmitate oxidation. Palmitate oxidation rates were determined by 4CO,
capture as described previously’4. 5x 105 CHO and 2E4 cells were seeded in T25
flasks. The next day, cells were incubated in growth medium spiked with 0.2 uCi/ml
[1-14C]palmitate (Perkin-Elmer EC075H250UC), and flasks were sealed with
rubber septa pierced by a center well device carrying Whatman chromatography
paper. After 6 h, cells were quenched in 70% perchloric acid and 1#CO, was cap-
tured by adding 2 M NaOH to the chromatography paper. After 30 min, the
chromatography paper was removed from flasks, placed in scintillation fluid, and
incubated overnight at room temperature. 14CO, was quantified by scintillation
counting and normalized to cellular protein.

Mitochondrial DNA copy number. Analysis of mitochondrial: nuclear DNA ratio
was performed as previously described”>.

mTOR signaling. To assess mTOR activity in WT and 2E4 cells, 2.5 x 10° cells
were seeded in 6-cm dishes. The following day, cells were rinsed in PBS and
incubated either in complete or serum-free culture medium overnight (16 h).
Serum-starved cells were then treated with or without 250 nM insulin for 30 min
prior to cell lysis and immunoblot analyses. To measure mTOR activity in WT and
2E4 cells during oxidative stress, 2.5 x 10° cells were seeded in 6-cm dishes. The
following day, cells were treated with 1 mM H,O, for 16 h. To assess mTOR
activity in human skin fibroblasts in the setting of SNORA73 knockdown, 1.5 x 10°
cells were seeded in 6 cm plates. The following day, cells were transfected with
25nM LNA targeting GFP (control) or SNORA73 for 24 h. Cells were then rinsed
twice with PBS and incubated 16 h in serum-free culture medium. The next day,
serum-starved cells were treated with 100 nM insulin for 30 min prior to cell lysis.
For inhibition of mTOR signaling, cells were treated with Torin 1 (250 nM) as
described in figure legends. To measure mTOR activity in tissues following
euthanasia, livers were rapidly excised and homogenized.

Immunoblotting analyses. Cell lysates and tissue homogenates were prepared
using RIPA buffer (50 mM Tris-Cl, 150 mM NaCl, 0.5% Nonidet P-40, 0.1% SDS)
supplemented with 1X Protease Complete (Roche 11697498001) and Phosphatase
Inhibitor Mini Tablets (ThermoFisher A32957). Proteins (20 ug) were separated by
4-12% Bis-Tris polyacrylamide gel electrophoresis and transferred to PVDF
membranes using an iBLOT 2 system (ThermoFisher). Blots were blocked in 5%
non-fat milk for 1h at room temperature and probed overnight with antibodies
against phospho-Akt (Cell Signaling 4060, 1:1000 dilution), Akt (Cell Signaling
4691, 1:1000 dilution), mTOR (Cell Signaling 2983, 1:1000 dilution), phospho-S6K
(Cell Signaling 9234, 1:1000 dilution), S6K (Cell Signaling 2708, 1:1000 dilution),
and GAPDH (Fisher AB2302MI; 1:10,000 dilution). Appropriate secondary anti-
bodies conjugated to horseradish peroxidase (HRP) were used to visualize proteins
in combination with HRP substrate (Jackson Immunoresearch 703-035-155 and
111-035-144, 1:10,000 dilution).

Measurement of newly synthesized rRNA. rRNA synthesis was assessed by
Click-it Nascent RNA Capture kit (ThermoFisher C10365). Cells were incubated
with 0.4 mM 5-ethynyl uridine (5-EU) in growth medium for 30 min and total
RNA was collected with TRIzol. Cells were washed twice with PBS and chased in
normal growth medium for indicated time points. 5-EU-labeled rRNAs were
chemically clicked to biotin and captured by streptavidin T1 beads. Isolated RNAs
were purified and quantified by RT-qPCR.

Ribosome analyses. 1 x 10° CHO and 2E4 cells were seeded in 10-cm dishes and
incubated in growth medium for 24 h. Cells were treated with 10 ug/ml cyclo-
heximide for 5 min, then trypsinized and counted using trypan blue staining.

15 x 106 cells were lysed in polysome lysis buffer (20 mM Tris pH 7.2, 130 mM
KCl, 10 mM MgCl,, 2.5 mM DTT, 0.5% NP-40, 0.2 mg/ml heparin) and loaded
onto 7-47% sucrose gradients. Samples were centrifuged at 160,000 x g

(36,000 rpm) for 3 h at 4 °C using a Beckman SW-41 rotor and Beckman L8-80M
centrifuge. Gradients were fractionated using a Brandel Gradient Fractionator
system with continuous monitoring of sample absorbance at 254 nm to generate
polysome profiles. To assess liver ribosomes, 10-week-old ad libitum-fed male mice
treated with GFP or SNORA73 LNAs for 1 week (3 injections) were injected with
100 pl of cycloheximide (20 mg/ml) in PBS by tail vein’®. After 5 min, animals were
sacrificed by cervical dislocation and livers were excised and snap-frozen in liquid
nitrogen. To prepare polysome profiles, ~100 pg liver tissue was homogenized in
polysome lysis buffer using a Dounce homogenizer (glass-glass). RNA content in
lysates was determined and 60 ug RNA was loaded onto sucrose gradients and
processed as above.

RNA sequencing and bioinformatics. Input RNA for transcriptome studies was
recovered from liver tissue lysed in polysome buffer using Trizol LS and RNeasy
mini kit (Qiagen) including on-column DNase digestion. For translatome studies,
RNA was recovered from corresponding polysome fractions by Trizol-LS extrac-
tion, followed by chloroform-isopropanol-ethanol precipitation, heparinase
treatment (New England Biolabs, 15 min, 37 °C), and RNA cleanup step using
RNA Clean & Concentrator (Zymo). Quality of RNA samples was assessed by
Agilent Bioanalyzer. Sequencing libraries were prepared using Kapa mRNA Hyper
Prep (Roche) according to the manufacturer’s protocol. Briefly, total RNA samples
(100-1000 ng) were polyA-selected and reverse transcribed into double-stranded
cDNA. High-throughput sequencing was performed using a NovaSeq 6000
Instrument (Illumina) at The Molecular Biology Core Facilities (MBCF) at Dana-
Farber Cancer Institute (DFCI). RNA-seq raw reads were 100 bp reversely stranded
paired-end reads.

Quality of RNA-seq reads was checked with fastqc, which computes various
quality metrics for the raw reads. Reads were trimmed for adapters and filtered by
sequencing Phred quality (>=Q15) by using fastp and aligned to mouse rRNA by
using bowtie’””8. Unmapped reads were extracted by using samtools’®. Reads were
aligned to the mouse transcriptome (Ensembl version 102) using kallisto (version
0.46.2) and transcript counts were converted to gene counts using tximport3%:81.
Counts were normalized by weighted trimmed mean of M values if necessary®2.
Read counts were transformed to log 2 counts per million, their mean-variance
relationship was projected, and their observational-level weights were computed
with Voom®3. Low expressing genes were filtered out by keeping genes that have
counts per million (CPM) more than 0.5 in at least 4 samples. Differential gene
expression was determined by performing linear modeling using limma (version
3.46.0)%4. Statistical significance was examined by using p-value adjusted for
multiple tests (by the Benjamini-Hochberg false discovery rate (FDR)), and genes
below FDR < 0.05 were accepted as statistically significant. Gene Ontology and
KEGG pathways enrichment analyses were performed using ToppFun and
DAVID. ToppFun collects the content from multiple databases, including KEGG,
WikiPathways, and REACTOME®>. Bonferroni correction was applied to the
analyses to select the most relevant terms.

Statistics. For biochemical and cell biological analyses, results are expressed as
mean + standard error (SE) for a minimum of three independent experiments, and
each data point derives from an independent experiment. For mouse studies,
results are expressed as a mean + SE for a minimum of 4 mice, and each data point
derives from a different mouse. Multiple unpaired two-tailed t-tests with two-stage
step-up method of Benjamini, Krieger, and Yuketieli, or one- or two-way ANOVA
with Tukey’s or Sidak’s multiple comparison test was used for multiple compar-
isons, as appropriate. For directed comparisons, the statistical significance of dif-
ferences in mean values was determined by a two-tailed unpaired or paired t-test.
For all tests, p < 0.05 was considered significant. Data points were included unless
identified as outliers based on Grubbs or Rout test. All statistical comparisons were
performed using GraphPad Prism 9 for Mac OS (version 9.0.2).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data supporting the findings of this study are available within the paper and its
Supplementary Information files. RNA-sequencing data have been deposited in the Gene
Expression Omnibus database under accession code GSE179228. Source data are
provided with this paper.
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