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a b s t r a c t

The animal gut harbors diverse microbes that play an essential role in the well-being of their host.
Specific diets, such as those rich in dietary fiber, are vital in disease prevention and treatment because
they affect intestinal flora and have a positive impact on the metabolism, immunity, and intestinal
function of the host. Dietary fiber can provide energy to colonic epithelial cells, regulate the structure and
metabolism of intestinal flora, promote the production of intestinal mucosa, stimulate intestinal motility,
improve glycemic and lipid responses, and regulate the digestion and absorption of nutrients, which is
mainly attributed to short-chain fatty acids (SCFA), which is the metabolite of dietary fiber. By binding
with G protein-coupled receptors (including GPR41, GPR43 and GPR109A) and inhibiting the activity of
histone deacetylases, SCFA regulate appetite and glucolipid metabolism, promote the function of the
intestinal barrier, alleviate oxidative stress, suppress inflammation, and maintain immune system ho-
meostasis. This paper reviews the physicochemical properties of dietary fiber, the interaction between
dietary fiber and intestinal microorganisms, the role of dietary fiber in maintaining intestinal health, and
the function of SCFA, the metabolite of dietary fiber, in inhibiting inflammation. Furthermore, we
consider the effects of dietary fiber on the intestinal health of pigs, the reproduction and lactation
performance of sows, and the growth performance and meat quality of pigs.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

The animal intestine contains trillions of microorganisms, that
are significant to body health and perform metabolic, immune and
protective functions for the host (Holscher, 2017). Gut flora is
affected by such factors as hereditary, the age and disease of the
host, and the environment (Goodrich et al., 2014; Wang et al., 2011;
Yatsunenko et al., 2012). In recent years, it has been increasingly
recognized that diet is a key environmental factor in regulating the
structure and metabolic function of the intestinal flora (Bai et al.,
g).
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2022; Sonnenburg and B€ackhed, 2016). Diet can interact with mi-
croorganisms to directly influence their growth, alter the intestinal
microenvironment, and indirectly affect the metabolism and im-
mune system of the host. The consumption of specific dietary
components, such as prebiotics and fibers, has emerged as a
method to prevent and treat diseases through the regulation of gut
microbiota.

Dietary fiber, a complex carbohydrate from plants, is decom-
posed by special enzymes produced by intestinal bacteria and is the
main energy source of colon bacteria (Sonnenburg and
Sonnenburg, 2014). Dietary fiber can promote intestinal health by
regulating the composition and metabolism of bacterial commu-
nities, providing energy to colonic epithelial cells, promoting the
production of intestinal mucosa, stimulating intestinal motility, and
maintaining intestinal integrity (Ye et al., 2022). Meanwhile, di-
etary fiber can also regulate appetite, improve glycemic and lipid
responses, regulate plasma cholesterol by limiting bile salt ab-
sorption, enhance digestive function, and regulate the digestion
and absorption of nutrients. When it is decomposed by intestinal
microbiota, dietary fiber produces short-chain fatty acids (SCFA)
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including acetate, propionate and butyrate, and gases including
methane and carbon dioxide. Once released from the enteric cavity,
SCFA are absorbed by the colon, muscle, liver and other tissues,
providing basic energy for the body in the form of nutrients, while
acetate can also promote the generation of ATP through the citric
acid cycle (Shah et al., 2020). In addition to supplying energy to the
colon, SCFA can also reduce pH and inhibit the excessive growth of
harmful bacteria (Greenberg et al., 2006). Furthermore, SCFA can
regulate the inflammatory process by inhibiting the activity of
histone deacetylase (HDAC) and activating G protein-coupled re-
ceptors (GPCR) such as GPR41 and GPR43. At the same time, the
production of certain cytokines, such as interleukin-12 (IL-12), IL-6
and IL-10, tumor necrosis factor-a (TNF-a), is reduced under the
action of SCFA (den Besten et al., 2013).

Numerous studies have shown that dietary fiber plays a vital
role in pig nutrition. Adding dietary fiber to sow feed can increase
the satiety, lactation performance, and reproductive performance
of sows, as well as litter size, weaning litter weight, and butterfat
content in colostrum (Che et al., 2011; Loisel et al., 2013). In addi-
tion, the SCFA produced by dietary fiber play a significant role in
regulating the cell proliferation, immunity, andmetabolism of sows
and affect the expression of inflammatory factors, pro-
inflammatory factors and antioxidant enzymes in sows and pig-
lets (Guo et al., 2020; Li et al., 2019; Xu et al., 2020b). Therefore, this
paper reviews the physicochemical properties of dietary fiber, the
interaction between dietary fiber and microorganisms, and the
protective effect of dietary fiber on intestinal health. Furthermore,
we consider the role of dietary fiber and SCFA in pig nutrition,
including intestinal health, reproductive performance, lactation
performance and growth performance.
2. Dietary fiber

2.1. Definition and classification of dietary fiber

Fiber, a group of heterogeneous materials, is composed of plant-
derived carbohydrates and is not digested by typical human
amylase in the absence of the cellulase required for decomposition
(O'Grady et al., 2019). Microorganisms are needed to digest fiber
through anaerobic fermentation in human, which results in the
production of SCFA. Terms such as microbiota-accessible carbohy-
drate are used to describe fiber. In 1953, Hipsley first proposed the
term “dietary fiber” as a shorthand for indigestible components in
food (Hipsley, 1953). Over time, the physiological effects of dietary
fiber have been gradually explored, and the definition has changed
considerably. In 2009, the definition of dietary fiber was provided
by the Codex Alimentarius Commission and was unanimously
recognized (Makki et al., 2018; Stephen et al., 2017). Dietary fiber is
defined as a carbohydrate polymerwith 10 ormoremonomer units,
that is neither digested nor absorbed in the human small intestine.
Dietary fiber can be categorized as follows: (1) edible carbohydrate
polymers naturally present in food when consumed; (2) edible
carbohydrate polymers obtained from food raw materials by
physical, enzymatic or chemical methods with beneficial physio-
logical effects proven by recognized scientific evidence; and (3)
edible synthetic carbohydrate polymers with recognized scientific
evidence of beneficial physiological effects (Waddell and Orfila,
2022). However, evidence shows that lignin and indigestible oli-
gosaccharides also exhibit beneficial effects similar to those of fiber,
potentially promoting the health and stability of intestinal micro-
biota, the generation of SCFA in the colon, and the absorption of
calcium. Therefore, in 2010, the expert group of the European Food
Safety Agency further defined dietary fiber indigestible carbohy-
drates plus lignin in 2010 (Ye et al., 2022).
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There are many ways of classifying dietary fiber. Generally, it is
divided into soluble dietary fiber (SDF) and insoluble dietary fiber
(IDF) according to its solubility in water. Soluble dietary fiber
include several types of polysaccharides, such as hemicellulose
(e.g., arabinoxylan and b-glucan) and pectin (Evans, 2020), which
are abundant in beans, fruits, vegetables, oats, wheat and rice
(Nakashima et al., 2018). In addition, SDF includes seaweed poly-
saccharides (e.g., carrageenan, sodium alginate, and guar gum) and
soluble oligosaccharides (e.g., inulin and raffinose-like oligosac-
charides). Insoluble dietary fiber is mainly composed of cell wall
components, including lignin, cellulose and some hemicellulose
(Chuang et al., 2012). Insoluble dietary fiber is the most abundant
fiber type inmost foods, and can be found inwheat, oats, barley, rye
and other whole grains (Waddell and Orfila, 2022). Dietary fiber can
be divided into plant dietary fiber and animal dietary fiber ac-
cording to its source, while plant dietary fiber can be further
divided into cereal dietary fiber, fruit dietary fiber and vegetable
dietary fiber. The main dietary fiber consumed by the human body
is cereal dietary fiber, followed by vegetable dietary fiber, which
account for about 50% and 30% respectively, and with approxi-
mately 16% coming from fruits (Dhingra et al., 2012). In addition,
dietary fiber can be classified according to several other parame-
ters, including chemical structure, viscosity and fermentability
(Deehan et al., 2017). Currently, dietary fiber is divided into the
following 4 categories: non-starch polysaccharides (including cel-
lulose, hemicellulose, pectin and b-dextran), resistant oligosac-
charides (including fructose oligosaccharides and galacto-
oligosaccharides [GOS]), resistant starch (RS), and lignin (Table 1)
(Armstrong et al., 2020; Ye et al., 2022).
2.2. Physicochemical properties of dietary fiber

Fermentability, viscosity, solubility, water holding capacity,
adsorption, and particle size constitute the physicochemical prop-
erties of fiber, which vary due to differences in the structure and
molecular weight of dietary fiber, and affect the fermentation and
therapeutic effects (Table 1) (Armstrong et al., 2020; Gill et al.,
2021; Holscher, 2017; Ye et al., 2022). Solubility refers to the de-
gree towhich dietary fiber dissolves inwater. Dietary fibers that are
highly crystallized are usually insoluble in water, while those with
irregular structures are more soluble. In addition, the solubility of
dietary fiber and the granularity and integrity of the plant cell wall
are affected by the charge content of the group (Elleuch et al., 2011;
Grundy et al., 2017). Soluble dietary fiber can form a sticky gel in the
intestine and produce substances such as SCFA after intestinal
microbial fermentation, while IDF is not easily fermentable, but
increases the intestinal transport rate andwater holding capacity of
intestinal contents, thus reducing the fermentation time of non-
digestible food in the colon, increasing stool volume, and slowing
down gastric emptying (Bliss et al., 2013). Viscosity refers to the
degree of flow resistance. The viscosity of dietary fiber is affected by
its molecular weight, chemical composition, water-holding capac-
ity, particle size, solution temperature, processing time and pH
value. Higher dietary fiber viscosity increases the viscosity of in-
testinal contents, thus preventing intestinal epithelial cells from
absorbing nutrients (Dikeman and Fahey, 2006; Theuwissen and
Mensink, 2008). Some intestinal microorganisms have enzymes
capable of hydrolyzing chemical bonds in certain dietary fibers in
vegetable foods, and these fermentable fibers include inulin-type
fructans, resistant starch, and GOS (El Kaoutari et al., 2013). In
fact, except for synthetic fibers, such as methyl cellulose, that are
completely non fermentable, all natural plant fibers have ameasure
of fermentability, even including cellulose and lignin with low
fermentability (Stephen et al., 2017).



Table 1
Classification, sources and physicochemical characteristics of common dietary fibers, and intestinal microorganisms that can degrade them.

Dietary fiber Classification Sources Physicochemical characteristics Intestinal microorganisms

Solubility Viscosity Fermentability

Arabinoxylan Non-starch
polysaccharides

Oats, wheat, rice Medium Medium High Roseburia, Bacteroides, Prevotella, Porphyromonas

Beta-glucan Non-starch
polysaccharides

Oat, barley, fungi,
mushrooms

Medium High High Lactobacillus, Enterococcus, Bifidobacterium

Beta-fructans Non-starch
polysaccharides

Chicory root, agave,
artichoke

High Low High Bifidobacterium, Lactobacillus, Streptococcus,
Flavobacterium

Pectin Non-starch
polysaccharides

Fruits, vegetables, nuts High High High Dictyostelium, Bacillus, Pseudomonas

Inulin Non-starch
polysaccharides

Cereals, fruits, vegetables Low High High Bacteroides, Bifidobacterium

Galacto-
oligosaccharide

Resistant
oligosaccharides

Beans, peas, lentils High Low High Faecalibacterium prausnitzii

Resistant starch Resistant starch Raw fruits, vegetables Low Non-
viscous

High Bifidobacterium breve, Bifidobacterium adolescentis

Lignin Lignin Grains, vegetables Insoluble High Low Bjerkandera, Fomitopsis, Schizophyllum
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Highly fermentable fibers with high solubility and viscosity
include b-glucan and pectin, which are naturally found in whole
grains (e.g., oats and barley) and apples, respectively (Holscher,
2017). The psyllid cannot be fermented, but its solubility and vis-
cosity are very high and help control blood sugar and reduce blood
cholesterol levels (McRorie, 2015). Non-sticky soluble fibers easily
fermented by intestinal microorganisms include RS, resistant
maltodextrin, inulin, soluble corn fiber, and polydextrose (Holscher
et al., 2015a, 2015b). Inulin can be found in bananas, garlic, arti-
chokes, onions, chicory roots, leeks, and wheat and, in studies with
rodents, has been proven to lower the concentration of cholesterol
and glucose in the blood and body weight (M�arquez-Aguirre et al.,
2013; Rend�on-Huerta et al., 2012).

3. Interaction between dietary fiber and microorganisms

The intestine is a chamber for the survival and reproduction of
various microorganisms that can influence the digestive process of
the host. These microorganisms are influenced by several factors,
including individual genetic background, physiological status, the
environment and drugs (Shah et al., 2020). Among those factors,
diet has been widely studied as a key factor. Dietary fiber is a high-
quality source of carbohydrates for the microbiota, and can be used
as an energy source by gut microbes and as a carbon source by the
host (Pistollato et al., 2016; Sonnenburg and Sonnenburg, 2014).
Soluble fibers are easily obtained by intestinal microorganisms in
the enteric cavity and aremainly metabolized in the proximal colon
and ileum (Koropatkin et al., 2012). Insoluble fibers are difficult to
obtain for microorganisms and are mainly degraded in the distal
colon. Dietary fiber has important effects on intestinal microor-
ganisms, and the degradation of different types of fiber requires
differentmicroorganisms (Table 1) (Armstrong et al., 2020; Ye et al.,
2022). Therefore, there is an interaction between dietary fiber and
intestinal microbiota.

Dietary fiber cannot be directly degraded by human digestive
enzymes. When dietary fiber enters the intestine, intestinal mi-
croorganisms can degrade it through different systems and
absorb the energy generated (Singh, 2019). Many microorgan-
isms are needed for the host to obtain energy from these re-
actions. Intestinal microorganisms have the ability to encode a
series of carbohydrate active enzymes (CAZymes), including
glycoside hydrolase, glycosyltransferase, polysaccharide lyase
and carbohydrate esterase, which can hydrolyze a variety of fi-
bers (Hamaker and Tuncil, 2014; Lombard et al., 2014). Therefore,
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compared to a refined diet, diet containing various dietary fibers
and resistant starches can support multiple gastrointestinal mi-
crobial communities (El Kaoutari et al., 2013). Microbe diversity
in the intestine is lower in individuals with a low-fiber diet, and
the gut of these individuals is often dominated by microorgan-
isms dependent on amino acids and lipids, as the decrease of
dietary fiber in a diet is often accompanied by the increase of
animal protein and fat (Makki et al., 2018). Dietary fiber can in-
crease probiotic level and promote intestinal homeostasis, thus
functioning as an effective prebiotic (Roberfroid et al., 2010).
Prebiotic sources include fiber-rich whole grains and indigestible
oligosaccharides, such as fructans, polydextrose, inulin, fructo-
oligosaccharides (FOS), GOS, and araboxylan. Different types of
dietary fiber have been found to have different effects on the
microbiota of the host and many intestinal microorganisms use
dietary fiber through different strategies. For instance, Bacter-
oides is a typical Gram-negative bacterium with an efficient
polysaccharide degradation system and is the most frequently
mentioned microorganism in the study of the use and trans-
portation of polysaccharides in the gut microbiota (Singh, 2019).
However, glycoside hydrolases fixed on the cell surface are
required by Gram-positive bacteria for the degradation of com-
plex polysaccharides due to the lack of periplasmic space (Guan
et al., 2021). Complex polysaccharides are first degraded into
oligosaccharides outside the cell, and then transported to the
cytoplasm for further degradation, or used as nutrition for other
microorganisms in the intestine (Koropatkin et al., 2012). The
types of microorganisms and the chain length of the fibers affect
the ability of bacteria to degrade fibers. Short-chain FOS can be
fermented by many microorganisms including Bacteroides, Fae-
calibacterium, Bifidobacterium, and Lactobacillus, while long chain
fructosan can only be degraded by few microorganisms (De Vuyst
and Leroy, 2011; Ramirez-Farias et al., 2009).

Arabinoxylan (AX), a hemicellulose molecule, that consists of b-
(1,4)-linked xylose backbone containing arabinose side chains, is
the main dietary fiber in cereals and other plant and animal dietary
sources (Armstrong et al., 2020; Mendis et al., 2016). It was shown
to be fermented in the gut by Porphyromonas, Roseburia, Prevotella
and Bacteroides to produce SCFA (Grootaert et al., 2009). AX upre-
gulates the bile acid metabolic pathway in the intestines of mice
with a high-fat diet by modulating the intestinal microbiota,
thereby reducing obesity and liver injury (Cheng et al., 2020). b-
Glucan is a glucose polysaccharide that is widely found in the cell
walls of bacteria, fungi, and plants such as oats and barley (El
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Khoury et al., 2012). Microorganisms such as Bifidobacterium,
Lactobacillus, and Enterococcus have been shown to degrade dietary
b-glucan to produce varying amounts of SCFA depending on the
source of the fiber and the species of the microorganism (Lam et al.,
2018). A study in rats showed that b-glucan promoted the repro-
duction of Lactobacillus and Bifidobacterium and inhibited that of
Enterobacteriaceae in a dose-dependent manner (Shen et al., 2012).
Yeast derived b-glucan can also alleviate the metabolic syndrome
induced by a high-fat diet by regulating the intestinal microbiota of
mice and reducing the levels of proinflammatory cytokines such as
IL-6 and IL-1b in plasma (Chen et al., 2021). Beta-fructans, including
FOS and inulin, are b-(2 / 1) linked fructose oligosaccharides and
polysaccharides, and are mainly derived from chicory roots, agave,
and artichokes (Armstrong et al., 2020). Microorganisms such as
Bifidobacterium, Lactobacillus, Streptococcus, Flavobacterium, and
various yeasts have been shown to ferment b-fructans (Fraberger
et al., 2018). FOS can be fermented by Collinsella aerofaciens and
Bifidobacterium (Cook and Russell, 1994). It is also effective in
increasing the abundance of Bifidobacterium and Lactobacillus, as
well as the diversity of intestinal microorganisms (Tandon et al.,
2019). Inulin has been shown to promote the health of body by
modulating the gut microbiota, and diets containing inulin reduce
the accumulation of fat and enhance the glucose tolerance of the
body (Song et al., 2019), as well as improve the diversity and ac-
tivity of the intestinal microflora, increase the abundance of Bifi-
dobacterium and decrease that of Desulfovibrio (Holscher et al.,
2015a). In addition, in mice, inulin supplementation can repair
the intestinal epithelial barrier by regulating intestinal microor-
ganisms, with hyperuricemia also being alleviated (Guo et al.,
2021). GOS is composed of different galactose residues and b-
glycosidic bonds linked terminal glucose molecules, and can be
fermented by Faecalibacterium prausnitzii (Davis et al., 2011). In
rats, GOS intake helped alleviate neuroinflammation and cognitive
dysfunction, significantly increased the b diversity of the intestinal
microbiota and promoted the proliferation of Bifidobacterium and
other microorganisms with potential anti-inflammatory functions
(Yang et al., 2018). Pectin is a complex polysaccharide composed of
a-1,4-linked D-galacturonic acid residues and is widely present in
the cell walls of fruits and vegetables (Dongowski et al., 2000).
Various microorganisms such as Dictyostelium, Bacillus, Pseudo-
monas, and yeast have been shown to be capable of almost com-
plete fermentation of pectin in the colon through an enzymatic
process or oxidative pathway to produce a variety of SCFA and
several gases (Dittoe et al., 2020; Kaur and Gupta, 2017; Larsen
et al., 2019; Luis et al., 2018). Pectin extracted from citrus signifi-
cantly promoted the production of Bifidobacterium and Lactoba-
cillus and reduced the pH of the intestine (Mao et al., 2019). Another
experiment showed that the application of pectin can increase the
diversity of intestinal microorganisms in mice, thereby alleviating
colitis caused by Bacteroids (Beukema et al., 2021). Moreover, pectin
oligosaccharides can reduce cholesterol by regulating specific
bacteria and their metabolites (Hu et al., 2019).

Cellulose, a linear chain of b (1 / 4) linked glucose monomers,
is a major structural component of plant cell walls (Lattimer and
Haub, 2010). Microorganisms such as Bacteroidetes, Clostridium,
and Fibrobacter have been shown to ferment cellulose to produce
acetate (Flint et al., 2012). Inmice, a high cellulose diet canmaintain
intestinal homeostasis and alleviate intestinal inflammation and
prevent colitis by altering intestinal microbiota and metabolites
(Kim et al., 2020). In addition, cellulose promoted intestinal barrier
function and secretion of mucin in cupped cells, which may due to
the increase of Akkermansia (Kim et al., 2020). Lignin is a complex
polymer that exists in many plants, and the degradation of it is
complex and difficult. However, certain fungi such as Bjerkandera,
Schizophyllum and Fomitopsis are able to ferment lignin to produce
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ethanol using peroxidases, lignases, and laccase (Horisawa et al.,
2015; Janusz et al., 2017). Besides, Pseudomonas, Rhodococcus, and
Sphingobacterium have been shown to use the aromatic compo-
nents of lignin during the fermentation of lignin to produce biofuels
(Anthony et al., 2019; Lee et al., 2019; Ponnusamy et al., 2019). Both
RS type 2 and type 4 consist of glucose monosaccharides linked by
a-1,6 glycosidic bonds (Martínez et al., 2010). Enzymes encoded by
Bifidobacterium adolescentis and Bifidobacterium breve have been
showen to degrade RS (Ryan et al., 2006), while RS with different
structures can promote the growth of different species of intestinal
microorganisms. The abundance of Actinomycetes and Bacteroid
were significantly increased with the administration of RS4, and a
diet with RS2 increased the proportion of Ruminococcus bromii and
Eubacterium rectale (Martínez et al., 2010).

4. Regulation of dietary fiber on intestinal health

The effects of dietary fiber on the intestine are manifold and
include immune regulation, promotion of mucosal barrier function
and prevention of intestinal infection (Fig. 1). The intake of dietary
fiber changes the length and size of the small intestine, cecum,
colon and other digestive organs, which may be affected by the
morphology of the intestinal epithelium and may ultimately in-
fluence intestinal digestion and hydrolysis function ultimately
(Costello et al., 2017). As the main component of the digestive
system, the intestine not only bears a massive bioburden in the
lumen, but also prevents harmful substances from being trans-
mitted to other parts of the body through the lymphatic and blood
systems (Cui et al., 2019). The integrity of the epithelial layer is
essential in ensuring that the contents of the intestinal cavity are
separated from the lymphatic and blood systems. There are many
causes that may destroy the homeostasis of the intestinal envi-
ronment, such as epithelial damage due to diet, changes in intes-
tinal microflora and mucous layer, which may lead to increased
intestinal permeability, and the contents of the lumen will be
transferred to the underlyingmucosa (Mu et al., 2017). The function
of the gut barrier is closely related to the integrity of the above
structures, and many gastrointestinal diseases occur due to mis-
adjusted of these components, such as IBD, colitis, IBS, intestinal
overgrowth and allergic food intolerance (Camilleri et al., 2012).
Dietary fiber is fermented by microorganisms in the colon under
anaerobic conditions to produce SAFC such as acetic acid, propionic
acid, butyric acid, valeric acid and isovaleric acid (Dongowski et al.,
2002). The SAFC produced by the fermentation of different types of
dietary fiber vary. For example, pectin and arabinoxylan are usually
fermented to produce acetate, arabinogalactan is fermented to
produce acetate and propionate, and butyrate is fermented from
starch (Macfarlane et al., 2006). Short-chain fatty acids are involved
in the regulation of environmental stability in the colon, the acti-
vation of epithelial cell proliferation and differentiation, the
maintenance of mucosal integrity, and the alleviation of inflam-
mation (Klampfer et al., 2003; Tsukahara et al., 2003).

The mucus layer, the first line of defense against harmful bac-
teria, is composed of glycoproteins produced by goblet epithelial
cells (Bergstrom et al., 2008). Mucosa is one of the main defense
mechanisms of the intestine and acts as a barrier to protect the
intestinal epithelium against chemical and biological hazards. Di-
etary fiber increases the release of mucins from intestinal mucosa
into the enteric cavity and provides more substrates for the growth
and multiplication of commensal bacteria. It has been shown that
the proportion of mucin species changes after the intake of dietary
fiber (Shan et al., 2013), and the SCFA produced by fermentation of
fermentable dietary fiber also positively affect the integrity of the
epithelial mucosa (Cui et al., 2019). Insufficient intake of dietary
fiber reduces the abundance of probiotics and cause the



Fig. 1. Protective effects of dietary fiber on intestinal health. First, the activity of GPCR is promoted by SCFA, the fermentation products of dietary fiber; then, NLRP3 is activated,
which increases the production of the epithelial healing cytokine IL-18. Moreover, SCFA can enhance the barrier function of the mucosa by inhibiting HDAC activity. Second, SCFA
promote the development of Treg, Th1 and Th17 cells, and indirectly increase the production of IgA and IgG through the activation of B cells. Finally, dietary fiber can bind different
nutrients and promote the production of AMP, which contributes to the prevention of intestinal infections. GPCR ¼ G protein-coupled receptor; SCFA ¼ short-chain fatty acids;
NOD ¼ nucleotide-binding oligomerization domain; IL-18 ¼ interleukin-18; HDAC ¼ histone deacetylase; Treg ¼ regulatory T cells; AMP ¼ antimicrobial peptides; NLRP3 ¼ NOD-
like receptor thermal protein domain associated protein 3.
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metabolism of intestinal microorganisms to produce metabolites
that are harmful to the host such as amines, ammonia, N-nitroso
compounds and branched-chain fatty acids, thus leading to intes-
tinal mucosal damage (Windey et al., 2012). Therefore, a high fat
and high sugar diet but low fiber may lead to the occurrence of
chronic inflammatory diseases such as allergies, obesity, cardio-
vascular disease, colorectal cancer and inflammatory bowel disease
(Makki et al., 2018; Schroeder et al., 2018; Zou et al., 2018).
Adequate consumption of dietary fiber helps avoid excessive
degradation of mucopolysaccharides, maintains a safe range of
mucus-consuming flora, and thus prevents inflammatory re-
sponses (Leatham et al., 2009).

In addition to the mucosa, the intestinal epithelium is another
barrier outside that not only physically separates the host and in-
testinal microorganisms, but also supports the communication
between them (Peterson and Artis, 2014). The integrity of epithe-
lium is the backbone of the health of gut and body. Stem cells at the
bottom of the crypt often differentiate into a large number of
transport cells that continuously move closer to the epithelium of
intestinal cavity to better differentiate themselves into different
types of cells, such as absorptive cells, intestinal endocrine cells,
goblet cells, and M cells at specific locations, all of which are crucial
to the barrier function of the colonic epithelium (Barker, 2014).
Mucin is an important component of the mucus layer. Short-chain
fatty acids can ensure the integrity of epithelium by increasing
tolerance to the drug and promoting the secretion of mucus
(Fukuda et al., 2011; Wrzosek et al., 2013), as well as increasing the
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secretion of prostaglandin, which promotes the expression of
epithelial mucin (Willemsen et al., 2003). Butyrate is a significant
substrate for nourishing colonic epithelial cells and protecting the
gut epithelium. It can not only upregulate the expression of mucin
by inhibiting the activity of HDAC (Gaudier et al., 2004), but also
protect the gut barrier function through the reduction of the con-
centration of oxygen inducible factor in gut epithelium (Kelly et al.,
2015).

Antimicrobial peptides (AMP) are first-line defense effectors
that have the function of inhibiting the growth and reproduction of
pathogenic bacteria (Parada Venegas et al., 2019), which is one of
the important mechanisms of epithelial barrier function. In GPR43
knockout mice, the expression of AMP, RegIIIg and b-defensins, was
significantly inhibited, while butyrate could induce the secretion of
AMPs (Zhao et al., 2018b). Dietary fiber from different sources has
been shown to be effective in reducing the adhesion of pathogenic
Escherichia coli to intestinal epithelial cells. For example, b gal-
actomannan from yeast reduced the adhesion of ETEC to Caco-
2 cells (Roussel et al., 2018).

Besides, dietary fiber can combine with different nutrients
including calcium, zinc and copper, and transport them to the distal
intestine, where they are released when fiber is metabolized by
microorganisms in the colon (Baye et al., 2017). Some of these ions
have antimicrobial effects under specific conditions and help pre-
vent intestinal infections. For example, zinc can promote the
metabolic activity of the intestinal microbiota in weaned piglets
(Højberg et al., 2005), thus improving metabolic health parameters.
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Meanwhile, studies in chickens have shown that zinc-deficient
diets lead to reduced intestinal microbial diversity, which is asso-
ciated with reduced SCFA production (Reed et al., 2015). Several
studies in humans have shown that SCFA produced by specific fi-
bers, such as glycans and GOS, resulted in a decrease in pH and an
increase in the solubility of calcium, thus increasing the passive
transport of calcium in the intestine (Abrams et al., 2007; Whisner
et al., 2013). The intake of dietary fiber can also increase the ab-
sorption of substances such as vitamin A, vitamin B1, vitamin C, and
vitamin E by the human body (Chan et al., 2019), prevent the
conversion of bile into secondary bile, and accelerate the con-
sumption of cholesterol (Cronin et al., 2021). In addition to pro-
ducing SCFA, microorganisms can also ferment dietary fiber to
produce other substrates that benefit health. Ferulic acid, a
phenolic compound that exists in the plant cell wall, can not only
regulate intestinal physiology, but also be transported into the
blood and thus affecting the health of the body (Makki et al., 2018).
Lactobacillus fermentus can metabolize dietary fiber to produce
ferulic acid, regulate intestinal physiology, and exert antioxidant
and anti-inflammatory properties, with potential therapeutic
benefits for many chronic diseases such as neurodegeneration,
obesity, diabetes and cancer (Tomaro-Duchesneau et al., 2012).

5. SCFA are the main fermentation products of dietary fiber

Through the fermentation of host microorganisms, dietary fiber
provides many health benefits, including intestinal immunity
regulation, insulin secretion promotion, and satiety transmission
signal to the brain (Fig. 2). Dietary fiber is fermented by intestinal
bacteria to produce monosaccharides, SCFA and gases such as
methane and carbon dioxide (Rinninella et al., 2019). Short-chain
fatty acids are the main product of dietary fiber fermentation, in
which acetate, propionate and butyrate account for 60%, 25% and
15% respectively. They can regulate the physiological functions of
the intestine, including the provision of energy to colon cells, the
maintenance of the fluidity of the colon, and the regulation of the
transport of electrolytes and nutrients in the intestinal cavity
(Akhtar et al., 2022; Tazoe et al., 2008). Acetate is a precursor of
cholesterol synthesis and fat generation, which can be produced
from pyruvate through acetyl coenzyme A or Wood-Ljungdahl
pathway (Koh et al., 2016; Ragsdale and Pierce, 2008). Propionate
is a gluconeogenic substrate (Levy et al., 2016) that can be syn-
thesized from acrylate via the acrylate pathway and propylene
glycol pathway, with lactic acid as precursor (Koh et al., 2016; Scott
et al., 2006). In addition, acetate and propionate can also act as
substrates for the metabolism of cholesterol, glucose, and lipids
when they are absorbed by the liver through the portal vein. There
are two ways to synthesize butyric acid. Carbohydrates produce
pyruvate through sugar metabolism, and the pyruvate is then
converted into acetyl coenzyme A under the action of pyruvate
dehydrogenase. A part of acetyl coenzyme A is converted into acetic
acid and the rest is converted to butyryl coenzyme A under the
action of a series of enzymes and generates butyric acid under the
action of butyric acid kinase (Louis et al., 2004). At the same time,
butyryl coenzyme A can also be directly converted into butyric acid
under the action of coenzyme A transferase (Duncan et al., 2002).
Butyrate plays a vital role in the maintenance of tissue barrier
function, regulation of gene expression and immunity, in addition
to being the main source of energy for colon cells and the preferred
metabolic substrate (Hong et al., 2015; Rinninella et al., 2019).
Through the action of microorganisms, these SCFA molecules can
be converted to each other, acetic acid can be transformed into
butyric acid for example (Boets et al., 2017). The type and quantity
of SCFA produced by dietary fiber are related to the type of dietary
fiber and the species of gut microbes (Kovatcheva-Datchary et al.,
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2015; Yang and Rose, 2014). Generally speaking, the concentra-
tion of SCFA circulating in the body is relatively low, many impor-
tant metabolic processes in the host are regulated by these effective
signal molecules (Makki et al., 2018).

5.1. SCFA can act as an HDAC inhibitor

Histone acetylation occurs in the ε-amino group of lysine resi-
dues, and histone acetyltransferases add acetyl groups to the tail of
histones to cause the acetylation of histones, thus promoting gene
transcription, while HDAC can inhibit this process. Histone deace-
tylase inhibitors have been reported to have therapeutic effects in
relation to cancer, in addition to exhibiting anti-inflammatory and
immunosuppressive properties. Studies have shown that SCFA can
exert anti-inflammatory effects by inhibiting HDAC. Most SCFA
transported across the mucosa involve active transport mediated
by two receptors, monocarboxylate transporter 1 and sodium
coupled monocarboxylate transporter 1, which can regulate gene
expression by directly inhibiting HDAC to affect and regulate the
physiological function and biological response of the host (Kumar
et al., 2020). Butyrate can inhibit HDAC activity and induce the
histone acetylation, which affects the processes of cell proliferation,
differentiation, apoptosis, and gene expression (Fung et al., 2012).
Researches demonstrated that SCFA downregulated pro-
inflammatory cytokines, including IL-12 and IL-6, in macrophages
of the colon and distinguished dendritic cells from bone marrow
stem cells (Chang et al., 2014; Singh et al., 2010). In addition, SCFA
regulate the production of regulatory T cells (Tregs) by suppressing
HDAC (Furusawa et al., 2013). It has been shown that propionate
and butyrate can induce the differentiation of Tregs, thus inducing
the expression of Foxp3, a transcription factor that plays a vital role
in the control of intestinal inflammation in mice, by increasing the
acetylation of Foxp3 gene sites (Arpaia et al., 2013). Besides, buty-
rate and propionate can activate the AP-1 signaling pathway, thus
controlling the proliferation and inducing apoptosis in colon cancer
cells (Nepelska et al., 2012).

5.2. SCFA are important ligands for GPCR

Short-chain fatty acids can not only act as HDAC inhibitors, but
also play an important role as ligands for GPCR. Three GPCR are
involved in immune regulation, GPR41, GPR43 and GPR109A. They
have been shown to have specific responses to fatty acids and
hydroxycarboxylic acids, and are thus named free fatty acid re-
ceptor 2 (FFAR2), FFAR3 and HCAR2, respectively (Brown et al.,
2003).

The function of GPR43/FFAR2, a Gi/o- and Gq-double-coupled
GPCR, is mainly mediated by Gi/o. However, in the gut, GPR43 is Gq-
coupled and can promote the secretion of glucagon-like peptide 1
(GLP-1) in L cells (Tolhurst et al., 2012). Acetate and propionate can
effectively activate GPR43, while their concentration range in the
colon lumen and EC50 is 10e100 mM and 250e500 mM, respectively
(Le Poul et al., 2003). Therefore, GPR43 should be continuously
saturated with ligands when expressed in colonic epithelial cells,
and signaling should not be affected by subtle changes in SCFA
concentration. However, the thick mucus layer and continuous
mucus flow in the colon may result in an SCFA concentration
gradient (Donohoe et al., 2012), so that their concentration in the
colon may reach a range capable of activating the biological activity
of GPR43 in the epithelium. GPR43 affects the differentiation and
activation of the monocytes and neutrophils that mediate inflam-
mation, as well as intracellular signaling pathways, while mitogen-
activated protein kinase, protein kinase C, and phospholipase C
trigger leukocyte recycling in the inflammation location (Vinolo
et al., 2011). In contrast to GPR43, GPR41/FFAR3 can only be



Fig. 2. SCFA action mechanisms. On the one hand, SCFA act as HDAC inhibitors to promote the production of Treg and alleviate intestinal inflammation. On the other hand, SCFA act
as GPCR (GPR43, GPR41, GPR109A) ligands to promote the secretion of GLP-1 and PYY, increase the secretion of insulin in white adipose tissue and pancreatic tissue, and transmit
satiety signals to the brain. In addition, SCFA can effectively inhibit the NF-kB signaling pathway and reduce the expression of inflammatory cytokines. SCFA ¼ short-chain fatty
acids; Treg ¼ regulatory T cells; HDAC ¼ histone deacetylase; GLP-1 ¼ glucagon-like peptide 1; PYY ¼ peptide YY; NF-kB ¼ nuclear factor kB; TNF-a ¼ tumor necrosis factor-a;
IL ¼ interleukin; DC ¼ dendritic cell.
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coupled with Gi and can be activated by propionate, butyrate and
acetate, of which propionate is the most effective activator, with an
EC50 of approximately 12e274 mM (Le Poul et al., 2003). GPR109A/
HCAR2 is only activated by butyrate (Blad et al., 2012), which is
produced at a high concentration (10e20 mM) in the colon cavity
and acts as an endogenous agonist of GPR109A (Thangaraju et al.,
2009).

In the intestine and white adipose tissue of mice, the stimula-
tion of GPCR43 by SCFA triggers the production of the intestinal
GLP-1 (Kimura et al., 2013), which can directly promote the
secretion of insulin and inhibit that of glucagon by interacting with
pancreatic b-cells (Wei and Mojsov, 1995). Butyric acids play an
important role in this process. First, butyrate enhances the secre-
tion of GLP-1 by upregulating the genes responsible for the syn-
thesis and secretion of GLP-1, and enhances the activity of GLP-1
and the sensitivity of insulin. Second, the secretion of GLP-1 and
glucose-dependent insulinotropic polypeptide is induced by the
stimulation of pancreatic b-cells, and butyrate can maximally
transmit the signal to induce GLP-1 production through FFAR3 (Lin
et al., 2012). Short-chain fatty acids the proliferation and protection
of islet cells mediated by protein kinase B and pancreatic and
duodenal homeobox factor 1 (PDX1) by activating the receptor of
GLP-1 (Li et al., 2005; Lin et al., 2012; Perfetti and Hui, 2004). There
is also evidence that SCFA can prevent the dedifferentiation of
362
pancreatic b cells caused by forkhead box O1 (FOXO1) through GLP-
1-mediated inhibition of intracellular FOXO1 and upregulation of
PDX1 (Kitamura, 2013; Talchai et al., 2012). In addition, sodium
butyratemay be a pancreatic development factor, inducing nidogen
enhanced green fluorescent protein progenitor cells to transform
into insulin secreting cells to promote insulin secretion in the
presence of GLP-1 (Li et al., 2008). In addition, by activating GPR41,
SCFA induce intestinal endocrine cells located in the colon to
secrete peptide YY and then release it into systemic circulation
(Samuel et al., 2008; Tolhurst et al., 2012). Once it enters circulation,
it can send signals to the central nervous system to delay intestinal
movement and gastric emptying, thus prolonging the ability to
absorb nutrients (Cronin et al., 2021).

In addition, SCFA are important in regulating intestinal immu-
nity. Researchers found that butyric acid can induce the tran-
scription of IL-18 by stimulating the signals of GPR109A and GPR43,
with the NLRP3 inflammasome also be activated (Macia et al., 2015;
Singh et al., 2014). By releasing IL-18, the inflammatory response of
the mucosal immune system caused by commensal microorgan-
isms in the intestine is alleviated, and the integrity of the intestinal
barrier is promoted, thus helping prevent bacterial invasion and
infection (Kau et al., 2011; Koh et al., 2016; Macia et al., 2015).
Butyrate prevents leukocyte migration by downregulating the
expression of human vascular endothelial cell adhesion molecule 1,
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which is mediated by TNF-a and induces IL-10-mediated suppres-
sion of inflammation by Tregs (Meijer et al., 2010). Then, GPR109A
is activated, which promotes the maturation of macrophages and
dendritic cells in the colon, stimulates the production of trans-
forming growth factors, and induces T cells that produce Tregs and
IL-10 (Singh et al., 2014). Dendritic cells produce IL-10 and retinoic
acid, stimulate the conversion of naive T cells into Tregs and sup-
press the production of helper Tcells 17 that promote inflammation
and colon cancer (Kalala et al., 2018). In addition, propionate and
butyrate effectively inhibit the activation of the nuclear factor kB
(NF-kB) signaling pathway (Singh et al., 2014), the expression of
inflammatory cytokine genes, and exert anti-inflammatory effects
by downregulating pro-inflammatory cytokines such as TNF-a, IL-
1b and IL-6 (Mattace Raso et al., 2013).

6. The role of dietary fiber in the health and development of
pigs

6.1. The microecology and health of the pig intestine

Generally, the microbial flora in the animal intestine is in a
relatively stable state. When the body encounters stress, the
imbalance of intestinal flora leads to intestinal inflammation and
diarrhea, which have a negative impact on the growth and devel-
opment of animals (Duarte and Kim, 2022; Ma et al., 2022). The
addition of dietary fiber to the feed has a beneficial effect on the
intestinal health of both sows and piglets. When sows consume
feeds supplemented with fermented fiber, beneficial bacteria can
rapidly colonize in the intestine of sows and form a biological
barrier, promoting the growth of beneficial intestinal flora while
inhibiting that of pathogenic bacteria, which may be related to the
production of a variety of metabolites, such as SCFA, by the
fermentation of dietary fiber, thus reducing the intestinal pH and
competitively inhibiting the growth of harmful bacteria (Montagne
et al., 2003). Study has shown that the supplement of dietary fiber
to sow diet can decrease the abundance of E. coli and increase that
of acetic acid in the intestine (Wang et al., 2003). Furthermore, a
high-fiber diet increased the abundance of Lactobacillus, as well as
the content of butyric acid, acetic acid and propionic acid in the
colon of Taoyuan pigs and Duroc pigs (Liu et al., 2022). In addition,
in sows, a high level of dietary fiber diet can promote intestinal
peristalsis, improve the speed of chyme passing through the
gastrointestinal tract, and prevent constipation (Oliviero et al.,
2009). According to studies, increasing the proportion of dietary
fiber in the diet of sows increased the speed of chyme passing
through the intestine by several times (Jørgensen et al., 1996), and
greatly improved the constipation of sows, while the postpartum
feed intake, water intake and piglet birth weight were significantly
higher than those of the control group (Oliviero et al., 2009). In
addition, the addition of appropriate amounts of dietary fiber to
piglet diets can block the adhesion of harmful bacteria to the
gastrointestinal mucosa, regulate the intestinal microecological
balance and maintain a normal microbiota, thus preventing
digestive disorders and intestinal diseases (Chen et al., 2019).
Similar to the role of dietary fiber in sows, suitable proportions of
soluble and insoluble fiber can reduce the residence time of chyme
in the intestines of piglets and reduce the fermentation of proteins
in the hindgut, allowing pathogenic bacteria to be rapidly excreted
with feces and reducing the proliferation of pathogenic bacteria in
the small intestine (Gerritsen et al., 2012).

6.2. Reproductive performance of sows

Dietary fiber fermented feed can enable sows to reach their full
reproductive potential. In recent years, scholars have conducted
363
numerous studies on the effects of dietary fiber on sow fertility,
founding that sows can obtainmore energy from fermented dietary
fiber and improve their reproductive performance. There is evi-
dence that the diet of sows prior to mating can have a significant
effect on pre-partum survival and litter size in subsequent preg-
nancies, possibly due to the fact that the developing oocytes within
the follicles are highly sensitive to changes in maternal nutritional
intake, which in turn affects hormone and metabolite levels,
thereby altering ovarian function (Ashworth et al., 2009). Sows
undergo changes in hormone levels and experience labor stress
during labor, while dietary fiber and its metabolites can help
regulate stress and hormone level changes during labor
(Pastuszewska et al., 2000). Dietary fiber has been reported to
reduce digestive tract disorders, regulate the blood insulin, estro-
gen, progesterone, and prolactin levels in sows prior to parturition,
and promote feeding during lactation as well as growth and
development of offspring, which may be achieved by modulating
multiple activities such as intestinal immunity, inflammatory
response, and insulin sensitivity through pathways such as
intestine-liver or intestine-brain (de Leeuw et al., 2004; Quesnel
et al., 2009). According to Ferguson et al., follicular development
and oocyte maturation were promoted in sows that were fed diets
rich in dietary fiber prior to mating, possibly due to changes in
estradiol hormone levels (Ferguson et al., 2007). This reproductive
benefit was also observed in sows that were fed with lupin before
fertilization, and the embryo survival rate of sows increased 27e29
days after mating (Ferguson et al., 2007; Weaver et al., 2013). For
sows that were fed diets supplementedwith fiber, the live litter size
increased significantly (Wu et al., 2020). The same results were
observed for sows fed with wheat straw, with significant increases
in total litter size, the number of piglets weaned per litter, and
number of litters weaned (Veum et al., 2009). In addition, short-
term supplementation of dietary fiber in the late gestation period
reduced the total mortality of lactating piglets and percentage of
stillborn piglets (Feyera et al., 2017). In summary, feeds with fer-
mented dietary fiber contains many beneficial active ingredients
that can improve sows' intestinal health, immune function, and
digestion, as well as the absorption and utilization of nutrients.
Furthermore, these beneficial effects improve the intestinal health
of offspring through the maternal effect, which improves sows'
reproductive performance and promotes offspring growth and
development. In addition, feeds with fermented dietary fiber have
good appetite and palatability, which promotes greater feed intake
by sows and ultimately improves sow performance. Finally, sows'
improved reproductive performance may be related to the pro-
motion of their reproductive organ development by dietary fiber
and the growth of intestinal microflora associated with SCFA
(Abdelsattar et al., 2022).

The interaction between dietary fiber and intestinal microor-
ganisms can produce beneficial effects that can be passed on to sow
offspring. Adding inulin and guar gum to the diet of sow altered the
gut flora of piglets, with the abundance of probiotics in the gut was
increased, and the diarrhea rate of piglets was reduced (Cheng
et al., 2018; Pablack et al., 2015). Increasing the proportion of di-
etary fiber in the diet of pregnant sows also improved antioxidant
capacity and inhibited colonic inflammation in piglets (Li et al.,
2019). Feeding a diet rich in fiber to pregnant sows also affected
the growth rate of piglets. When sows were fed dietary fiber in late
pregnancy, the daily gains of their offspring piglets were higher
until the fifth day of lactation (Oliviero et al., 2009). A similar sit-
uation was observed when sows were fed dietary fiber from the
25th day of gestation to delivery, with the offspring piglets of the
fiber fed sows grew faster than those of the control sows (Quesnel
et al., 2009). Similarly, when high-fiber diets were fed to primipa-
rous sows from 5 weeks of gestation to parturition, the growth rate
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in the first week of postpartum and the weight at weaning of
piglets were increased (Guillemet et al., 2007).

6.3. Lactation performance of sows

The lactation capacity of sows and the regular nutrient content
of their milk are closely related to sows’ reproductive performance,
which directly affects the growth and development of offspring
during lactation and after weaning. Adding a certain dietary fiber to
the diet of sows can improve their lactation performance, probably
because the fermentation of dietary fiber produces a variety of
organic acids such as acetic acid, propionic acid, butyric acid and
lactic acid, which can provide energy for the body. Moreover, these
organic acids can enter milk through the blood and improve the
levels of lactoprotein and butterfat, further improving the quality of
sow milk, which is conducive to the growth and development of
offspring, and promoting the survival rate of newborn piglets. Ac-
cording to reports, after increasing the proportion of fiber in the
diet of sows, the time to feed colostrumwas shortened in newborn
piglets, the butterfat content in the breast milk of sows with high-
fiber diets was significantly higher than that with low-fiber diets,
and the mortality rate of piglets before weaning was reduced
(Loisel et al., 2013; Montagne et al., 2014). The use of oat hulls
instead of certain conventional feeds also increased the content of
butterfat in the milk of postpartum sows, as well as energy in
colostrum and standing milk (Mroz et al., 1986). In addition,
lactation ADFI can significantly affect the reproductive performance
of sows, while various factors such as oxidative stress and inflam-
mation can cause insufficient lactation ADFI. In sows, the imbalance
of intestinal flora caused by high metabolism and reduced antiox-
idant capacity can lead to metabolic syndrome in late gestation and
early lactation (Mosnier et al., 2010). Dietary fiber, which promotes
beneficial intestinal bacteria, can improve metabolic syndrome by
remodeling the flora, thus reducing oxidative stress and inflam-
mation in sows and increasing the ADFI in lactation effectively (Xu
et al., 2020a; Zhou et al., 2017). The addition of dietary fiber to the
diets of sows during pregnancy also significantly increased their
feed intake, thereby increasing the milk yield of sows. Studies
found that the feed intake of sows was increased when a certain
proportion of wheat bran, sugar beet pulp, soybean hulls, and
konjac flour were added to the feed (Quesnel et al., 2009; Renteria-
Flores et al., 2008; Tan et al., 2018). Paßlack et al. (2015) showed
that for sows, the addition of a certain percentage of dietary fiber
during the perinatal period can effectively improve insulin sensi-
tivity. Lower insulin sensitivity reduced the feed intake of sows in
late pregnancy, which is conducive to the production of sows and
the increase of feed intake during lactation, thus improving the
milk yield (Mosnier et al., 2010). Almost all the energy material of
piglets before weaning comes from breast milk, and the lactation
performance of sows determines the growth performance of piglets
before and after weaning, the litter weight of weaned piglets can
visually reflect the lactation performance of sows therefore. In a
study of 600 sows in three breeding cycles, Veum et al. found that
feed with a certain percentage of wheat straw increased the
newborn litter weight and weaning litter weight (Veum et al.,
2009). Therefore, these studies demonstrate that dietary fiber can
regulate the intake of sows by regulating their gut health, which, in
turn, improves the milk quality, lactation performance, and repro-
ductive performance of sows and the litter weight of weaned
piglets.

6.4. Growth performance and meat quality

The influence of dietary fiber on the growth performance of pigs
is related to feed utilization. According to Zhao et al., the addition of
364
corn bran or wheat bran to the diet increased the average weight
gain and feed conversion ratio of weaned piglets, which may be
related to changes in the intestinal microbiota, increased butyrate
production and enhanced intestinal health (Zhao et al., 2018a).
First, the various beneficial bacteria and their metabolites con-
tained in dietary fiber fermented feed can promote the balance of
gut microbe and reduce the occurrence of diarrhea. Furthermore,
the SCFA produced by dietary fiber fermentation can directly or
indirectly participate in physiological activities such as energy
metabolism and the immune function regulation of the body, that
are conducive to the development of the intestinal structure and
the improvement of intestinal function, thus facilitating the
digestion and utilization of nutrients and promoting piglet growth.
Second, fiber fermented feeds can increase appetite, which can
improve the feed intake of piglets and eventually improve their
growth performance. However, some studies have obtained the
opposite results, with high-fiber diets leading to a decrease in the
average daily weight gain of weaned piglets and reducing the lean
meat of fattening pigs, which are associated with reduced nutrient
digestibility and energy deposition caused by dietary fiber (De Jong
et al., 2014; Wang et al., 2016).

Muscle fibers in pigs can be divided into fast muscle fibers,
including myosin heavy chain (MyHC) IIa, MyHC IIb and MyHC IIx,
and slow muscle fibers, which correspond to MyHC I, which are
related to energy supply and different modes of glucose utilization,
thus affecting the lipid content, function, color and shape of the
muscle (Joo et al., 2013). Dietary fiber also has an effect on meat
quality, with a high dietary fiber diet reducing glycolysis of fresh
pork, whichmay be related to the improvement of muscle oxidative
fiber composition (Li et al., 2015). Furthermore, high fiber diets
reduced the mRNA and protein levels of MyHC IIb and MyHC IIx in
the longissimus dorsi of Erhualian pigs (Han et al., 2020). Moreover,
SCFA produced by dietary fiber fermentation can regulate muscle
cell energy metabolism by affecting mitochondrial synthesis and
function (Canfora et al., 2015). According to Joven et al. (2014), the
replacement of barley with fiber-rich olive cake in the diet can also
reduce the drip loss and backfat thickness of fattening pigs.

7. Conclusion and prospect

The impact of dietary fiber as a prebiotic supplement or a nat-
ural food on health and disease is related to its effect on the
regulation of the intestinal microbiota, which can promote intes-
tinal health and prevent diseases by balancing immune function,
promoting intestinal mucus production and membrane integrity,
and preventing the growth of pathogenic microorganisms. The
main beneficial effects of dietary fiber intake occur through the
production of SCFA, which play a significant role in regulating the
metabolism, immunity and inflammation of the host through
cellular and signaling mechanisms. Here, we discussed the role of
dietary fiber and SCFA in maintaining health, preventing inflam-
mation and disease, and improving pig nutrition. However, further
work is needed to better understand how dietary fiber interacts
with microbiota. The type, dose, solubility, viscosity, and fermen-
tation characteristics of dietary fiber affect its benefits to animals.
At the same time, the inhibitory effects of SCFA on inflammation
may vary across tissues and cells. Therefore, more studies and re-
ports on these characteristics and mechanisms are needed to
determine the clinical therapeutic effects of dietary fiber with
different sources, properties and doses on specific diseases. In
addition, interventions with single dietary fiber may be insufficient
to reverse poor health, and the combined administration of
different dietary fibers and the combined intake of dietary fiber
with other beneficial substances such as probiotics also need to be
explored. Overall, future research should explore the complex
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interactions between specific dietary fibers and gut microbiota to
develop individualized nutritional therapies to reduce the inci-
dence and impact of various diseases.
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