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Abstract
Cardiovascular diseases represent a major cause of death and morbidity. Cardiac and vascular pathologies develop predomi-
nantly in the aged population in part due to lifelong exposure to numerous risk factors but are also found in children and 
during adolescence. In comparison to adults, much has to be learned about the molecular pathways driving cardiovascular 
diseases in the pediatric population. Sirtuins are highly conserved enzymes that play pivotal roles in ensuring cardiac homeo-
stasis under physiological and stress conditions. In this review, we discuss novel findings about the biological functions of 
these molecules in the cardiovascular system and their possible involvement in pediatric cardiovascular diseases.
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Sirtuins: Biological Functions

Sirtuins constitute a class of highly conserved enzymes, 
which act preferentially as NAD+-dependent deacetylases 
and/or mono-ADP-ribosyl transferases. In addition, some 
sirtuins exhibit less characterized enzymatic activities such 
as desuccinylation, glycohydrolase, and demalonylation 
[1–5]. In mammals, sirtuins comprise a family of seven 
members (Sirt1-Sirt7; Fig. 1a). Mammalian sirtuins share 
a conserved catalytic domain but possess different N-ter-
minal and C-terminal sequences, which are unique for each 
member of the family and are important for their subcel-
lular localization and isoform-specific functions [1, 6]. 
Sirt1, Sirt6, and Sirt7 are mainly present in the nucleus; 
Sirt2 primarily resides in the cytoplasm while Sirt3, Sirt4, 
and Sirt5 are mitochondrial enzymes [7]. Despite their pref-
erential localization, sirtuins can shuttle between different 
cellular compartments in response to internal or external 
cues [8–11]. Mammalian sirtuins are implicated in numer-
ous biological processes such as cellular differentiation, 

metabolism, cancer progression, apoptosis, maintenance of 
genomic stability and aging. In yeast, sirtuins promote the 
extension of life span while in mammals they mediate the 
beneficial and anti-aging effects of physical exercise and 
caloric restriction [12].

Sirtuins have been recognized as pivotal regulators of 
cellular stress responses [13]. In response to a broad range 
of stress stimuli, they contribute to the adaptation of cel-
lular physiology to harsh and varying conditions ensuring 
the maintenance of cellular homeostasis [14]. Stress stimuli 
promptly regulate expression of sirtuins and modulate their 
activation mainly by controlling their post-translational 
modification [15–17]. Sirtuins act mainly via two different 
mechanisms: (i) they promote heterochromatin formation at 
different chromosomal loci. This is achieved either by direct 
deacetylation of histones or by modulation of the activity 
and/or the recruitment of other histone modifiers such as 
acetyltransferases and methyltransferases [18]; (ii) sirtuins 
control numerous chromatin unrelated targets mainly via 
direct deacetylation. These targets mostly comprise enzymes 
and transcription factors such as p53, FOXO, MyoD, and 
NF-κB. In some cases, the same molecular targets are 
addressed by different sirtuins [18] (Fig. 1b). Finally, recent 
studies demonstrated the presence of a mutual regulation 
between different members of mammalian sirtuins, indicat-
ing that these molecules are part of a highly complex molec-
ular network that maintains cellular homeostasis [19–22].
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Sirt1 in the Development of Cardiovascular 
System: Role in Congenital Heart Defects

Congenital heart diseases (CHDs) represent the most 
common category of birth defects with a prevalence of 
around 1% in the global population. Recent advances in 
the early diagnosis, corrective surgery, and post-operatory 
care have significantly reduced mortality in affected chil-
dren, substantially increasing the percentage of patients 
surviving into adulthood [23]. Although several genetic 
aberrations have been associated with CHDs, the major-
ity of cases does not depend on monogenetic causes [24]. 
Certain maternal conditions such as diabetes, obesity, 
hypertension, and exposure to toxic substances have been 
recognized as risk factors associated with CHDs [24]. 
The molecular pathways that underlie the development of 
pathological cardiovascular conditions during pregnancy 
and after birth as well as the influence of environmental 
factors are still not well understood.

Growing experimental evidence supports an important 
role of Sirt1 in the development of cardiovascular sys-
tem. Sirt1 is highly expressed in the embryonic heart but 
its expression dramatically declines in adult animals [10]. 
Sirt1 constitutive knockout animals show congenital cardiac 
abnormalities and die mostly before the age of 2 weeks after 
birth (Table 1) [25, 26]. Recently, we uncovered a novel role 
of Sirt1 in the regulation of cardiac progenitor cell (CPC) 
proliferation and specification in dependence on oxygen 
availability (Fig. 2). Although hypoxia was described as a 
risk factor for CHD, the molecular mechanisms remained 
largely unknown [26]. We discovered that during early 
stages of heart morphogenesis spatial and temporal differ-
ences in oxygen concentration determine expression of the 
critical transcription factors, ISL1 and NKX2.5, thereby 
regulating CPCs proliferation and specification. Moreover, 
we have demonstrated that Sirt1 is a critical factor, which 
translates differences in oxygen concentration into transcrip-
tional responses [26].

Fig. 1   Subcellular localiza-
tion and function of sirtuins. 
a Subcellular localization of 
the seven mammalian sirtuins. 
Sirt1, Sirt6, and Sirt7 are 
mainly localized in the nucleus. 
Sirt2 is a cytoplasmic enzyme 
while Sirt3, Sirt4, and Sirt5 are 
enriched in mitochondria [7]. In 
response to internal and external 
stimuli, sirtuins can translocate 
into other cellular compartments 
(yellow arrows) regulating a 
vast number of biological func-
tions [8–11]. b Sirtuins control 
chromatin dynamics either by 
directly deacetylating histones 
such as histone 3 at lysine 9 
(H3K9) and lysine 16 of histone 
4 (H4K16) or through regula-
tion of other histone modifiers 
such as methyltransferases 
and histone acetyltransferases 
(HATs). In addition, sirtuins 
regulate, mainly through direct 
deacetylation, several other tar-
gets such as transcription factors 
and enzymes [18]
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The heart is built from cells either located in the first 
heart field (FHF) or the second heart field (SHF) [27, 28]. 
The FHF forms the primary heart tube and parts of the 
left ventricle, whereas CPCs from the SHF contribute to 
the atria, the right ventricle, and the venous and anterior 
pole of the heart [29, 30]. After expression in cells that give 
rise to both the FHF and SHF, ISL1 is primarily found in 
CPCs of the SHF, where it is involved in the regulation of 
cellular proliferation. NKX2.5 does not show a heart field-
specific expression but seems to be expressed at later stages 
of cardiomyogenic differentiation when CPCs start to turn 
off the expression of ISL1 and are acquiring a more mature 
cardiomyocyte phenotype [29, 30]. In the SHF, ISL1 inhib-
its premature differentiation of CPCs by recruiting histone 
deacetylases (HDACs) to the Nkx2.5 promoter, leading 
thereby to inhibition of NKX2.5 expression. This process 
permits expansion of ISL1+ cells [26]. Interestingly, the 
particular niche where ISL1+ cells reside maintains rela-
tively high oxygen concentration. In contrast, regions of the 
developing heart tube, where NKX2.5 activity leads to CPCs 

specification and subsequent differentiation into cardiomyo-
cytes, are hypoxic (Fig. 2). In the forming heart, the reduced 
oxygen concentration triggers recruitment of the hypoxia 
inducible factor HIF1α to the Isl1 promoter. HIF1α then 
attracts the transcription factor HES1 and Sirt1, resulting in 
Sirt1-mediated epigenetic silencing of ISL1 expression. At 
the same time, the inhibitory effect of ISL1 on the Nkx2.5 
promoter is relieved, NKX2.5 expression increases, thereby 
ensuring commitment of CPCs to the cardiomyocyte lineage 
[26, 29]. We have further demonstrated that the exposition 
of female mice to pathological hypoxia leads to precocious 
specification of ISL1+ cells in developing embryos due to 
aberrant recruitment of SIRT1 to the Isl1 promoter and inac-
tivation of Isl1 expression. As a consequence of expression 
changes induced by exposure to the pathological hypoxia, 
the pools of proliferating and committed CPCs are abated 
and congenital heart defects develop (Fig. 2). Inactivation of 
Sirt1 specifically in ISL1+ cells of the SHF is able to avert 
the negative effects of pathological hypoxia during heart 
development, preventing the onset of cardiac abnormalities 

Table 1   Role of sirtuins in the cardiovascular system

The table summarizes the major roles of sirtuins in the heart under basal conditions or in response to exposure to stress stimuli. The table also 
reports known alterations of sirtuin genes, which correlate with cardiac diseases in human patients (Tg-mice transgenic mice, SNPs single-nucle-
otide polymorphisms, KO knock-out, PAH pulmonary arterial hypertension) [25, 26, 31, 33, 44–54, 60–85, 87–90, 101]

Sirtuin Cardiac phenotype in mouse models under 
basal conditions

Role in response to stress stimuli Gene alterations associated with cardiovas-
cular diseases in humans

Sirt1 • Congenital heart abnormalities in consti-
tutive KO mice [25, 26]

• Conductive disturbances, insulin resist-
ance and cardiac hypertrophy in cardiac-
specific KO mice [31, 44]

• Low to moderate expression in Tg-mice 
inhibits age-dependent cardiac remod-
eling [53]

• Cardiomyocytes survival [45–50] • SNPs at the Sirt1 promoter associate with 
ventricular septal defects [33]

• SNPs correlate with acute myocardial 
infarction [88]

Adverse effects
• Cardiac abnormalities in response to 

maternal exposure to hypoxia [26]
• Promotes mitochondrial dysfunctions in 

failing hearts [52]
• Promotes cardiac hypertrophy in response 

to pressure overload [51]
Adverse effects
• High levels of expression in Tg-mice 

promote age-dependent fibrosis and 
hypertrophy [53]

Sirt2 • Increased age-dependent cardiac remod-
eling in constitutive KO mice [54]

• Inhibition of hypertrophy [54] • SNPs correlate with acute myocardial 
infarction [87]

Sirt3 • Increased cardiac remodeling in constitu-
tive KO mice [60, 63, 64]

• Inhibition of cardiac remodeling and 
maintenance of mitochondrial functions 
[60–68]

• SNPs correlate with acute myocardial 
infarction [89]

• SNPs correlate with PAH [101]
Sirt4 • No obvious phenotype in constitutive KO 

mice [69]
Adverse effects
• Promotes pathological cardiac hypertro-

phy in response to pressure overload [69]

Not reported

Sirt5 • Increased cardiac remodeling in constitu-
tive KO mice [70]

• Maintains mitochondrial functionality 
and prevents adverse remodeling [71, 72]

Not reported

Sirt6 • Increased cardiac remodeling in constitu-
tive KO mice [73]

• Inhibits pro-hypertrophic and pro-fibrotic 
pathways [73–82]

• SNPs correlate with acute myocardial 
infarction [90]

Sirt7 • Age-dependent cardiac hypertrophy, 
fibrosis and inflammatory cardiomyopa-
thy [83, 84]

Adverse effects
• Prevents fibrosis and scar formation in 

response to ischemia reperfusion injury 
[85]

Not reported
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[26]. Interestingly, inactivation of Sirt1 in ISL1+ cells under 
physiological conditions does not result in major cardiac 
abnormalities, although Isl1 expression is promoted and 
Nkx2.5 expression is decreased, indicating that under physi-
ological conditions still unknown mechanisms compensate 
for Sirt1 deficiency in the SHF [26].

Another important function of Sirt1 in cardiac physiology 
is the regulation of cardiac electrical activity. Sirt1-depend-
ent deacetylation of the voltage-gated Na+ channel, Nav1.5, 
at lysine 1479 is a prerequisite for its correct localization 
in the cell membrane. Cardiomyocyte-specific deletion of 
Sirt1 in mice causes cardiac conductive abnormalities and 
premature death due to arrhythmia (Table 1) [31]. Interest-
ingly, mutations in the SCN5A gene coding for NAv1.5 have 
been found in patients suffering from arrhythmia disorders 
such as the long-QT and the Brugada syndrome and other 
inherited conduction diseases [32]. Such arrhythmias often 
affect pediatric patients and underlie many causes of sudden 
death in pediatric population.

Taken together, there is strong experimental evidence 
that Sirt1 is important for proper heart development and 
maintenance of cardiac functions. Therefore, changes in 
Sirt1 expression and/or activity may be associated with the 
development of CHDs. At this point, it is worth noting that 
an occurrence of single-nucleotide polymorphism (SNPs) 
at the Sirt1 promoter, which might alter Sirt1 expression, 

was found in human subjects with ventricular septal defects 
(Table 1) [33]. Furthermore, reduction of the activity and/
or expression of Sirt1 and Sirt3 in different fetal tissues has 
been described in maternal conditions favoring occurrence 
of congenital heart diseases, such as gestational diabetes 
and obesity [34–37]. Moreover, mutations in genes encod-
ing enzymes from the NAD biosynthesis pathway have been 
associated with congenital heart malformations [38]. Since 
NAD is a fundamental co-enzyme required for sirtuin activ-
ity, it is reasonable to assume that any disturbances in NAD 
availability might inhibit sirtuin activity and result in a car-
diac phenotype.

Role of Sirtuins in Cardiac Stress Responses

The heart is a very dynamic organ that can adapt its func-
tion in response to different physiological and pathological 
stimuli. During adaption, the heart activates a complex net-
work of metabolic and molecular changes that enable cardiac 
remodeling [39]. Cardiac remodeling occurs under physi-
ological conditions such as physical exercise or changes in 
metabolism. In response to persistent stress, however, car-
diac remodeling may promote deterioration of ventricular 
function leading to heart failure. Adverse cardiac remodeling 
processes comprise cardiomyocytes hypertrophy or death, 

Fig. 2   Sirt1 regulates proliferation and differentiation of CPCs in the 
SHF under physiological conditions and instigates aberrant cardio-
genesis in response to hypoxia. In CPCs of the SHF (yellow), ISL1 
recruits histone deacetylases (HDACs) to the promoter of the Nkx2.5 
gene, inhibiting its expression and thereby promoting ISL1+ cells 
expansion. As ISL1+ cells incorporate into the hypoxic heart tube, 
Sirt1 stimulates the commitment of these cells toward the cardiomyo-

cyte lineage (blue) by forming a molecular complex with HIF1α and 
the transcription factor HES1 at the Isl1 gene promoter thereby epi-
genetically inhibiting Isl1 expression. This process promotes Nkx2.5 
expression and cardiomyocyte differentiation. Pathological exposure 
to hypoxia promotes formation of a HIF1α/Sirt1/Hes1 complex at the 
Isl1 promoter leading to the premature specification of CPCs, causing 
congenital heart defects [26]
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myocardial fibrosis and inflammation [40, 41]. Mitochondria 
not only play a pivotal role in the maintenance of cardiac 
functions by providing energy but also contribute to oxida-
tive stress. Mitochondrial dysfunction is an important event 
that contributes to cardiac remodeling and heart failure as 
a consequence of prolonged exposure of the heart to chal-
lenging stimuli [42]. Several other molecular pathways are 
associated with adverse cardiac remodeling. For instance, 
the differentiation of cardiac fibroblasts into myofibroblasts 
is a crucial event that leads to cardiac fibrosis further com-
promising heart contractility and contributing to heart failure 
[43].

Sirtuins have been shown to contribute to homeostasis 
of the heart under physiological and stress conditions by 
controlling a vast number of molecular pathways. Sirt1 pro-
motes the maintenance of mitochondrial homeostasis by 
activating key transcription factors involved in biogenesis 
of mitochondria. Consequently, mitochondrial biogenesis 
and function are impaired in hearts of cardiac-specific Sirt1 
knockout mice. Altogether, inactivation of Sirt1 in cardio-
myocytes led to symptoms characteristic for diabetic cardio-
myopathy (DCM) including cardiac hypertrophy, abnormal 
glucose metabolism and insulin resistance. Importantly, 
treatment of DCM mice with a Sirt1 activator, resveratrol, 
reverses the DCM phenotype [44]. Several further inves-
tigations reported protective effects of Sirt1 in the heart, 
especially under stress conditions. Generally, Sirt1 lowers 
oxidative stress and favors cardiomyocytes survival [45–50]. 
Surprisingly, however, it was observed that Sirt1 KO mice 
were protected from cardiac hypertrophy in response to pres-
sure overload [51]. Furthermore, Sirt1 is upregulated in fail-
ing hearts where it promotes mitochondrial dysfunction and 
heart failure [52]. These controversial findings suggest that 
Sirt1 might exert protective or deleterious effects in the heart 
probably depending on the type of stress that dominates. 
In addition, the influence of Sirt1 on cardiac physiology 
appears to be dosage-dependent. In fact, high levels of Sirt1 
(more than 12 times above the normal level) have detrimen-
tal effects on the cardiac function, while a low to moder-
ate overexpression of Sirt1 in transgenic mice inhibits age-
dependent development of cardiac hypertrophy and fibrosis 
[53]. These data illustrate the high degree of complexity of 
Sirt1-dependent regulatory processes during cardiac stress 
responses (Table 1).

Much less is known about the role of the cytoplasmic 
Sirt2 in the heart. One study described a protective role of 
Sirt2 by preventing age-associated and stress-induced car-
diac remodeling in mice through activation of anti-hyper-
trophic signaling pathways (Table 1) [54]. Sirt2 has been 
also shown to maintain mitochondrial homeostasis, protect 
against oxidative stress and improve insulin sensitivity in 
hepatocytes [55]. However, it is not known whether similar 
mechanisms might contribute to cardiac homeostasis.

Mitochondrial sirtuins, Sirt3, Sirt4, and Sirt5, attracted 
more attention than Sirt2 in the heart. Sirt3 regulates the 
global acetylome of mitochondrial proteins. Inactivation of 
Sirt3 results in a significant increase in the acetylation levels 
of key mitochondrial enzymes and in a specific inactiva-
tion of the mitochondrial complex I activity, suggesting that 
Sirt3 is an important factor maintaining basal ATP levels 
[56–60]. Sirt3-deficient mice show enhanced cardiac fibrosis 
and hypertrophy, which manifest already in young animals 
and progress with aging. In addition, Sirt3 knockout mice 
display higher rate of cardiac remodeling and cardiac dys-
function in response to stress stimuli due to the impaired 
mitochondrial function and accumulation of oxidative stress. 
In contrast, Sirt3 overexpressing mice are protected against 
cardiac stressors [60–64]. Several other reports demon-
strated an essential role for Sirt3 in cardiac protection under 
different stress conditions. Sirt3 overexpression in primary 
cardiomyocytes reduced cellular levels of reactive oxygen 
species (ROS) by deacetylating the transcription factor 
Foxo3a and thereby stimulating the expression of antioxidant 
enzymes-encoding genes. Through decreased ROS level and 
other mechanisms, Sirt3 further contributed to lower apop-
tosis in response to stress [63, 65–67]. Moreover, Sirt3 pre-
vents cardiac differentiation of fibroblasts to myofibroblasts 
and hence fibrosis in vitro [68]. In contrast to the beneficial 
effects of Sirt3, Sirt4 has been shown to promote patho-
logical cardiac hypertrophy in response to pressure overload 
by enhancing oxidative stress. Interestingly, Sirt4 seems to 
antagonize Sirt3-dependent activation of an antioxidative 
enzyme, the manganese dependent superoxide dismutase 
(MnSOD) [69]. The last mitochondrial sirtuin, Sirt5, exhib-
its predominantly a protective role in the heart. Sirt5 was 
shown to desuccinylate and activate enzymes involved in 
fatty acid oxidation. Remarkably, the main enzyme regulated 
by Sirt5 in the heart is ECHA. Decreased ECHA activity 
was identified in the heart of Sirt5 knockout mice as a direct 
cause responsible for progressive cardiac dysfunction start-
ing already in young animals and culminating in loss of ATP 
reservoirs and enhanced cardiac hypertrophy [70]. Two fur-
ther reports demonstrated that Sirt5 protects the heart from 
injuries such as ischemia reperfusion and pressure overload 
by preserving mitochondrial function (Table 1) [71, 72].

Cardiac function is also strongly influenced by the nuclear 
sirtuin, Sirt6. Cardiomyocyte-specific Sirt6 KO animals 
develop spontaneous cardiac hypertrophy already at around 
8–12 weeks of age [73]. Moreover, Sirt6 downregulation has 
been observed in failing human hearts and in mice exposed 
to hypertrophic stimuli while transgenic mice overexpressing 
Sirt6 were protected from hypertrophy in response to stress 
[73]. Sirt6 has been shown to inhibit different pro-hyper-
trophic pathways such as IGF-Akt, NF-κB and STAT3 and 
prevent oxidative stress and cardiac fibrosis through inhibi-
tion of the NF-κB and the AMPK/angiotensin-converting 
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enzyme 2 pathways [73–81]. Furthermore, Sirt6 exerts a 
protective role in the heart by maintaining telomeres integ-
rity in response to pressure overload (Table 1) [82].

Finally, Sirt7 plays a crucial role in the maintenance of 
heart homeostasis. Sirt7 KO mice show higher age-depend-
ent accumulation of cardiac hypertrophy, fibrosis, inflam-
matory cardiomyopathy and cardiomyocyte apoptosis as 
compared with wild type littermates [83, 84]. This pheno-
type might derive from increased activation of hypertrophic 
pathways and p53 [84]. Another study revealed that Sirt7 
deacetylates and activates the transcription factor GABPβ-1, 
a master regulator of the transcription of nuclear-encoded 
mitochondrial genes, and thus promotes proper mitochon-
dria biogenesis [83]. The authors argue that an impaired 
mitochondrial function contributes to cardiac dysfunction 
and hypertrophy observed in Sirt7 knockout mice. Notably, 
Sirt7 also negatively affects cardiac function: In response to 
cardiac injury, Sirt7 KO animals show reduced fibrosis and 
impaired scar formation that often results in cardiac rap-
ture [85]. Sirt7 stimulates fibrosis by stabilizing the TGFß-
receptor-1 through inhibition of autophagy [85]. Interest-
ingly, stimulation of fibrosis takes place only in young 
animals after myocardial infarct induction. In old Sirt7 
knockout animals, an increase in age-dependent fibrosis was 
observed [84]. Such functional duality may be explained by 
the fact that cardiac fibrosis in response to injury and dur-
ing aging depends on the activation of different molecular 
pathways (Table 1) [85].

At this point, it should be also mentioned that sirtuins 
have also been extensively implicated in maintenance of 
endothelial cell homeostasis through inhibition of inflam-
mation and regulation of numerous other molecular path-
ways. Through these mechanisms, sirtuins prevent endothe-
lial dysfunction and development of atherosclerosis [86]. 
Although a comprehensive discussion of the role of sirtuins 
in endothelial cells is beyond the scope of this review, we 
would like to point out that most studies indicate a protec-
tive role of sirtuins in the vascular system. The importance 
of sirtuins in the cardiovascular system was additionally 
strengthened by the description of polymorphisms in the 
Sirt1, Sirt2, Sirt3, and Sirt6 promoters in patients with acute 
myocardial infarction [87–90].

Sirtuins: Possible Targets in Pediatric 
Cardiology?

Although the etiology of heart diseases might differ between 
children and adult patients, in certain cases, as for example 
adverse cardiac remodeling, the same pathological mecha-
nisms are employed [91–93]. As described above, grow-
ing experimental evidence supports a role of Sirt1 in the 
development of congenital heart diseases. Still, very little 

is known about the role of other sirtuins in cardiac diseases 
during infancy. Inactivation of other members of the sirtuin 
family in mice leads to cardiac dysfunctions that mainly 
manifest with aging or in response to stress stimuli. Never-
theless, impaired activity of sirtuins might also be associated 
with deterioration of cardiac functions in children. Sirtuins 
are likely involved in metabolic diseases caused by genetic 
alterations of mitochondrial genes, which lead to dysfunc-
tions of the respiratory chain. These diseases are often asso-
ciated with skeletal myopathy and cardiomyopathies such as 
conduction defects and hypertrophic cardiomyopathy [94]. 
Interestingly, it has been estimated that cardiomyopathy 
occurs in 20–40% of these patients already during child-
hood [95]. Since sirtuins residing in mitochondria (Sirt3, 
Sirt4, and Sirt5), but also nuclear sirtuins, strongly affect 
mitochondrial functions, they are probably also involved in 
the cellular responses to mitochondrial dysfunctions. Con-
versely, mitochondrial defects will affect the activity of sir-
tuins, since mitochondria constitute a major source for oxi-
dation of NADH and mitochondrial malfunction can result 
in an unbalanced ratio of NAD+ and NADH.

Friedreich’s ataxia (FRDA) is an autosomal recessive 
early onset (mean age of onset between 10 and 15 years) 
disorder associated with dysfunctional assembly of the mito-
chondrial respiratory chain. Patients manifest with differ-
ent multisystem alterations and in 85% of the cases die as 
a consequence of heart failure [96]. In a mouse model of 
FRDA, it has been demonstrated that mitochondrial dysfunc-
tion is associated with reduced levels of NAD, which led to 
impaired Sirt3 activity [97]. Normalization of the unbal-
anced ratio of NAD+/NADH in FRDA mice restores cardiac 
function in a Sirt3-dependent fashion, suggesting that Sirt3 
might constitute a possible target to ameliorate cardiac func-
tions in FRDA patients [98]. Interestingly, hyperacetylation 
of mitochondrial enzymes has also been observed in other 
respiratory chains defects, suggesting that inactivation of 
Sirt3 might play a role in cardiomyopathies caused by mito-
chondrial dysfunctions [97]. In support of the significance of 
sirtuin function in mitochondria-based diseases, downregu-
lation of the NAD+ as well as Sirt1, Sirt3, and Sirt4 levels 
has been described in human skin fibroblasts of patients with 
cytochrome c-oxidase deficiency, which also manifests with 
cardiac dysfunctions [99]. Currently, it is not known whether 
hearts of patients with cytochrome c-oxidase deficiency 
show reduced sirtuin activities and whether stimulation of 
sirtuin activities might ameliorate cardiomyopathy.

Pharmacological manipulation of sirtuins might be used 
to delay the onset of cardiac dysfunction in several diseases. 
For instance, Sirt1 activation has been shown to ameliorate 
cardiac hypertrophy and fibrosis and restore cardiac dias-
tolic function in dystrophic mice [100]. Furthermore, Sirt3 
deficiency in mice has been associated with development of 
pulmonary arterial hypertension (PAH), which causes right 
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ventricular hypertrophy. Interestingly, a strong association 
of SNPs polymorphism in the Sirt3 gene, that might affect 
its expression or function, has been found in patients suf-
fering from several forms of idiopathic PAH [101]. Hence, 
stimulation of Sirt3 activity might be seen as a potential new 
means to treat PAH. A scheme depicting the potential roles 
of different sirtuins in the pathogenesis of cardiac diseases 
is shown in Fig. 3 (Table 1).

Conclusions

The molecular pathways that govern cardiac diseases need 
to be investigated more thoroughly in children and young 
adults. Sirtuins are important regulators of cardiac func-
tions but their role in pediatric cardiac diseases just starts 
to emerge. The experimental evidence summarized in 
this review suggests that pharmacological manipulation 
of sirtuins represents an attractive option to develop new 
therapies that might improve heart function in children 
suffering from different heart diseases.
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