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Computational de novo protein design tailors proteins for target structures and

oligomerisation states with high stability, which allows overcoming many

limitations of natural proteins when redesigned for new functions. Despite

significant advances in the field over the past decade, it remains challenging to

predict sequences that will fold as stable monomers in solution or binders to a

particular protein target; thereby requiring substantial experimental resources

to identify proteins with the desired properties. To overcome this, here we

leveraged the large amount of design data accumulated in the last decade, and

the breakthrough in protein structure prediction from last year to investigate on

improved ways of selecting promising designs before experimental testing. We

collected de novo proteins from previous studies, 518 designed as monomers

of different folds and 2112 as binders against the Botulinum neurotoxin, and

analysed their structures with AlphaFold2, RoseTTAFold and fragment quality

descriptors in combination with other properties related to surface interactions.

These features showed high complementarity in rationalizing the experimental

results, which allowed us to generate quite accurate machine learning models

for predicting well-folded monomers and binders with a small set of

descriptors. Cross-validating designs with varied orthogonal computational

techniques should guide us for identifying design imperfections, rescuing

designs andmakingmore robust design selections before experimental testing.
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Introduction

The de novo protein design revolution from the last decade has enabled the creation of

a wide range of folds with hyperstability and structural accuracy, and customized for

binding to target small-molecules or proteins (Marcos and Silva, 2018; Pan and

Kortemme, 2021). Despite major advances in de novo design principles and methods,

predicting whether a designed protein will fold correctly—i.e., with a well-defined

structure and the correct oligomeric state—or bind to its target remains a significant

challenge: in many cases, successful designs are identified after an extensive experimental

screening. Designed proteins expressed in Escherichia coli typically fail due to insoluble

expression, formation of soluble aggregates (or oligomers) or lack of well-defined tertiary
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structure. The success rate highly depends on the complexity of

the protein fold, which tends to increase with β-sheet content,
contact order and size (Marcos and Silva, 2018; Pan and

Kortemme, 2021). Previous studies aiming for de novo protein

binders performed high-throughput experimental screening of

libraries displaying thousands of designed proteins in the yeast

surface. The average success rate for strong protein binders is

typically extremely low (0.01 and 2.5%) following these

approaches [especially without information about known

interfaces with the target (Cao et al., 2022)], often requiring

directed evolution of the initial hits. Overall, to minimize the cost

of experimental screening and make the de novo protein design

technology more broadly accessible, there is a growing demand

for computational design pipelines increasing prediction

accuracies.

The probability of a protein binding to a target protein

(Pbind) is Pfold * Pbind|fold, where Pfold is the probability of folding

and Pbind|fold is the probability of binding if the protein is well-

folded. Likewise, the probability that a protein is a well-folded

monomer in solution (Pmon) is Pfold * Pmon|fold, where Pmon|fold

is the probability of not favoring oligomeric species if the

protein is well-folded. Therefore, making predictions for

binding or monomericity involves explicitly assessing protein

folding and the interactions of the folded protein to other

proteins (Figure 1A). In terms of protein folding, the recent

breakthrough of deep-learning structure prediction by

AlphaFold2 (Jumper et al., 2021) (AF) and RoseTTAFold

(Baek et al., 2021) (RF) now allows us to assess the folding

of designed proteins with unprecedented accuracy and at a

relatively low computational cost. Previously, the gold-standard

computational test for validating the designed structure was the

ab initio folding simulation (Bradley, 2005). However, since

energy functions are imperfect and conformational sampling is

incomplete, designs with simulated energy landscapes

preferentially stabilizing the designed structure (i.e., funnel-

shaped) often failed experimentally. Yet, ab initio folding

simulations are too computationally intensive for screening

large pools of designs. The possibility of predicting protein

structures more accurately and in a high-throughput way

through AF and RF should allow us to better pinpoint

designs for experimental testing and, hence, optimize

experimental resources.

During the last decade, a large number of de novo

designed proteins have been experimentally tested in

solution or in yeast surface, and thus it is timely to revisit

them with accurate structure prediction techniques now

available. We have compiled two datasets and analysed the

predictive power of AF and RF for design success, in

combination with other descriptors related to the designed

sequence, local structure and surface. First, a dataset of mini-

protein binders designed to bind the Botulinum neurotoxin B

(BoNT/B) (Chevalier et al., 2017) (“BoNT dataset”). These

were designed as mimetics of the natural target of BoNT/B

(Synaptotagmin-II) by grafting the interface helix on a library

of de novomini-protein scaffolds. The designed proteins were

expressed in the yeast surface and their binding strength was

assessed by the minimum concentration of target at which the

design was found to be enriched. The advantage is that it is a

very large (3406 designs) and publicly available dataset that

contains an exceptionally high fraction of high-affinity

binders (25%). All designs shared the hotspot residues of

the binding helix and differed in the surrounding scaffold to

stabilize the binding motif and provide additional

interactions with the target. Across all the designed

protein mimetics the probability of binding is expected to

be strongly linked to whether the protein is well-folded (Pbind
~ Pfold). For the second dataset (“Monomer dataset”), we have

curated a selection of 518 de novo proteins from several

studies and spanning a wide range of folds (α, β, and

mixed α/β) that were designed to be stable monomers

without function (Kuhlman et al., 2003; Koga et al., 2012;

Brunette et al., 2015; Doyle et al., 2015; Lin et al., 2015; Huang

et al., 2016; Marcos et al., 2017, 2018; Rocklin et al., 2017; Dou

et al., 2018; Basanta et al., 2020; Pan et al., 2020; Chidyausiku

et al., 2021; Minami et al., 2021). These proteins were

expressed in E. coli, purified and characterized by size-

exclusion chromatography combined with multi-angle light

scattering (SEC-MALS) for checking oligomerisation states,

and circular dichroism for assessing secondary structure

content and folding stability. Those found to be well-

folded monomers in solution were considered successful,

and those with issues in terms of expression, solubility,

oligomerisation or lack of secondary structure were

considered unsuccessful.

Materials and methods

Sequence-structure compatibility
evaluation

The three-dimensional structure of the designed proteins

was predicted from their amino acid sequence using local

installations of AlphaFold2 (Jumper et al., 2021) and the

PyRosetta version of RoseTTAFold (Baek et al., 2021). Both

methods provide five different structural models sorted by a

global confidence score—i.e., predicted Local Distance

Difference Test (pLDDT) and Q score for AlphaFold2 and

RoseTTAFold, respectively. The structural similarity between

AlphaFold2 or RoseTTAFold predictions and the original

design models was assessed by the Cα Root Mean Square

Deviation (Cα-RMSD). The local version of ColabFold

(Mirdita et al., 2022) was used to generate homodimer

predictions with AlphaFold2 using the index jump

approximation. The dimer interfaces predicted in the five

models were analysed with filters available in RosettaScripts
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(Fleishman et al., 2011): ddG calculated with the

Ref2015 energy function (Alford et al., 2017), number of

interface contacts, shape complementarity, buried surface

area and the contact molecular surface (Cao et al., 2022).

Rosetta (Leman et al., 2020) was used to analyse the local

sequence-structure compatibility of each design using the

fragment picking protocol. This fragment quality analysis

quantifies the structural similarity between the design and

naturally occurring 9-mer fragments with a similar sequence

and secondary structure. Two hundred 9-mer fragments were

picked at each residue position, and their RMSD with the

corresponding design fragment was calculated to extract

several fragment quality metrics. MolProbity (Chen et al.,

2010) was also used to analyse the folding quality of the

designs through several metrics.

Protein surface hydrophobicity

To estimate the tendency of a protein to oligomerise and/or

aggregate, we assessed the protein surface hydrophobicity by

computing two scores implemented in Rosetta: the hpatch score

(Jacak et al., 2012), which clusters apolar atoms exposed in the

surface and identifies hydrophobic patches of variable size, and

the Spatial Aggregation Propensity (SAP) (Lauer et al., 2012; Cao

et al., 2022), a property of proteins that determines their tendency

to aggregate.

Monomer and binding energies

The Rosetta binding energy was calculated with the ddG

filter implemented in RosettaScripts. As an independent

approach, we also estimated the binding free energy using

the PROtein binDIng enerGY prediction (PRODIGY) tool

(Vangone and Bonvin, 2015). Other interface-related metrics

were calculated with Rosetta: number interface contacts,

shape complementarity, buried surface area and the

contact molecular surface (Cao et al., 2022). The total

energy of monomeric proteins was calculated with the

Rosetta all-atom energy function Ref2015 (Alford et al.,

2017).

Solubility prediction

E. coli soluble expression was predicted with SoluProt (Hon

et al., 2021) and GraphSol (Chen et al., 2021), which are two

independent machine learning methods trained for expression,

and score the sequences from low (0) to high (1)

expression—where 0.5 is considered the threshold between

expressing and non-expressing sequences. The net charge was

predicted at pH 7.2 with Biopython.

Machine learning algorithms

We used two different machine learning models to classify

the data: support vector classifier and random forest. Model

fitting, model prediction, feature selection and cross validation

were performed with scikit-learn. Those pairs of features with a

Pearson correlation coefficient above 0.8 were considered

correlated. Overfitting of the classification models was checked

by computing the mean absolute error for the training and test

sets across the different K folds splits.

Results

Botulinum dataset

The botulinum dataset comprises 3406 designs that were

classified based on their estimated binding affinity. Among them,

we selected 2112 designs, 874 of which were high-affinity binders

(enriched at BoNT concentrations of 10 nM or lower; herein

called “binding designs”) and 1238 showing weak or no binding

(not enriched at BoNT concentrations of 100 nM or lower; herein

called “non-binding designs”). We begin by analysing the

structural predictions for the 2112 designs with AF. We

generated five models with AF and analysed their confidence

metrics, which are described by the per-residue predicted Local

Distance Difference Test (pLDDT), and their structural similarity

to the design model (Cα-RMSD). The five models were ranked by

the pLDDT averaged across all residues (<pLDDT>), which is a

global measure of model confidence. AF models for the binding

designs had higher <pLDDT> than for non-binding ones

(Figure 1B), increasing such a difference between the two

classes for lower-ranked AF models (Supplementary Figure

S1A). The convergence of the AF models was also higher for

the binding designs, based on the lower dispersion of

their <pLDDT>. We reasoned that a design with a relatively

high <pLDDT> could be partly misfolded due to the presence of

few low-confidence regions masked by the average. To capture

this idea, for each AF model we calculated the percentage of

residues with pLDDT > 75 and took the median over the five

models (“%_res_plddt>75”). For the binding designs, this metric

was more narrowly distributed around higher values in

comparison to non-binding ones (Supplementary Figure S1B).

We also found that the structural similarity between AF models

and the design was higher for binding designs (Supplementary

Figure S1C)—with a median Cα-RMSD ~ 1 Å and much lower

dispersion. Overall, binding designs had AF models with higher

confidence, more converged and structurally similar to the

designed structure than non-binding ones—the five AF

models were found to be more discriminative than the top-

pLDDT model (rank #1) only.

We next investigated the RoseTTAFold (RF) predictions. We

generated five models with RF ranked by their global confidence
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score (Q score), which increases from 0 to 1. The distributions for

the Q score were shifted toward higher values for binding designs

(Figure 1C) and, again, the differences were more accentuated for

the lower-ranked models (Supplementary Figure S2A). The

structural similarity between the RF models and the design

(“RF_rmsd”, as the median RMSD over the five models) was

also found to be higher for the binding designs (Supplementary

Figure S2B). In line with AF, for the binding designs RF

generated more confident models recapitulating better the

designed structure.

We then investigated more classical descriptors related to the

quality of the local structure and the designed binding interface.

Fragment quality descriptors capture the local match between the

designed sequence and structure, and proved to be particularly

useful for filtering designs in previous studies (Koga et al., 2012;

Marcos and Silva, 2018). For the BoNT dataset, we found that the

percentage of fragments with RMSD < 1.5 Å with respect to the

design model (“%_frag_rms < 1.5”) is notably higher for binding

designs (Figure 1D, right). Another fragment quality metric,

calculated as the maximum RMSD value among the lowest

RMSD fragment found at each position

(“worst_rmsd_best_frag”), was also found better for binding

designs (Figure 1D, left). MolProbity analysis indicated that

both binding and non-binding designs had overall high

structural quality, and minor differences in the percentage of

Ramachandran favored residues (Supplementary Figure S3). We

next considered some interface-related features and found that

binding designs had more shape-complementary interfaces and

better binding energies (Figure 1E; Supplementary Figure S3).

We next sought to generate classification models for the

BoNT dataset based on a small set of structural descriptors.

To minimize the number of descriptors of a given type

(i.e., AF, RF, fragment quality or interface) we removed

those that were highly correlated to others and kept those

more correlated with binding. After following a feature

selection strategy, the resulting 9 uncorrelated descriptors

were used in a random forest model (with 10-fold cross-

validation), which gave an area under the receiver operator

FIGURE 1
Descriptors considered for the BoNT dataset. (A) For designed sequences to bind their target, they require to fold correctly and present a
complementary binding interface. (B,C) boxplots for confidence scores of the rank #5models obtained from AlphaFold (B) and RoseTTAFold (C). (D)
boxplots for descriptors obtained from the fragment quality analysis plot (center): percentage of fragments with RMSD < 1.5 Å (“%_frag_rms<1.5”; red
dots), and maximum RMSD of the lowest-RMSD fragment curve (“worst_rmsd_best_frag”; black dot). (E) boxplots for the number of interface
contacts (only involving carbon atoms). Binding and non-binding designs are colored in orange and blue, respectively.
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characteristic curve (AUC ROC) of 0.85 (±0.03) and a

balanced accuracy of 0.76 (±0.03) (Figure 2A). For the

10 folds, the training and test sets had very close mean

absolute errors (0.22 ± 0.00 and 0.24 ± 0.03, respectively);

indicating no overfitting. Out of the nine descriptors, three of

them corresponded to AF or RF (Q score rank #5, %

_res_plddt > 75, and RF_rmsd), two to fragment quality

(%_frag_rms < 1.5 and worst_rmsd_best_frag) and four to

the interface (number of interface contacts, ddG, contact

molecular surface, and shape complementarity). This

predictive model is quite accurate considering the low

number of descriptors used. The confusion matrix applied

on the test set reveals that the model performs better at

predicting negatives (non-binders) than positives (binders),

as it gives more false positives than false negatives; which

involves a recall (0.84 ± 0.04) and negative predictive value

(0.86 ± 0.03) notably higher than precision (0.67 ± 0.05) and

specificity (0.70 ± 0.06). A drop out analysis revealed that the

three sets of descriptors are complementary, having each

set alone similar performance: AF/RF, fragment quality and

interface provided an AUC ROC of 0.79 (±0.02), 0.81 (±0.03)

and 0.78 (±0.05), respectively (Figure 2B). We found that this

model could be further simplified with a minor drop in

performance by combining the best feature of each of the

three sets of descriptors (Q score rank #5, %_frag_rms <
1.5 and number of interface contacts). The resulting 3-

feature model gave a similar AUC ROC of 0.84 ± 0.04

(Figure 2B); thereby showing that the local and global

sequence-structure consistency in the designed binder is

key for binding and that it can be efficiently captured with

very few descriptors.

Monomer dataset

The Monomer dataset was set up by collecting from previous

studies 518 de novo sequences that were designed to be stable

monomers in a variety of folds. Designed proteins were

considered well-folded (herein referenced as “successful”) if

they were found to be well-expressed, soluble, monomeric by

SEC-MALS and had circular dichroism spectra compatible with

the designed secondary structure (207 in total). Sequences that

lacked any of these properties were considered “unsuccessful”

(311 in total). As in the BoNT dataset, successful designs

represent close to 40% of this dataset. Since not all the

original design models of this dataset were available, we

decided to use the top-pLDDT AF model (rank #1) as a

surrogate of the original design model for calculating

structure-based descriptors (see below).

For this dataset, we begin by analysing structural quality

descriptors. In general, the <pLDDT> for the best AF models

(rank #1) was very high both for successful and unsuccessful

designs, with median values of 90.9 and 89.0, respectively

(Supplementary Figure S4A). Likewise, the Q score of the best

RF models was high for the two classes; with median values of

0.86 and 0.83, respectively (Supplementary Figure S4B). The

high-confidence predictions obtained by both approaches is

consistent with the fact that most proteins had been validated

by Rosetta ab initio folding simulations before experimental

testing. Yet, the percentage of confident residues is more

narrowly distributed around higher values in successful

designs, which suggests that low-confidence areas might

compromise correct folding (Supplementary Figures S4C,D).

In addition, fragment quality (analysed on the top-pLDDT AF

FIGURE 2
Classification models for the BoNT dataset. (A) ROC curves obtained from the 10-fold cross validation. The average (blue line) and standard
deviation (gray shaded area) of the 10 ROC curves is shown. (B) AUC ROC values for classificationmodels using different sets of descriptors (“AF/RF”:
3 descriptors obtained fromAF or RF; “F”: 2 fragment quality descriptors; “I”: 4 interface descriptors). The number of descriptors used in the two AF/RF
+ F + I models is shown in parentheses.
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model) was found higher for successful designs—e.g., %

_frag_rms < 1.5 was more narrowly distributed around higher

values (Supplementary Figure S5). MolProbity analysis indicated

minor structure quality differences between successful and

unsuccessful designs (Supplementary Figure S5).

We next investigated descriptors related to monomericity and E

Coli soluble expression. Yet, proteins with an intrinsic tendency to

fold correctly may fail experimentally due to the presence of solvent-

exposed hydrophobic patches or sequence features hindering good E

Coli expression. To explicitly model oligomerization propensity and

also account for the coupling between monomeric folding and

oligomer interactions, we generated homodimer predictions with

AF and calculated different properties related to the size and binding

energy of the predicted interfaces (Supplementary Figure S6).

Successful designs were predicted to form smaller dimer

interfaces (Figure 3A) (and with worse binding energies), and

their monomeric structures were more similar to those initially

predicted as a monomer alone, which may suggest lower sensitivity

to oligomeric interactions (Supplementary Figure S6D). We also

calculated the oligomerization propensity of the exposed surface

with the hpatch and Spatial Aggregation Propensity (SAP) scores,

based on the top-pLDDT AF model from the monomer prediction

alone (Supplementary Figure S7A). The distributions of both scores

were shifted toward lower values in successful designs, which

indicates lower surface hydrophobicity (Figure 3B). In addition,

we carried out predictions of E Coli soluble expression with SoluProt

and Graphsol based solely on the designed amino acid sequence

(Supplementary Figure S7B). Although we noted some correlation

between the two predictions (Supplementary Figure S7C), Graphsol

was found to be more informative: most designs with very low

Graphsol scores (<0.5) corresponded to unsuccessful designs (Figure
3C). A property considered in these predictors is the net charge at

neutral pH and, interestingly, successful designs tended to be more

negatively charged than unsuccessful ones (Supplementary

Figure S7D).

To assess the power of these features for predicting whether a

de novo protein sequence will turn into a well-folded monomer in

solution, we generated support vector classification models (with

10-fold cross-validation). We removed highly correlated features

and, after following a feature selection strategy, generated a new

model using a subset of only 8 diverse descriptors that achieved an

AUC ROC of 0.77 ± 0.08 and a balanced accuracy of 0.70 ± 0.07

(Figure 3D). For the 10 folds, the training and test sets had similar

mean absolute errors (0.23 ± 0.01 and 0.30 ± 0.07, respectively);

indicating low overfitting. This model includes: two structural

descriptors from AF and RF (%_res_plddt > 75, Q score rank #1),

two fragment quality descriptors (%_frag_rms < 1.5,

worst_rmsd_best_frag), the Graphsol and SAP scores, the

FIGURE 3
Propensity for self-interactions and soluble expression in the Monomer dataset. (A) Distributions of the interface area of the homodimers
predicted by AlphaFold. For each protein sequence, the median value among the five predictions is taken. Examples of small (right) and large (left)
predicted homodimer interfaces for monomeric and non-monomeric designs. (B) Distributions of SAP scores calculated on the top-pLDDT AF
model. (C) Distribution of GraphSol soluble expression scores. (D) ROC curves obtained from the 10-fold cross validation of a 8-descriptor
classification model. The average (blue line) and standard deviation (gray shaded area) of the 10 ROC curves is shown.
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Rosetta total energy of the top-pLDDT AFmodel, and the median

number of residues at the homodimer interfaces predicted by AF.

It is worth noting that the classification model performs better at

predicting “unsuccessful” designs than “successful” ones

(specificity of 0.77 ± 0.07 and negative predictive value of

0.75 ± 0.11), and would be particularly useful for discarding

designs not worth to be tested experimentally.

Proper expression and folding of a design results from

fulfilling a set of independent requirements, in terms of

sequence and structural properties captured by

complementary descriptors. AF monomer generated highly

confident predictions (<pLDDT> above 90) for a fraction of

the designed sequences that expressed insolubly or oligomerised.

Although having a high <pLDDT> is not a good predictor of

success per se, structure-based descriptors using high-pLDDT

models may allow us to generate hypotheses about design

imperfections consistent with the experimental results. For

example, the top-pLDDT AF model for the toroidal helical

repeat dTor_3x33L_2-2 (Figure 4A) and the β-barrel design

10_6_0048 (Figure 4B) have high-confidence scores but

present large surface-exposed hydrophobic patches, as

captured by SAP score values (>40) higher than the median

of successful designs (Figure 3B). The hydrophobic patch

identified in dTor_3x33L_2-2, indeed, was originally

incorporated to favour crystal contacts. The design

10_6_0048 originally designed as a β-barrel was found

insoluble, and AF predicts formation of a flat and extended β-
sheet with a polar and a hydrophobic side, which is expected to be

prone to aggregation. Another example is the HBI_b_01 design

(Figure 4C), which is confidently predicted as a β-barrel but was
found to oligomerise in solution. AF dimer predictions suggest a

domain swap dimerization mechanism triggered by a change in

the conformation of a β-hairpin loop. We found that the

fragment quality of this loop improved from the monomer to

the dimer predicted conformations, suggesting that backbone

strain in the monomer may be released in an oligomeric context.

FIGURE 4
Design examples showing complementarity between AlphaFold predictions and other descriptors. (A) Cartoon (left) and surface (right)
representations of the top AlphaFoldmodel, which presents solvent-exposed hydrophobic patches (in gray) favoring dimerization as observed in the
crystal structure (bottom inset). (B) Top AlphaFoldmodel of an unsuccessful β-barrel design, forming an alternative extended β-sheet that due to the
pleating of β-strands forms a large hydrophobic (gray) and a polar (yellow) side. Such structure is prone to aggregation and AF predicts oligomer
interactions through the hydrophobic side. (C) Top AlphaFold model forms a β-barrel structure with high-confidence across all residues (left). A
swapped dimer is predicted to form (center) due to a change in conformation on a β-hairpin loop (bottom inset). Fragment quality analysis (right)
comparison between the monomer (blue) and dimer subunit (orange) indicates that two fragment quality descriptors (average fragment RMSD,
dotted lines; worst_rmsd_best_frag, solid lines) for the β-hairpin loop (dashed rectangle) improve in the dimer prediction.
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Discussion

We have performed a retrospective analysis of de novo

proteins designed over the last decade in the light of the

revolutionary structure prediction techniques recently

developed. Despite their accuracy, AF- and RF-based

descriptors were neither redundant nor enough to predict

design success, but valuable when combined with independent

descriptors related to local structure, protein interface

interactions or solubility. For the two datasets, classification

models trained with AF-based descriptors generated

predictions for design success partially overlapping with those

obtained from RF-based models (Supplementary Figure S8).

In the BoTN dataset, the designs mimicked a helix binding

motif and differed both in the structure of the surrounding

scaffold and the extra interface interactions designed in each

scaffold context. We found that AF, RF and fragment quality

analysis were highly complementary in probing folding of the

designs and, in combination with properties of the protein-

protein interfaces, allowed to generate quite accurate

predictive models for binding activity with a few descriptors

(AUC ROC of 0.85); especially for correctly discarding non-

binding designs. It is likely that the model could be further

improved by considering additional interface descriptors related

to long-range electrostatics or interface dynamics, especially for

decreasing the number of false positives—this would be

especially relevant for the more challenging case of de novo

designing non-mimetic binders where key hotspot interactions

are designed anew.

For the Monomer dataset, highly-confident AF or RF

predictions were found to be necessary for design success, but

not enough. AF/RF descriptors combined with others related to

fragment quality, soluble expression, and surface interactions

improved the design classification. Among them, AF dimer

predictions enabled us to explicitly model self-interactions and

changes in monomer structure upon oligomerization. The

generated classification model performs better at discarding

non-monomeric designs, but had lower performance (AUC

ROC of 0.77) compared to the BoNT dataset, suggesting

ongoing challenges in predicting well-folded monomers in

solution and that may be associated with their larger size and

fold complexity. It remains to be explored whether simulations of

folding pathways (to identify kinetic traps hindering correct

monomeric formation) can help to improve design success

predictions at a computational cost reasonable for screening.

Most well-folded de novo proteins reported to date have

funnel-shaped energy landscapes on Rosetta ab initio folding

simulations, which have been the most stringent computational

test in the last decade. In the new era of accurate structure

prediction, ab initio folding simulations can still contribute to

better inform design decisions, especially at late stages of the

design process to assess foldability of designs pre-filtered with AF

and/or RF. As mentioned above, AF and RF predictions overlap

to a limited extent and require extra descriptors to better inform

design decisions.

Molecular dynamics (MD) simulations could provide descriptors

related to intra- and inter-molecular motions that should improve

design decisions. In terms of protein binding, rigorous free energy

calculations are infeasible for screening design pools but, in a more

affordable way, MD simulations (either biased or unbiased in time

scales from ns to μs) starting from the designed complexes could be

used to derive features capturing overall structural rigidity of binding.

For assessing protein folding quality,MD simulations could be used to

model the inherent flexibility of the protein near the native state (as a

surrogate of stability) or better quantifying solvent-exposed

hydrophobic patches prone to oligomerization. More recent MD

schemes could also be used to perform protein structure prediction

guided by external knowledge from the design (MacCallum et al.,

2015; Shekhar et al., 2021), cross-validating predictions from AF

or RF.

Overall, by cross-validating monomeric designs through AF

(monomer and/or dimer), RF, fragment quality analysis and

surface descriptors, it should be possible to make better decisions

on proteins to be tested experimentally. This can also help to

identify design imperfections, and suggest ways to improve or

rescue the designs. In a more automatic way, recent deep-

network hallucination methods (Anishchenko et al., 2021)

could be used, for example, to optimize protein areas of low

structural quality. The ability of fixing designs and increasing the

experimental success rate ultimately tests our understanding of

designing proteins from first principles in a robust way.
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