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Stéphane J. C. Mancini,

INSERM U1236, MIcroenvironment,
Cell differentiation, iMmunology And

Cancer (MICMAC),
Rennes, France

Specialty section:
This article was submitted to

Comparative Immunology,
a section of the journal

Frontiers in Immunology

Received: 10 August 2021
Accepted: 27 October 2021

Published: 12 November 2021

Citation:
Grenier JMP, Testut C, Fauriat C,

Mancini SJC and Aurrand-Lions M
(2021) Adhesion Molecules Involved in

Stem Cell Niche Retention During
Normal Haematopoiesis and in Acute

Myeloid Leukaemia.
Front. Immunol. 12:756231.

doi: 10.3389/fimmu.2021.756231

MINI REVIEW
published: 12 November 2021

doi: 10.3389/fimmu.2021.756231
Adhesion Molecules Involved
in Stem Cell Niche Retention During
Normal Haematopoiesis and in Acute
Myeloid Leukaemia
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In the bone marrow (BM) of adult mammals, haematopoietic stem cells (HSCs) are retained in
micro-anatomical structures by adhesion molecules that regulate HSC quiescence,
proliferation and commitment. During decades, researchers have used engraftment to
study the function of adhesion molecules in HSC’s homeostasis regulation. Since the 90’s,
progress in genetically engineered mouse models has allowed a better understanding of
adhesionmolecules involved in HSCs regulation by BM niches and raised questions about the
role of adhesion mechanisms in conferring drug resistance to cancer cells nested in the BM.
This has been especially studied in acute myeloid leukaemia (AML) which was the first disease
in which the concept of cancer stem cell (CSC) or leukemic stem cells (LSCs) was
demonstrated. In AML, it has been proposed that LSCs propagate the disease and are
able to replenish the leukemic bulk after complete remission suggesting that LSC may be
endowed with drug resistance properties. However, whether such properties are due to
extrinsic or intrinsic molecular mechanisms, fully or partially supported by molecular crosstalk
between LSCs and surrounding BMmicro-environment is still matter of debate. In this review,
we focus on adhesion molecules that have been involved in HSCs or LSCs anchoring to BM
niches and discuss if inhibition of suchmechanismmay represent new therapeutic avenues to
eradicate LSCs.

Keywords: adhesion, haematopoietic stem cell, leukemic stem cell, haematopoiesis, bone marrow, acute
myeloid leukaemia
INTRODUCTION

Haematopoiesis takes place in the bone marrow of adult mammals and is the process leading to the
formation of blood components throughout life. Haematopoietic stem cells (HSCs) are at the apex of the
haematopoietic hierarchy and are able to self-renew and to differentiate into all blood cell types.
The balance between differentiation and self-renewal is controlled by intrinsic properties of HSC and
extrinsic cues delivered by the bone marrow microenvironment in micro-anatomical sites called “niches”.
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The concept of niche has been formulated by R. Schofield in 1978
who proposed that stem cell association with other cells prevents
maturation while its progeny proliferate and differentiate, unless they
can occupy a similar ‘niche’ (1). Although this working hypothesis
turned to be true, its formal proof has long time been hampered by
the lack of methods allowing precise localization of un-manipulated
HSC within their niche (2, 3). In addition, because HSC activity has
been essentially studied in transplantation assays, it has been difficult
to decipher whether experimental assays were measuring intrinsic
HSC stemness of engrafted cells or their ability to find a supportive
niche in which they can self-renew (4, 5). The development of
constitutive knock-out mouse models in the early 90’s, and
conditional or inducible models later on, has represented a
breakthrough to study the contribution of niche components to
mammalian haematopoiesis (6, 7). Accordingly, a bibliographic
search using combination of the words “haematopoiesis, adhesion
and niche” reveals that only seven publications combine such words
between 1989 and 2000, while more than hundred papers have been
published thereafter. This likely indicates that adhesion was initially
considered as an intrinsic property of HSC, while it has been
integrated to the niche concept later on. This review is focused on
adhesion molecules implicated in HSC or acute myeloid LSC
interaction with the BM microenvironment (Figure 1).
ADHESION MOLECULES INVOLVED IN
HSC RETENTION IN THE BONE MARROW

With the exception of CD44, haematopoietic adhesion molecules
belong to the immunoglobulin superfamily (Ig Sf), the cadherin
family, the selectin family or the integrin family. Adhesion
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molecules promote cell/cell or cell/extracellular-matrix (ECM)
interactions and deliver survival signals to haematopoietic cells.
Reciprocally, stromal and endothelial cells express adhesion
molecules interacting with haematopoietic cells or ECM
contributing to the maintenance of bone marrow architecture.

Integrins
Integrins are non-covalent heterodimers of a and b chains. In
mammals, 18 a and 8 b subunits form 24 different integrin
heterodimers involved in embryonic development and
maintenance of tissue homeostasis. a/b chain pairing and
integrin interaction with ECM, cell surface molecules or
soluble factors have been extensively reviewed in the past and
will not be described in further details here (8–11).

One key property of integrins is that they can be expressed in
inactive, activated or clustered state on the surface. The switch
between inactive and active state results in increased ligand
affinity as a consequence of inside-out or outside-in signalling.
Integrin clustering further induces cytoskeleton rearrangement
and enhanced cell signalling (Figure 2).

Among a4b1, a5b1, a6b1, a6b4and a9b1 integrins that have been
involved in interactionofHSCwithbonemarrowmicroenvironment
(12–18), a4b1 is the most studied. The integrins a4b1 and a5b1 are
activatedby inside-out signalling that involves cytokines anddivalent
cations present in the bone marrow microenvironment, suggesting
that they are essential forHSC retention in the bonemarrow (19, 20).
Accordingly, HSPC mobilization using G-CSF is correlated to
decreased a4 integrin expression (21) and deletion or inhibition of
a4b1 integrin result in accumulation of HSC in the blood circulation
(22–25). Similar results were obtained using antibody against
VCAM-1, suggesting a central role of a4b1/VCAM-1 axis in HSC
retention in the bonemarrow (26). This is consistentwith thefinding
FIGURE 1 | Ligand/Receptor adhesion pairs involved in Haematopoietic Stem Cell (HSC, left) and Leukemic Stem Cell (LSC, right) retention in bone marrow niches.
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that b1 null HSC fail to engraft in irradiated recipient and that b1 null
HSC from chimeric embryos are unable to seed foetal liver (27, 28).

Along this line, b7-deficient mice do not have defects in HSCs
function (29), while interaction between a4b7 and MadCAM-1
(mucosal addressin cell adhesion molecule-1) accounts for half
of the a4-integrin mediated homing activity to the bone marrow
(30, 31). Therefore, it seems that b1 integrin heterodimers play a
prominent role in bone marrow HSC retention as further
supported by the fact that the dual a9b1/ a4b1 inhibitor BOP
((N-(benzenesulfonyl)-L-prolyl-L-O-(1-pyrrolidinylcarbonyl)
tyrosine) induces a rapid mobilization of HSCs including those
that are located in the endosteal region which bind thrombin-
cleaved osteopontin with high affinity (32). This is also supported
by the finding that patients treated with natalizumab, an anti-a4

integrin antibody, present increased levels of circulating CD34+

progenitor cells associated with an higher migratory profile as
compared to GM-CSF mobilization (33, 34).

Finally, it has recently been reported in zebrafish that VCAM-
1+ patrolling macrophages can interact with HSCs in an a4b1
dependent manner and contribute to their retention in the niche
(35). This study confirms earlier findings in mouse models
showing that macrophages contribute to HSC retention within
niches through integrin-mediated interactions (36–38).

Selectins
The selectin family encompasses three members: E-
(Endothelial), P- (Platelets) and L- (Leukocyte) selectins
expressed by endothelial cells (E- and P- selectins), platelets
(P-Selectin) and leukocytes (L-Selectin). They have been initially
involved in the rolling of haematopoietic cells along vessels in
flowing blood (39–41).

The minimal requirements for Ca2+-dependent ligand
binding to selectins are the tetra-saccharides Sialyl Lewis X
(Slex) and Sialyl Lewis A (SleA) (42, 43). As reviewed elsewhere
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(44), Slex and SleA synthesis requires several enzymes including a
(1–3)-fucosyltransferase activities as illustrated by defective
selectin-dependent leukocyte trafficking in FucT-VII deficient
mice (45). This is reminiscent of the phenotype of P-Selectin
deficient mice that harbour elevated number of circulating
neutrophils, loss of leukocyte rolling in mesenteric venules and
delayed leukocyte recruitment in peritonitis model (46). In
contrast, E-selectin deficient mice have no defect in
neutrophils trafficking suggesting a compensatory mechanism
mediated by P-selectin (47).

The study of double knockout mice for E- and P-selectin has
revealed defect in haematopoiesis with increased extramedullary
erythropoiesis and reduced haematopoietic progenitor cell
homing in irradiated deficient mice upon transplantation (41,
48). However, such functions were mostly attributed to HSPC
homing and it is only in 2012 that E-selectin was shown to
mediate HSC proliferation at the expense of self-renewal (49).
In contrast to E- and P- Selectin, early haematopoietic defects in
L-Selectin-deficient mice have not been reported so far (50).

Cadherins
Cadherins are transmembrane glycoproteins characterized by
tandemly repeated sequence motifs in their extracellular
segments that allow homophilic interactions in a Ca2+

dependent manner (51). N-cadherin is not only expressed by
neural cells but also by HSCs and spindle shaped osteoblastic
cells lining the bones, called “Spindle-shaped N-cadherin+CD45–

Osteoblastic” (SNO) in the original publication. Because
conditional inactivation of BMP receptor type IA (BMPRIA)
led to expansion of both SNO and HSC, with asymmetric
N-Cadherin distribution between SNO and HSC adjacent cells,
it has been proposed that N-cadherin-mediated adhesion
contributes to HSCs maintenance in endosteal niche (52). This
concept was further supported by the fact that the knock-out of
FIGURE 2 | Schematic representation of integrin activation. The variety of intracellular protein complexes involved in integrin signalling (kinases, adaptors…) is
depicted by forms recruited to the cytoplasmic tails of integrins.
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N-cadherin in LSK cells impairs long term engraftment in the
bone marrow but not in the spleen (53). However, the latter
demonstration used LSK cells, a compartment in which less than
20% of the cells are HSCs. Therefore, the function of N-cadherin
mediated adhesion in HSC maintenance has been challenged in
several studies. First, it was demonstrated that N-cadherin is not
expressed on purified HSCs and that osteoblasts are dispensable
for HSC maintenance (54). Second, the conditional deletion of
N-cadherin in HSC using Mx1-Cre did not affect
haematopoiesis, nor did its specific deletion in osteoblasts (55–
57). Therefore, the controversial function of N-cadherin in HSC
maintenance has been revisited in the light of the methodology
used to study its function (engraftment versus knock-out) and
with respect to heterogeneous expression of N-cadherin by HSC
subsets (58, 59). This led to the most recent concept that N-
cadherin mediated adhesion of HSC to BM stromal progenitor
cells (BMSPC) may only be revealed during emergency
haematopoiesis such as the one needed by “reserve” HSC to
survive chemotherapy (60).

Ig Sf Adhesion Molecules
Several Ig Sf adhesion molecules such as ALCAM (CD166), ESAM,
JAM-A or JAM-C are expressed by HSPCs and BM stromal or
endothelial cells (61–64). Some others such as ICAM-1 or VCAM-1
are expressed in the BMmicroenvironment and interact with integrins
expressed by HSPCs or contribute to more complex adhesive networks
involving IgSf/Integrin as well as IgSf/IgSf interactions such as the JAM
family members (65–68). Therefore, early haematopoietic defects
reported for IgSf deficient animals have to be interpreted with
caution unless specific conditional knock-out mouse models are
combined with orthogonal methods such as long-term engraftment.
Defects in early haematopoiesis following knockout have been reported
for ALCAM, ESAM, VCAM-1, JAM-C, JAM-B and ICAM-
1 (Table 1).
ADHESION MOLECULES INVOLVED IN
LSC RETENTION IN THE BONE MARROW

Similar to HSCs, LSCs are retained into specialized
microanatomical sites by adhesive interactions. Indeed, AML
development originates from LSC which share with HSCs the
ability to self-renew (79, 80). After disease initiation, acute
myeloid leukemic burst is accompanied by a remodelling of
bone marrow niches that alters the physiological adhesive
network of HSC (81–83). Whether adhesive remodelling
occurs already at disease initiation in immunocompetent
context remains to be addressed, but several adhesive Ligand/
Receptor pairs have been involved in AML development in
mouse models. Among them, only a limited number of
Ligand/Receptor pairs that cross barrier species have been
validated as putative therapeutic targets in preclinical setting
using patient derived xenograft (PDX) models. This has
encouraged some clinical trials targeting LSC adhesion to the
niche in order to sensitize these cells to chemotherapy as recently
reviewed by A. Villatoro et al. (84). In the next section, we will
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discuss the adhesion molecules known to contribute to LSC
stemness maintenance that belong to the emerging class of
adjuvant therapies for LSC eradication in AML.

CD44
CD44 is a class I transmembrane glycoprotein that does not
belong to an adhesion molecular family and that interacts with
ECM ligands such a as osteopontin, fibronectin or hyaluronan
(HA). When CD44 is sialo-fucosylated and bears SleX glycan, it is
called HCELL and interacts with E- and L-selectin (85, 86). In
addition, several isoforms of CD44 are generated by alternative
splicing and associated with different cellular processes (87).
CD44 isoforms are widely expressed on AML cells and
expression of the CD44-6v isoform has been associated with
poor prognosis (88, 89). Functionally, CD44 has been involved in
AML cell adhesion to bone marrow stromal cells (90, 91) and
ligation of CD44 with HA or activating antibodies such as H90
has been shown to reverse differentiation blockage in AML cells
(92). The same H90 activating antibody inhibited homing of
AML-LSC to microenvironmental niches reducing the leukemic
burden in a PDX setting. This was attributed to opposing effects
of the H90 antibody which increases adhesion of normal
CD34+CD38- cells to HA but inhibits adhesion of
CD34+CD38- AML blasts to HA (93).

Integrins
Overexpression of the integrins aMb2 (CD11b/Mac1), a2, a6 and
a4b1 by AML cells has been associated with poor prognosis (94–
96). Indeed, it has early been shown that both b1 and b2 integrin
chains are necessary for AML blast adhesion to BM stromal
cells (97).

Among the b1 integrins, a4b1 seems to play the most
prominent role through its interaction with fibronectin (FN)
and VCAM-1. Interaction of integrin a4b1 with FN protects
AML cells from chemotherapy and is associated with the
maintenance of minimal residual disease (MRD). Treatment
wi th a b lock ing ant ibody aga ins t a 4b 1 abrogates
chemoresistance and MRD in mice (98). Similarly, integrin
a4b1 interaction with VCAM-1 contributes to drug resistance
by activating NF-kB pathway in BM stromal cells which is
essential to promote chemoresistance in leukemic cells as
demonstrated by inhibition of NF-kB signalling (99). This
study illustrates the reciprocal crosstalk between LSC and
stromal cells since NF-kB activation in stromal cells
upregulates VCAM-1 which serves as a positive feedback loop
for leukemic cell adhesion to stromal cells.

More recently, the interaction between the integrin a2b1 and
collagen has been shown to confer doxorubicin chemoresistance
via the inhibition of Rac-1 (100). This protective effect is reversed
by anti-a2b1. Although these studies show the therapeutic
potential of integrin inhibition in AML, they do not formally
prove that LSC are more addicted to integrin-mediated adhesion
than normal HSC. To find such differential adhesive cues, Ebert
and collaborators have used results from pooled in vivo shRNA
screens. They have found that the integrin avb3 is essential for
leukemic initiation and maintenance but dispensable for normal
HSPC activity (101). This was attributed to constitutive
November 2021 | Volume 12 | Article 756231
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activation of Syk, a candidate therapeutic target in AML, that is
phosphorylated upon engagement of surface receptors including
not only avb3 integrin, but also b2 integrins (102, 103). In
summary, integrin signalling converging toward specific
activation pathway such as NF-kB or Syk may represent
attractive therapeutic targets.

E-Selectin
E- and P-Selectins are constitutively expressed by bone marrow
endothelial cells and play a role in HSPC rolling on micro vessels
(39, 104, 105). However, they induce contrasting effects in HSPC
upon interaction in vitro (86, 106–108). The study of early
haematopoiesis in E-Selectin deficient mice (Sele-/-) has
revealed that inhibition of E-Selectin in vivo increases
dormancy and self-renewal of HSC (49). This is not mediated
by the conventional ligands of E-Selectin since HSC isolated
from mice deficient for P-selectin glycoprotein ligand-1 (Psgl-1
encoded by Selplg), HCELL (Cd44) or both do not present
increased dormancy. In contrast, LSC of AML make a different
selectin receptor usage that promotes AML cell survival. Indeed,
leukemic cells present alterations in glycosylation which leads to
expression of fucosylated ligands such as PSGL-1 (CD162) that
activate PI3K/Akt survival pathway (109, 110). Even more
interesting is the fact that inhibition of E-selectin interaction
with its ligands using a glycomimetic stimulates proliferation of
AML blast while dampening HSC cycling. Since these finding
have been confirmed in preclinical mouse models, this led to the
opening of phase II/III clinical trials combining inhibition of E-
se lect in with convent ional chemotherapy in AML
(NCT03616470, NCT03701308).

Ig Sf Adhesion Molecules
Most of the Ig Sf molecules expressed by normal HSC are also
expressed by LSCs in AML, however only few of them allows
enrichment of cells with leukemic initiating activity associated to
poor prognosis. We have shown that JAM-C is expressed by a
fraction of LSCs presenting high activation of Src kinase family
and enriched for leukaemia initiating activity. Increased
Frontiers in Immunology | www.frontiersin.org 5
frequencies of JAM-C expressing cells identify AML patients
with poor disease outcome (111). This has been confirmed in an
independent study on a large cohort of AML patients (112, 113).
The “CD34+ CD38low CD123+ CD41- JAM-C+” cells are
enriched tenfold for LSCs as compared to cells lacking JAM-C
expression within the same compartment suggesting that JAM-C
may play a cell-autonomous signalling function at the transition
between healthy HSC and LSC. This would be consistent with
results showing that PDX or AML cell line engraftment of JAM-
C-expressing cells is only partially dependent on JAM-B
expression by recipient mice and with results showing that
silencing JAM-C expression is sufficient to decrease Src family
kinase activation (111). This could be due to promiscuous cis-
interactions between JAM-C and the integrin a4b1 since JAM-B
has been shown to bind a4b1 when interaction is facilitated by
the simultaneous engagement with JAM-C (67).

NCAM1(CD56) is another Ig Sf molecules whose expression
is correlated with poor overall survival in AML with t(8;21) (q22;
q22) and highly expressed by LSC in mouse AML models using
MLL-AF9 or Hoxa9-Meis1 as driver translocations (114).
NCAM1 expression confers drug resistance to AML cells and
knockdown of NCAM1 sensitizes blasts to genotoxic agents
(115). This is likely due to constitutive activation of the MEK-
ERK pathway, similar to what has been reported during neural
development (116). These two examples pave the way for the use
of Ig Sf molecule expression to stratify patients eligible to
treatments targeting downstream signalling pathways such as
Src or Mek/Erk.
OUTLOOK

Recent studies have shown that HSC niches are altered during AML
development with strong coordinated changes of the osteolineage
and endothelial compartments, and alterations of the mesenchymal
compartment occurring early during leukemic development.
Whether such alterations depend on adhesive interaction of
TABLE 1 | Knock-out mice of Ig Sf molecules presenting haematopoietic defects.

Adhesion
molecule

Year Ligands Altered phenotype Haematopoietic phenotype References

ICAM-1 1994 aLb2 cardiovascular, cellular, digestive/alimentary, growth/size/body, haematopoietic,
homeostasis, immune, mortality/aging, neoplasm, vision/eye

Expansion of Lt-HSC compartment
associated with impaired quiescence
and myeloid expansion

(69, 70)

VCAM-1 1995 a4b1 cardiovascular, embryo, growth/size/body, homeostasis, mortality/aging,
haematopoietic

Increased frequencies of circulating
progenitors

(65, 71)
a4b7

ESAM 2003 ESAM cardiovascular, cellular, growth/size/body, haematopoietic, immune Increased HSCs frequency and
proliferation compared to wild-type
mice

(63, 72)

ALCAM
(CD166)

2004 ALCAM nervous system, vision/eye, haematopoietic Defects in Lt-HSC engraftment
although no differences in absolute
numbers of HSCs were observed

(61, 73, 74)
CD6

JAM-C 2004 JAM-C behaviour, cardiovascular, cellular, craniofacial, digestive/alimentary, endocrine/
exocrine, growth/size/body, haematopoietic, immune, integument, mortality/aging,
nervous system, reproductive, respiratory, skeleton

Increased number of CMPs (75–77)
JAM-B
aMb2

JAM-B 2011 JAM-C haematopoietic, homeostasis, mortality/aging, skeleton Loss of quiescent HSCs and
exacerbated response to mobilizing
agent

(78)
a4b1
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leukemic initiating cells with BM microenvironment resulting in
localization of LSCs in specific sites remain to be defined, but it
seems that LSC take advantage of pre-existing adhesive pathways in
the niche to maintain survival signals and dormancy that protect
them from chemotherapies. Therefore, the selective disruption of
LSC from their niche by targeting single adhesion molecule remains
a major limitation for current therapies. A better knowledge of the
differences between LSC/Niche and HSC/Niche integrated adhesive
networks will help refining specificity of therapeutic strategies
directed against adhesive cues.
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