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Abstract
Background: The main cause of cancer death is lung cancer (LC) which usually
presents at an advanced stage, but its early detection would increase the benefits
of treatment. Blood is particularly favored in clinical research given the possibil-
ity of using it for relatively noninvasive analyses. Copy number variation (CNV)
is a common genetic change in tumor genomes, and many studies have indicated
that CNV-derived cell-free DNA (cfDNA) from plasma could be feasible as a bio-
marker for cancer diagnosis.
Methods: In this study, we determined the possibility of using chromosomal
arm-level CNV from cfDNA as a biomarker for lung cancer diagnosis in a small
cohort of 40 patients and 41 healthy controls. Arm-level CNV distributions were
analyzed based on z score, and the machine-learning algorithm Extreme Gradi-
ent Boosting (XGBoost) was applied for cancer prediction.
Results: The results showed that amplifications tended to emerge on chromo-
somes 3q, 8q, 12p, and 7q. Deletions were frequently detected on chromosomes
22q, 3p, 5q, 16q, 10q, and 15q. Upon applying a trained XGBoost classifier, spec-
ificity and sensitivity of 100% were finally achieved in the test group (12 patients
and 13 healthy controls). In addition, five-fold cross-validation proved the stabil-
ity of the model. Finally, our results suggested that the integration of four arm-
level CNVs and the concentration of cfDNA into the trained XGBoost classifier
provides a potential method for detecting lung cancer.
Conclusion: Our results suggested that the integration of four arm-level CNVs and
the concentration from of cfDNA integrated withinto the trained XGBoost classifier
could become provides a potentially method for detecting lung cancer detection.

Key points
Significant findings of the study:
• Healthy individuals have different arm-level CNV profiles from cancer patients.
• Amplifications tend to emerge on chromosome 3q, 8q, 12p, 7q and deletions

tend to emerge on chromosome 22q, 3p, 5q, 16q, 10q, 15q.

What this study adds:
• CfDNA concentration, arm 10q, 3q, 8q, 3p, and 22q are key features for

prediction.
• Trained XGBoost classifier is a potential method for lung cancer detection.
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Introduction

According to Cancer Statistics in China (2015), lung cancer
(LC) is the most and second most common cancer in men and
women, respectively. It is also the leading cause of cancer death
in both sexes.1 It is believed that lung cancer is attributable to a
wide range of risk factors including smoking, air pollution,
environmental exposure and DNA mutation.2 Small cell lung
cancer (SCLC) and non-small cell lung cancer (NSCLC) are
the two main types of lung cancer, with NSCLC accounting
for approximately 85% of total lung cancer cases.3 Although
TNM staging is crucial for determining feasible therapy,
NSCLC patients with only early stages (I to II) could better
benefit more from a comprehensive treatment based on sur-
gery.4 Depending on the stage and affected region, five-year
survival rates for lung cancer range from 4% to 17%.5 It has
been reported that survival rates decreased from 55.1% at stage
I to 4.2% in cases diagnosed at stage IV;6 thus early detection
could effectively prevent or delay disease progression.
Technological advances in the analysis of circulating tumor

cells (CTCs), circulating tumor DNA (ctDNA), and tumor-
derived exosomes, which are cancer signatures in the blood,
have promoted liquid biopsy as a routine diagnostic method.7

As one form of noninvasive liquid biopsy, ctDNA tests only
require a few milliliters of blood from patients, making it eas-
ier and less expensive to obtain test samples.8 These 140–170
bp DNA fragments can reflect specific sequence alterations in
circulating plasma.9 Chromosomal structural instability and
copy number variations (CNVs) have been observed in almost
all kinds of cancers and these recurrent alterations are associ-
ated with particular cancer types.10,11 Cristiano et al.12 pro-
moted an approach based on evaluating fragmentation
patterns of cfDNA across the genome, finding healthy individ-
uals had different fragmentation profiles from cancer patients.
They suggested it could be broadly applied for the screening
and management of patients with cancer. Ni et al.13 analyzed
reproducible CNV patterns among single circulating tumor
cells of lung cancer patients, and found that all eight CTCs of
one patient exhibited reproducible gain and loss CNV pat-
terns. The reproducibility of CNVs from cell to cell suggests
that they are the key events of tumormetastasis. An increasing
number of studies have focused on CNVs presenting in cell-
free DNA (cfDNA) fragments, which are potential bio-
markers, not only for early cancer detection but also for the
response to treatment and disease recurrence.14 Xia et al.15

evaluated CNVs in cfDNA from the plasma of lung adenocar-
cinoma patients and normal controls, using plasma genomic
abnormality (PGA) score. They found that the PGA score of
patients (19.50) was significantly higher than that of normal
controls (9.28), suggesting that the alterations observed in
plasma could distinguish early stage cancer in combination
with other existing screening strategies. Du et al.16 analyzed
CNVs of SCLC from cfDNA, and found widespread somatic

CNVs among tumor related genes such as TP53, MYC,
FGFR1, and SOX2. Their results demonstrated the potential
clinical utility of cfDNA based liquid biopsy to SCLC early
detection.
In this study, we focused on lung cancer, the main cause

of cancer mortality in China and globally, and compared
CNVs in cfDNA from NSCLC patients and those from
normal controls, with the aim of evaluating the possibility
of using cfDNA CNVs for early cancer detection.

Methods

Patient recruitment

Lung cancer patients who had undergone a computed tomog-
raphy (CT) scan, together with histological and immunohisto-
chemical tests at Beijing Chest Hospital between January and
February in 2018 were recruited after the provision of
informed consent. Briefly, patients were eligible if they were
between 20 and 80 years old, with histologically- and
immunohistochemically-confirmed lung cancer. Patients with
other cancer(s) were excluded from this study. The criteria for
the normal control groups included: (i) self-reported absence
of existing or previous cancer symptoms and (ii) negative
results confirmed on CT scan.

DNA extraction, library preparation and
sequencing

Peripheral blood was stored in EDTA-containing tubes and
centrifuged at 1600 × g and subsequently at 16 000 × g for
10 minutes at 4�C within six hours in order to remove the
cells. DNA was extracted using 1 mL of plasma from each
sample and quantified via Qubit 2.0 (Life Technology). Whole
genome libraries were constructed following the instructions
of the DNA NGS Library Preparation Kit (ScreenDx). After
adaptor ligation, DNA enrichment and index addition were
performed under 12 cycle PCR using Q5 High-Fidelity 2×
Master Mix (NEB). Agilent 2100 Bioanalyzer (Agilent) and
Kapa Library Quantification Kit (Kapa Biosystems) were used
to analyze and quantify the purified libraries, aiming to ensure
uniform pooling before sequencing on a HiSeq X Ten
sequencer (Illumina) at PE150.

Mapping of sequencing data

Base calling and data filtration were first performed before sepa-
rating raw data from each sample according to the eight-base
sequencing index. The nonrepeat-masked human reference
genome (NCBI build37/hg19) was used as reference genome to
align the first single-end reads. BWA was used as mapping tool
in this step under the condition of allowing two mismatches to
identify reads thatmapped to a unique genomic location.
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Copy number variation detection

For the detection of CNVs, the reference genome was first
divided into 100 kb windows and the number of reads fall-
ing into each 100 kb window counted. GC correction was
then performed ahead of calculating chromosome arm-
level reads counts. Specifically, we summed the values of
all of the 100 kb windows to obtain the read count for each
chromosome arm. Finally, we applied z score to analyze
the CNVs of each chromosome arm in accordance with
the previous study.17 In comparison with normal controls,
a z score higher than 2.96 represented a significant increase
while a z score < lower than −2.96 represented a significant
decrease.

Extreme Gradient Boosting machine
classifier

Extreme Gradient Boosting (XGBoost) is used for super-
vised learning problems, and here we used it to classify LC
patients and normal individuals. XGBoost has excellent
scalability and a high running speed, which have made it a
successful machine learning method.18 In this study, tree
booster was used for each iteration. To control the com-
plexity of the model and help avoid overfitting, the L2 reg-
ularization term was applied and the maximum depth was
set to three. Six vital variables were then selected for fur-
ther modeling. A total of 56 samples (28 normal controls
and 28 LC patients) were randomly selected to set up a
training group, and the remaining 25 samples (12 normal
controls and 13 LC patients) were selected as a test group.
Two groups were divided randomly by the function of
train_test_split in python. The area under the curve (AUC)
was generated using the Scikit-learn (sklearn) in python.
Five-fold cross validation based on the whole data set was
used for further test the model stabilization. In addition, to
explain the output of our machine-learning model, we used
SHapley Additive exPlanations (SHAP) values, to help us
understand how a single feature affects the output of the
model.19

Results

Clinical information and sequencing data

A total of 81 individuals were recruited in this study, including
lung cancer patients (N = 41) at stage I (N = 20), stage II
(N = 6), stage III (N = 11) and stage IV (N = 4), as well as nor-
mal controls (N = 40). Summaries of cohort and sequencing are
listed in Table 1, and detailed information is listed in Table S1.
The age of the cancer patients ranged from 44 to 75 (mean
~60), while it ranged from 21 to 66 (mean ~31) among normal
controls. CfDNA was extracted from the plasma of all patients
and normal controls. As expected, the highest cfDNA concen-
tration appeared in cancer patients at stage IV (0.14 ng of
cfDNA in 1 μL of plasma on average, ranging from 0.09 to
0.27). The cfDNA concentration of cancer patients (0.12 ng/μL
on average) was obviously higher than that from normal con-
trols (0.09 ng/μL on average: see details in Fig S1). After
sequencing on the Illumina X Ten platform, raw data on of 4.21
G and 4.58 G on average were obtained from cancer patients
and normal controls, respectively. The effective ratio of cancer
patients (87.64% on average) was slightly higher than that in
normal controls (84.18% on average). Average in normal con-
trols (95.00%) was a bit higher than that in cancer patients
(94.74%). Average GC contents were 42.90% and 43.94% in
cancer patients and normal controls, respectively.

Aneuploidy detection in plasma based on
regular z score

The z score has often been calculated to determine the differ-
ence in the percentage of mapped reads derived from plasma of
cancer patients and that of normal controls.11,20 Here, we chose
chromosomal arm-level CNVs because they usually occur
approximately 30 times more frequently than focal CNVs (the
focal CNVs are usually very short and occur at a frequency
inversely related to their lengths).10 In this study, an absolute
z score of ≥2.96 was determined to represent a statistically sig-
nificant gain or loss of a chromosomal arm (Fig 1). Overall,
37 out of 40 normal controls were identified as not having any
significant arm-level alterations, yielding a specificity of 92.5%.

Table 1 Clinical characteristics and output data information

Lung cancer patients Normal controls

Sample size 41 40
Mean age (range) year 60 (44–75) 31 (21–66)
Mean concentration (range) ng/μL 0.12 (0.08–0.27) 0.09 (0.06–0.17)
Mean DNA volume (range) μL 64.51 (61.00–68.00) 64.60 (58.00–69.00)
Mean cfDNA amount (range) ng 7.91 (5.00–18.36) 5.81 (4.09–10.35)
Mean raw data (range) G 4.21 (2.08–5.44) 4.58 (3.16–8.44)
Mean effective ratio (range) % 87.64 (71.01–94.49) 84.18 (65.35–94.31)
Mean Q30 (range) % 94.74 (93.55–95.67) 95.00 (94.29–95.73)
Mean GC content (range) % 42.90 (41.72–43.75) 43.94 (42.45–46.56)
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However, nearly half of the cancer patients (20 out of 41) were
identified as negative for the presence of arm-level CNVs, yield-
ing a sensitivity of as low as 51.2% (Table 2). In addition, among
the 21 true-positive results, 10 patients were in early stages

(I and II), while 11 patients were in late stages (III and IV), indi-
cating that prediction based on the regular z score algorithm in
this study was not satisfactory for detecting early-stage lung
cancer detection.

Figure 1 Heatmap of the arm-level CNVs in each chromosome (x-axis) of LC and normal controls (y-axis). Deletions are marked in blue (z score <
−2.96). Amplifications are marked in red (z score > 2.96). Alterations that are not significant are marked in yellow (−2.96 < z score < 2.96).
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Analysis distribution of copy number
alteration on chromosome arms

Alterations of specific chromosomal regions are considered
as a hallmark of different cancer types, which can be used
for determining the diagnosis, prognosis, and impact of
treatment.21,22 We calculated the prevalence of CNVs on
specific chromosome arms of 21 lung cancer patients in
whom alterations had been detected from plasma. The
number of patients with arm-level alterations was counted
for each chromosome arm (Fig 2), except for the short arm
of the acrocentric chromosomes 22, X and Y. The results
showed that amplifications tended to emerge on chromo-
somes 3q (7/21), 8q (7/21), 12p (6/21), and 7q (5/21).
Deletions were frequently detected on chromosomes 22q
(8/21), 3p (7/21), 5q (6/21), 16q (6/21), 10q (6/21), and
15q (6/21). As such, those chromosome arms mentioned
above might be closely associated with the genesis and
development of lung cancer.

Individual sample prediction based on
XGBoost

Although the prediction of LC patients based on regular
z score in this study yielded a specificity of 92.5%, the sen-
sitivity was far from satisfactory (51.2%). Considering the
trend regarding the distribution of CNVs on each chromo-
some and cfDNA concentration variation during the pro-
cess of cancer development, we applied the Extreme
Gradient Boosting machine classifier, aiming to distinguish
LC patients from normal controls using this noninvasive
method. We randomly selected 56 samples (28 LC patients
and 28 normal controls) to build up a training group for
XGBoost machine learning classifier. The remaining
25 samples (13 LC patients and 12 normal controls) were
selected as a test group. To validate this method, receiver
operating characteristic (ROC) analysis was performed. For
both training and test groups, the AUC was 1.00. ROC
curve of five-fold cross validation result are shown in
Figure 3a. The top six features were selected according to
the contribution in the model (Fig 3b). Concentration was
ranked first, followed by chromosome arms 10q, 3q, 8q,
3p, and 22q. Based on these six features above, specificity
and sensitivity of 100% were finally achieved in the test
group.

Result evaluation on model-agnostic
explanation method SHAP

When considering the model accuracy, it is crucial to under-
stand why a model makes a specific decision.23 SHAP is a
unified framework for interpreting predictions by assigning
each feature an importance value for a particular predic-
tion.19 In a previous study, it was confirmed that SHAP

Table 2 Z-score based sensitivity and specificity to detect aneuploidy in plasma

In total Positive Negative Specificity % Sensitivity %

Early-stage
(I and II)

Late-stage
(III and IV)

Early-stage
(I and II)

Late-stage
(III and IV)

92.5 (37/40) 51.2 (21/41)

LC patients 41 10 11 16 4
Normal controls 40 3 — 37 —

Figure 2 Column chart of the alteration frequency (x-axis) of arm-level
CNVs in each chromosome (y-axis) among all LC patients. Deletions are
marked with gray columns, and amplifications are marked with red col-
umns. For example, a total of four LC patients have deletions and one
has amplifications on chromosome 1p.
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values were consistent feature attributions by integrating
them with an XGBoost model.24 Thus, in this study, we used
the SHAP algorithm to obtain deeper insight into the top
features depending on which decision the model made when
predicting. The SHAP values in Figure 4 show the distribu-
tion of the impacts each feature had on the model output.
The color represents the feature value (red high, blue low).
This revealed that a higher concentration of cfDNA in
plasma and CNV gains in chromosome arms 8q and 3q
impacted on cancer pathogenesis. In contrast, CNV losses in
chromosome arms 10q, 22q, and 3p were mainly associated
with cancer pathogenesis. SHAP values for each feature are
shown in Figure S2.

Discussion

To our knowledge, this is the first study to choose the hot
machine-learning algorithm XGBoost as a classifier in lung can-
cer prediction. Chromosomal arm-level CNVs in plasma were
selected as biomarkers due to their frequent occurrence in the
genome as well as noninvasive feasibility. In comparison with
single nucleotide polymorphisms (SNPs), CNVs, the structural

variations in the genome, have a greater effect and play a more
important role in genetic variation, which is currently recognized
as a risk factor in cancer etiology.25 With the rapid development
and increasingly low cost of next generation sequencing (NGS)
technology, sequencing-based CNV detection has become
increasingly favored in cancer studies. A previous study carried
out a complete analysis of CNV detection under different condi-
tions, indicating that coverage between 0.1× and 8× was associ-
ated with overall specificity between 91.7% and 99.9%, and
sensitivity between 72.2% and 96.5%.26 Here, we set the whole
genome sequencing to one-fold as a robust depth, considering
both the high occurrence frequency of arm-level CNVs across
the whole genome and the affordability cost of this low sequence
depth for clinical application.
Initially, we used the regular z score to distinguish LC

patients from normal controls and analyzed the CNVs profiles
on each chromosome. However, the low sensitivity achieved
with the z score was unsatisfactory. We then attempted to
use the machine learning method XGBoost as a classifier.
Through comparative analyses of z score and XGBoost, we
consistently found that CNVs on chromosome 3p, 3q, 8q,
10q, and 22q which were among the top six features selected

Figure 3 (a) ROC curve of five-fold cross validation. (b) Six of the most important features selected by the model.

Figure 4 SHAP summary plots of top
six features. The color represents the
feature value (red, high; blue, low).
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by XGBoost were also detected via the z score algorithm as
the main affecting factors. Balsara and Testa27 found that
among NSCLC samples the chromosome arms most fre-
quently involved in gains included 3q, and those in losses
included 3p and 22q, which was also supported by our study.
Mermel et al.28 described a method that they developed to
detect somatic copy-number alterations in human cancers.
When scoring whole chromosomal arm-level events, they
observed losses of chromosome 10. In addition, Petersen
et al.29 performed comparative genomic hybridization (CGH)
on 22 autoptic SCLCs to screen the tumor genome for geno-
mic imbalances, and they observed deletions on chromosome
10q in 94% of tumors. Moreover, Kubokura et al.30 analyzed
chromosome 8 copy numbers and c-myc gene amplification
in non-small cell lung cancer, and they found that the number
of chromosome 8 aberrations was significantly lower in
patients who survived for five years or more. Their study
suggested that the rate of chromosome 8 aberration is an
additional prognostic factor of NSCLC patients. This previous
research supports the assertion that the classifier applied in
our study is reasonable and interpretable. Classification and
data mining methods have become a particular focus of inter-
est in the medical field due to their value in diagnostic and
analytical decision-making. Many algorithms for cancer pre-
diction, such as Support Vector Machines (SVMs),31 Artificial
Neural Networks (ANNs),32 and Bayesian Networks
(BNs),33,34 were applied in previous studies. With the applica-
tion of machine learning methods, the accuracy of cancer pre-
diction outcome has significantly improved by 15%–20%.35

However, building accurate and computationally efficient clas-
sifiers for medical use is a major challenge. Asri et al.36 com-
pared four different algorithms for breast cancer prediction,
and the results showed that SVM performed the best in terms
of achieving the highest accuracy (97.13%) with the lowest
error rate. Tian et al.37 focused on esophageal cancer diagnosis
and utilized 5hmC characteristics detected in cfDNA as a bio-
marker. For cancer classification, they used the XGBoost
method in 333 samples, including 177 healthy controls plus
six replicative samples and 150 esophagus cancer patients,
and achieved a sensitivity of 93.75% and specificity of 85.71%
(AUC = 0.972). XGBoost has gained popularity by winning
numerous machine-learning competitions. Nielsen38 attempted
to explain XGBoost’s many advantages over other methods.
He indicated that first tree boosting can take the bias-
variance tradeoff into consideration during model fitting,
and XGBoost deals with the bias-variance tradeoff even
more meticulously by introducing some subtle improve-
ments. At the beginning of our study, the z score based clas-
sification of cancer patients and normal controls failed due
to its low sensitivity. Thus we chose the efficient machine
learning method, XGBoost as a classifier, hoping to achieve
significant promotion. Finally, beyond our expectations, we
achieved specificity and sensitivity of 100% in our limited

sample set. As mentioned above, the small sample size as
noted in many other similar studies is an obvious limitation
here. The larger the data set, the more likely it is to lead to
reasonable validation of the estimators.39 Thus, in future
work, we plan to perform studies on larger cohorts from
multiple-centers.
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Figure S1 CfDNA concentration of cancer patients and normal
people.

Figure S2 SHAP values for each feature.

Table S1 Detailed information of the cohort.
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