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The most important part of sleep quality assessment is the automatic classification

of sleep stages. Sleep staging is helpful in the diagnosis of sleep-related diseases.

This study proposes an automatic sleep staging algorithm based on the time attention

mechanism. Time-frequency and non-linear features are extracted from the physiological

signals of six channels and then normalized. The time attention mechanism combined

with the two-way bi-directional gated recurrent unit (GRU) was used to reduce computing

resources and time costs, and the conditional random field (CRF) was used to obtain

information between tags. After five-fold cross-validation on the Sleep-EDF dataset, the

values of accuracy, WF1, and Kappa were 0.9218, 0.9177, and 0.8751, respectively.

After five-fold cross-validation on the our own dataset, the values of accuracy, WF1, and

Kappa were 0.9006, 0.8991, and 0.8664, respectively, which is better than the result of

the latest algorithm. In the study of sleep staging, the recognition rate of the N1 stage

was low, and the imbalance has always been a problem. Therefore, this study introduces

a type of balancing strategy. By adopting the proposed strategy, SEN-N1 and ACC of 0.7

and 0.86, respectively, can be achieved. The experimental results show that compared to

the latest method, the proposed model can achieve significantly better performance and

significantly improve the recognition rate of the N1 period. The performance comparison

of different channels shows that even when the EEG channel was not used, considerable

accuracy can be obtained.

Keywords: Bi-directional gated recurrent unit, conditional random field, class balance strategy, sleep staging, time

attention mechanism

1. INTRODUCTION

Sleep is the most important physiological activity of human beings. Poor sleep can endanger the
human immune system and threaten people’s lives and health. Numerous studies have shown that
more and more drivers are face with irreparable consequences due to fatigue driving (Moul et al.,
2002; RN2, 2005; Sateia et al., 2017). Individuals with severe sleep-related diseases suffer from
sleep fragmentation and apnea during sleep. When they start to enter a deeper stage of sleep,
their airways can become blocked and interfere with their normal breathing. This interference
forces the body to return to a lighter sleep stage to continue breathing better. People with sleep
apnea do not cycle through the normal phases of the sleep cycle. Therefore, analyzing sleep
status can understand sleep conditions, design sleep disorder prevention strategies, and protect
people’s sleep health. In order to get the sleep state throughout the night, different sleep stages
must be classified. In other words, to study sleep-related diseases and disorders more profoundly,
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the accuracy of sleep stage detection must be improved.
At present, polysomnography (PSG) has been mainly used
clinically for sleep assessment. The PSG needs to record
many physiological signals, such as electroencephalogram
(EEG), electrocardiogram (ECG), electromyography (EMG),
electrooculogram (EOG), pulse oximetry, and respiratory signals.
The sleep stage usually includes night wake (Wake), rapid eye
movement (REM) stage and non-rapid eye movement (NREM)
stage. According to the new standard (Iber et al., 2007; Danker-
Hopfe et al., 2010) rules of the American Academy of Sleep
Medicine (AASM), the NREM stage can be further divided into
N1, N2, and N3 stages. The old standard Rechtschaffen and Kales
(R&K) rules divide the N3 stage into S3 and S4 (Rechtschaffen,
1968).

In the traditional sleep staging methods, sleep stages are
classified based on monitoring signals, which is time-consuming,
laborious, and prone to the subjective influence of sleep
experts (Collop, 2008). Therefore, many efforts have been put
into developing automatic sleep staging methods. The staging
algorithms can be roughly divided into two categories, traditional
machine learning-based algorithms and deep learning-based
algorithms that use artificial neural networks.

In the early days, automatic sleep staging was performed by
extracting features using machine learning-based algorithms.
The most common machine learning-based classification
methods include decision trees, random forests (Fraiwan
et al., 2012), and support vector machines (Koley and Dey,
2012). However, algorithms that combine feature extraction
and traditional machine learning generally have certain
shortcomings, such as low accuracy, requirements for large-
scale training samples, low recognition rate in the N1 period,
and ignoring the temporal connection between tags, so their
practicability is not high.

With the development of artificial neural networks, deep
learning has gradually become popular in the field of sleep
staging. Deep learning represents a new research direction in the
field of machine learning, and it combines low-level features to
form more abstract high-level representation attribute categories
or features to discover distributed feature representations of
data. In the field of sleep staging, mainly convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and their
variants have been used. For instance, the variants of CNN are
residual networks and graph convolutional networks, and the
variants of RNN are gated recurrent unit (GRU) and long-short
term memory (LSTM). The combination of CNN and RNN has
also been often used in sleep staging research.

However, the application of deep learning to the existing
automatic sleep staging algorithms has certain limitations, which
can be summarized as follows.

1) The deep learning networks have too many levels, consume
much computing resource and time, and are not practical.

2) Most algorithms use RNN to extract the time information
of the signal while ignoring the relationships between
sleep states.

3) N1 phase is the transitional phase between the Wake phase
and the N2 phase, which plays a crucial role in studying the

process of falling asleep and sleep regulation. However, owing
to a small number of samples in the N1 stage, and it can
be easily misjudged as the Wake stage or the N2 stage. The
recognition rate of the N1 stage of the existing sleep staging
algorithms is below 0.5, and there is also a class imbalance
problem (Penzel et al., 2013; Rosenberg and Hout, 2014).
Thus, improving the recognition rate of the N1 phase has been
important and challenging.

To overcome the mentioned limitations, this study proposes an
automatic sleep staging algorithm based on the time attention
mechanism. The outline of the proposed algorithm is shown
in Figure 1. The main steps are feature extraction, temporal
attention extraction of temporal features, CRF model extraction
of label continuity, and classification.

The main contributions of this research are as follows.

1) Combining the time attention mechanism with Bi-GRU as a
model could effectively extract time information and reduce
computing resources and time costs.

2) CRF was used to extract the feature information between tags
to modify the sleep staging state obtained by the temporal
attention model.

3) The class balance strategy was adopted, and the weight
between different classes, thus improving the N1 recognition
rate.

4) In addition, the classification accuracies of different channels
and different channel combinations are compared. The results
show that the proposed method can achieve considerable
accuracy without using the EEG channels.

The rest of this study is organized as follows. In section Related
Work, a detailed description of the related work is presented.
In section Materials and Methods, the model architecture
and experimental process are described. The results reflecting
the proposed model’s performance are presented in section
Results. In section Discussion, the discussion and future work
are presented. Lastly, in section Conclusion, the conclusions
are drawn.

2. RELATED WORK

2.1. Sleep Staging
Sleep staging refers to the classification of sleep into five sleep
stages formulated by AASM by sleep researchers as the staging
standard. The five sleep stages are Wake, N1, N2, N3, and REM.
EEG is usually described by its frequency components. The slow
waves include the activities that are at the frequency in the range
of 0.5–2.0 Hz, where the minimum amplitude of positive and
negative peak-to-peak values recorded by the frontal leads is 75
mv, and also δ(0.5–4 Hz), θ(4–8 Hz), α (8–12 Hz), and β(12–35
Hz) waves (Kamran et al., 2019).

In Fraiwan et al. (2012), the classification of sleep stages was
conducted by extracting time-frequency features and entropy
features using the random forest classifiers. In Liang et al. (2012),
multi-scale entropy and autoregressive features were used for
sleep staging. In Zhu et al. (2014), time-frequency features were
extracted, and the support vector machines were used for the
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FIGURE 1 | The architecture of the automatic sleep stage classification model based on the time attention mechanism combined with the CRF model. The PSG is

divided into 30-s epochs; the original features are obtained via feature extraction, and the prediction results are obtained by the time attention mechanism combined

with the CRF model.

classification of sleep stages. In Hassan and Haque (2015), the
empirical model decomposition was used to extract features, and
this model was combined with decision trees for the classification
of sleep stages. In Hassan and Bhuiyan (2016), the classification
of sleep stages was performed using wavelet transform with the
adjustable Q factor and random forest classifier.

Recently, deep learning has achieved many significant results
in the field of sleep staging. In 2016, Tsinalis et al. (2016) used
a two-layer convolutional neural network to perform single-
channel EEG automatic sleep staging. Although the manual
feature extraction steps were simplified, the accuracy rate was
only 71–76%. In 2017, Supratak et al. (2017) combined the
CNN model with the LSTM algorithm to introduce residual
learning for sequence classification, which could learn the time
information of EEG, and achieved the accuracy of 86–82%.
However, this model has different recognition capabilities for
EEG signals from different channels, so changing the EEG
channel has a great impact on the results. In Olesen et al. (2018)
used a large-scale multi-channel dataset and adopted a 50-layer
convolutional CNN model to obtain an accuracy of 84%, but
the proposed CNN model had a large number of layers and
consumed too much computing resource. Patanaik et al. (2018)
used deep convolutional networks andmulti-layer perceptron for
sleep staging, and achieved the accuracy of up to 89.8%, and also
comprehensively analyzed the sleep characteristics of different
people; however, this multi-layer neural network consumes too
much computing resource and time.

2.2. Bi-Directional Gated Recurrent Unit
GRU is a type of recurrent neural network. Like LSTM, the
GRU was initially proposed to solve the problems of long-
term memory and gradients of the backpropagation method
(Hochreiter and Schmidhuber, 1997). Compared with the LSTM,
the GRU can achieve considerable results, and its training process
is easier, which can significantly improve the training efficiency
and save computing resources and time cost (Cho et al., 2014;
Chung et al., 2014).

2.3. Time Attention Mechanism
The time attention mechanism assigns weight to each time
point in the time series, and the data information of the time
point with a greater degree of relative correlation has a higher
weight distribution. Namely, the attention mechanism provides
different intermediate vector Ci using the sigmoid function. The
intermediate vector Ci contains the influence of the information
of each time point of time series X on the data prediction at
different times, which can save training time. In other words, the
time attention mechanism will assign higher weights to epochs
with a greater degree of relative relevance, which is conducive to
distinguishing long-term continuous staging, while epochs with a
lower degree of relative relevance will be assigned lower weights,
which will reduce the up and down fluctuations during the
staging process, and can also eliminate unimportant information,
thus saving the training time.
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FIGURE 2 | The CRF path selection process. Each column represents a time node. There are five periods: W period, N1 period, N2 period, N3 period, and REM

period; the solid black line denotes the final selected path, which includes the W, N1, N3, and N3 periods.

2.4. Conditional Random Field
The CRF represents an undirected graph model defined by the
hidden Markov process, and X denotes the entire observable
vector. The CRF separates the associations at the output level so
that the model can learn the connection between sequence tags
and also takes the path as a unit, considering the path probability.
If an input has n frames and the label of each frame has k
possibilities, then theoretically, there are kn different outputs.
In Figure 2, each point represents the possibility of a label,
the connection between the points represents the association
between the labels, and each labeling result corresponds to a
complete path in the graph. The correct path is selected from kn

paths, which represents a classification problem of selecting one
category from kn categories.

The CRF represents a machine learning model. In the
experiment of the automatic sleep staging algorithm based on the
time attention mechanism, the CRF acts as a loss function, which
is good for extracting the relationships between the tags. There
are certain relationships between tags; for instance, the W period
can be the N1 period or the N2 period, but it is unlikely to be
the N3 period. The CRF can add the relationship between this
type of sequence tag in the sleep state, and correct and overcome
the limitations of the time attention mechanism combined with
the Bi-GRU.

3. MATERIALS AND METHODS

3.1. Datasets
3.1.1. Sleep-EDF Datasetm

Sleep-EDF datasets were used in this study, which are available
in the Public PhysioNet Database (Kemp et al., 2000). Sleep-
EDF dataset contains recorded signals of 8 healthy males and
females, 21–36 years old, who did not take any medication. The
dataset consists of two group of subjects, 4 sleep cassette (SC)
recording that collected in 1989 during 24 h daily life at the
home and 4 sleep telemetry (ST) recording that collected in 1994
during overnight sleep in the hospital from subjects who had
mild difficulty falling asleep. The recordings contain horizontal
EOG, FpzCz and PzOz EEG, each sampled at 100 Hz. The sc*
recordings also contain the submental-EMG envelope, oro-nasal
airflow, rectal body temperature and an eventmarker, all sampled
at 1 Hz. The st* recordings contain submental EMG sampled at
100 Hz and an event marker sampled at 1 Hz.

3.1.2. Self-Collected Dataset

Based on clinical considerations and in accordance with
the AASM manual, this study completed 83 nights of
polysomnography experiments. There are 21 subjects in total,
and each subject has a continuous experiment ranging from 1
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TABLE 1 | Extracted features.

Symbol Description Feature category

max Maximum Time-domain feature

min Minimum Time-domain feature

mean Mean Time-domain feature

var Variance Time-domain feature

std Standard deviation Time-domain feature

per25 25% quantile Time-domain feature

per75 75% quantile Time-domain feature

per95 95% quantile Time-domain feature

skew Skewness Time-domain feature

kurt Kurtosis Time-domain feature

median Median Time-domain feature

overzero Zero crossing rate Time-domain feature

hm Mobility in Hjorth parameters Time-domain feature

hc Complexity in Hjorth parameters Time-domain feature

delta Delta energy value Frequency-domain feature

theta Theta energy value Frequency-domain feature

alpha Alpha energy value Frequency-domain feature

beta Beta energy value Frequency-domain feature

permEn Displacement entropy Non-linear feature

sampleEn Sample entropy Non-linear feature

SvdEn Singular value decomposition entropy Non-linear feature

night to 5 nights. The subjects were all healthy young people,
ranging in age from 20 to 24 years old, and the ratio of male
to female was 1:0.384. All subjects volunteered to participate
in this sleep experiment. Before the experiment, they were
required to wash their hair and bath to keep their head clean.
The experiment time was mainly from 23:00 on the same
day to 07:30 the next day, and the sleep data was >8 h. All
subjects ensured good health, no recent medication history,
and no strenuous exercise within 1 h before the start of the
sleep experiment.

This sleep experiment used a self-designed polysomnography
monitor to complete the accurate acquisition and storage
of 3-channel EEG, 2-channel EOG, 1-channel EMG, and 1-
channel ECG signals in the sleep experiment. The sampling
rate is 250 Hz, and the system gain is 24. In addition, the
EEG electrodes used for signal acquisition all use gold-plated
disc electrodes and are used with gel conductive paste. EOG,
EMG and ECG electrodes all use patch electrodes. The entire
sleep experiment process was completed on the subject’s own
dormitory bed, and all electrode placement positions were
recommended by AASM. In order to simplify the electrode
title, we unified the three EEG channels, namely C4-A1, F4-A1
and O2-A1, simplified to C4, F4, and O2. Then the two EOG
channels, namely EOG-R and EOG-L, are simplified into REOG
and LEOG.

We perform statistics based on the sleep stage labels classified
by doctors, and obtain the number of samples at each stage. The
number of data samples of the Wake, N1, N2, N3, and REM
stages were 22,726, 4,296, 34,316, 14,910, and 18,372, respectively.
The sample size of the N1 stage was the smallest, and the sample

size of the N2 stage was the largest. Thus, there was a problem of
class imbalance. A total of 94,620 samples were collected.

3.2. Data Preprocessing
The data processing steps were as follows:

1) Cutoff frequency design: Use high-pass filter and low-pass
filter to remove the noise of each channel, EEG (0.3–35 hz),
EOG (0.3–35 hz), EMG (10–100 hz), ECG (0.3–70 hz).

2) Filter design: Choose a Butterworth filter with infinite impulse
response IIR to filter the collected data to avoid phase shifts
caused by EEG, EOG, EMG, and ECG.

3) According to the AASM staging standard, the filtered data
is divided into non-overlapping segments in a time series
of 30 s/epoch. And request sleep physicians to stage sleep
data according to sleep discrimination criteria and their own
experience, and their staging results are used as labels.

4) Trim the data on each night to nine and a half hours;
complement data that last less than nine and a half hours
with the previous consecutiveWake period; trim data of more
than nine and a half hours to keep the number of samples per
night consistent.

3.3. Feature Extraction
Feature extraction corresponds to the extraction of characteristic
patterns of EEG signals in different sleep stages, which is an
important step in the automatic classification of different sleep
stages. The signal is used as the original sequence, and δ(0.5–
4 Hz), θ(4–8 Hz), α(8–13 Hz), and β(13–30 Hz) frequency
band are extracted from the original sequence using welch and
lomb methods to obtain eight new frequency band. Secondly,
the original sequence is regarded as the first-order difference to
obtain a new sequence, so together with the original sequences,
a total of 10 sequences or frequency band are obtained. By
extracting 14 time-domain features from these 10 data sequences
or frequency band, plus 12 non-linear features, each channel has
152 features. The extracted features are shown in Table 1.

In the studies on the feature extraction of EEG signals
(Samet, 2015), the existing features, including frequency-
domain features, time-domain features, and non-linear features,
were discussed in detail. The original EEG signal is usually
preprocessed by a bandpass filter to extract frequency-domain
features (Hell, 2010; Pan et al., 2012; Malaekah, 2016). The time-
domain features mainly include the maximum value, minimum
value, mean value, variance, standard deviation, 25% quantile,
75% quantile, 95% quantile, skewness, kurtosis, median, zero rate,
and Hjorth parameter (Hjorth, 1970).

3.4. Network Structure
The extracted (T, F) feature vector was input into the Bi-GRU to
extract the time series features, and then the sigmoid function
was used to assign a high weight to the time series with high
correlation. Then multiply the weight matrix obtained above by
the original input feature vector, and the result was input into an
FC to obtain the CRF input. Among them, T is the number of
epochs, and F is the number of features. In particular, given an
input X = {x1, . . . , xN} ∈ R

N×d where N is the total number of
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FIGURE 3 | The time attention mechanism. The feature vector extracted from the PSG is input into the Bi-GRU; the time continuity information of the signal is

extracted, and high weight is assigned to the time series with high correlation using the sigmoid function. The attention matrix of the same dimension as the feature

vector is multiplied with the original feature vector, and the multiplied vector is sent to the linear layer.

features, and d is the length of xi,1 ≤ i ≤ N. The corresponding
formula was as follows:

Attention(X,X) = Sigmoid(GRU(X))X. (1)

Where X denoted the input feature vector. Its block diagram is
shown in Figure 3.

In the Bi-GRU, the input size was the total number of features,
the hidden size was half the number of features, and there was
only one hidden layer. There are a total of 912 features, and
each channel has 152. They are arranged in order, namely C4,
EMG, LEOG, REOG, F4, O2. Different signals can be selected
as input in this order to compare the performance of different
channels. The number of outputs of the CRF layer was equal
to the number of classes; since there were five stages of the
classification, the number of outputs was five. The time attention
mechanism was trained by using Adam optimizer with a batch

TABLE 2 | Confusion matrix and classification performance of proposed model

applied on Sleep-EDF dataset.

Wake N1 N2 N3 REM

Expert

scored

Wake 0.9926 0.0029 0.0029 0.0004 0.0012

N1 0.1921 0.4177 0.1951 0.0030 0.1921

N2 0.0141 0.0027 0.9478 0.0204 0.0150

N3 0.0167 0.0000 0.1892 0.7941 0.0000

REM 0.0167 0.0078 0.2033 0.0000 0.7722

Precision 0.9752 0.8354 0.8365 0.9278 0.8720

Recall 0.9926 0.4177 0.9478 0.7941 0.7722

F1 Score 0.9838 0.5569 0.8887 0.8558 0.8191

Accuracy:0.9218 WF1:0.9177 Kappa:0.8751

size of 1140 examples and a learning rate of 0.0001. The CRF was
used as the loss function with a weight decay of 0.01.

3.5. Evaluation Indexes
The performance of the proposed model was evaluated regarding
the following evaluation metrics: the accuracy (ACC), F1-score
(F1), Cohen Kappa (k), and the sensitivity in N1 period (SEN-
N1). Given the True Positives (TPi), False Positives (FPi), True
Negatives (TNi) and False Negatives (FNi) for the i -th class, the
overall accuracy ACC, and F1 are defined as follows.

ACC =

∑K
i=1 TPi

M
(2)

F1 =
2× Precision i × Recall i

Precision i + Recall i
(3)

TABLE 3 | Confusion matrix and classification performance of proposed model

applied on our own dataset.

Wake N1 N2 N3 REM

Expert

scored

Wake 0.9732 0.0170 0.0046 0.0006 0.0046

N1 0.2085 0.5147 0.1993 0.0103 0.0671

N2 0.0101 0.0222 0.9026 0.0297 0.3530

N3 0.0057 0.0026 0.1115 0.8775 0.0027

REM 0.0254 0.0119 0.0474 0.0001 0.9153

Precision 0.9251 0.6088 0.8983 0.9245 0.9114

Recall 0.9732 0.5147 0.9026 0.8775 0.9153

F1 Score 0.9485 0.5578 0.9005 0.9153 0.9134

Accuracy:0.9006 WF1:0.8991 Kappa:0.8664
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FIGURE 4 | The comparison of the one-night sleep data diagrams, of which one was obtained by manual sleep data staging by a sleep expert and another one was

obtained by automatically sleep staging by the proposed model, and they are represented by the red and blue lines, respectively.

where Precision i =
TPi

TPi+FPi
and Recall i =

TPi
TPi+FNi

. M is the total
number of samples and K is the number of classes or sleep stages.

We also used per-class precision (PR), per-class recall (RE)
and per-class F1-score (F1) to evaluate each our model. They are
calculated as in binary classification by considering one class as
the positive class and the other four classes as the negative class.

The Kappa coefficient is used for consistency testing and can
also be used to measure classification accuracy. The calculation
result is (–1, 1), but usually kappa falls between (0, 1), which
can be divided into five groups to indicate different levels of
consistency: 0–0.2 means very low consistency, 0.21–0.4 means
General consistency, 0.41–0.6 indicates medium consistency,
0.61-0.8 indicates high consistency, 0.81–1 indicates almost
complete consistency, the formula is:

K =
Po − Pe

1− Pe
(4)

where Po is accuracy; suppose the number of real samples of each
category are a1, a2, · · · , am, and the number of samples predicted
for each category are b1, b2, · · · , bm, the total number of samples

If the number is n, then: pe =
a1×b1+a2×b2+···+am×bm

n×n .

4. RESULTS

4.1. Performance of Model
The extracted features were used as input, and the temporal
attention model was trained using extracted features from sleep
data. To train the model with the whole-night data, the five-fold
cross-validation was used to divide the training set and the test set
into 83 night-data sets, and the ratio of the training set to the test
set was 4:1. Five-fold cross-validation is to divide the data into five
parts, take one part of the test each time, and use the remaining
part for training. A total of five times are required. The five test
sets are all different subject, that is, cross-validation is subject-
independent. For example, take out the sleep data test of 17 of the
83 nights, and use the remaining subject for training. Tables 2, 3

show the confusion matrix of the proposed model applied on the
Sleep-EDF dataset and our own dataset. The confusion matrix
is calculated by adding up all the scoring values of the testing
data through the five folds. The table also shows the accuracy,
recall and F1 score of each class, as well as the overall accuracy
and Kappa.

As shown in Table 2, after five-fold cross-validation on the
Sleep-EDF dataset, the values of accuracy, WF1, and Kappa were
0.9218, 0.9177, and 0.8751, respectively. As shown in Table 3,
after five-fold cross-validation on the our own dataset, the values
of accuracy, WF1, and Kappa were 0.9006, 0.8991, and 0.8664,
respectively. In other words, the Kappa was all above 0.8, thus,
the two judgments were almost identical.

The Wake period may be misdiagnosed as the N1 period,
which was because, from the beginning of sleep, people gradually
fell asleep, while the N1 period was between awake and deep
sleep, which was a state of sleep but not sleep. That is, the
characteristics of the N1 period are similar to those of the Wake
period. Also, the N1 period could be misjudged as the N2 period
or the Wake period. The characteristics of the N2 and N3 stages
were very obvious, so their recognition rates were above 0.8. The
N2 stage may be misjudged as the N3 stage, and the N3 stage
may be misjudged as the N2 stage because the N2 and N3 phases
had similar structures and were continuous in time. The REM
period may be misjudged as the Wake period and N2 period,
which was because, The REM period is a transitional state from
deep sleep to waking up, and their sleep had certain similarities,
but the characteristics of REM itself were obvious.

The comparison between the manually obtained labels by
sleep experts and the labels predicted by the proposed method
using the records from the one-night data is presented in
Figure 4. The one-night data included a total of 1,140 epochs
and lasted nine and a half hours, starting at 23:04 in the evening
and ending at 8:14 in the next morning. The sleep data diagram
presented in Figure 5 shows that the effective sleep time of the
subject was about 6 h, and the subject entered a deep sleep period
soon after falling asleep. However, during the sleep, there were
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TABLE 4 | Confusion matrix and classification performance of proposed model

applied on Sleep-EDF dataset after increasing the weight of the N1 state.

Wake N1 N2 N3 REM

Expert

scored

Wake 0.9426 0.0364 0.0142 0.0009 0.0059

N1 0.0504 0.7425 0.1231 0.0243 0.0597

N2 0.0111 0.0522 0.8542 0.0446 0.0379

N3 0.0183 0.0095 0.1852 0.7822 0.0048

REM 0.0061 0.1726 0.1889 0.0068 0.6257

Precision 0.9871 0.3455 0.8203 0.8346 0.8030

Recall 0.9426 0.7425 0.8542 0.7822 0.6257

F1 Score 0.9643 0.4716 0.8369 0.8076 0.7033

Accuracy:0.8695 WF1:0.8770 Kappa:0.7974

TABLE 5 | Confusion matrix and classification performance of proposed model

applied on our own dataset after increasing the weight of the N1 state.

Wake N1 N2 N3 REM

Expert

scored

Wake 0.8965 0.0928 0.001 0.0001 0.0096

N1 0.0871 0.7310 0.1067 0.0037 0.0715

N2 0.0036 0.0905 0.8386 0.0192 0.0481

N3 0.0003 0.0137 0.1593 0.8254 0.0014

REM 0.0225 0.0832 0.0603 0.0005 0.8336

Precision 0.9571 0.3091 0.8783 0.9477 0.8752

Recall 0.8965 0.7310 0.8386 0.8254 0.8336

F1 Score 0.9258 0.4345 0.8580 0.8823 0.8539

Accuracy:0.8446 WF1:0.8583 Kappa:0.7950

many waking times, but after waking, the subject immediately
entered a sleep state again. As shown in Figure 4, the Bi-
GRU time attention mechanism combined with the CRF model
performed well on long time series, but there were fluctuations
in the distinction between the N2 and N3 periods, and the N2
period was easily misjudged as the N3 period; also, the N3 period
was easily misjudged as the N2 period. The reason was that the
model’s ability to process continuous time series was too strong,
so in the case of sudden jumps, such as the transition from N2 to
N3 period, the response was not very sensitive, and it was easy to
misjudge the jumping fluctuations as a stable N3-period straight
line. For the one-night sleep data, the accuracy and F1 score of
the proposed model were 0.956 and 0.96, respectively.

4.2. N1 Period Imbalance Problem Solution
Class-imbalance refers to the situation where the number of
training examples of different categories in the classification task
varies greatly. In the sleep stage, owing to the small number of
samples in the N1 period, the recognition rate of the N1 period
of the existing sleep staging methods is below 0.5, which causes
a class imbalance problem. Therefore, without expanding the N1
period data, it is necessary to introduce a class balance strategy of
assigning weights to solve the problem of low model sensitivity

to the N1 period. The class balance strategy penalizes stages with
a large sample size by adjusting the weights, such as the W stage,
which gives theW stage a lower weight and at the same time gives
N1 a higher weight.

Using the Hyperband method, which regards each
hyperparameter configuration as an arm, and then selects
the optimal hyperparameter configuration, the optimal weight
parameters were selected. The weights of Wake, N1, N2, N3,
and REM periods were set to 1, 6, 1, 2, and 1, respectively, and
the confusion matrix and classification performance of proposed
model applied on Sleep-EDF dataset and our own dataset after
increasing the weight of the N1 state are shown in Tables 4, 5.

As shown in Table 4, after five-fold cross-validation on the
Sleep-EDF dataset, the values of accuracy, WF1, Kappa, and
SEN-N1 were 0.8695, 0.8770, 0.7974, and 0.7425, respectively. As
shown in Table 5, after five-fold cross-validation on the our own
dataset, the values of accuracy, WF1, Kappa and SEN-N1 were
0.8446, 0.8583, 0.7950, and 0.7310, respectively. In other words,
even when the weight of the N1 period was increased while the
weights of the other categories were reduced, the accuracy of the
proposed model in recognizing the five sleep stages could reach
a satisfactory level. The SEN-N1 was higher than 0.7, thus far
exceeding the performance of the current sleep staging models.
Therefore, after changing the weight, the proposed model solved
the problems of class imbalance and low recognition rate.

In order to verify whether the use of the class balance strategy
has a significant effect on sleep staging, we performed the paired
Wilcoxon Signed Ranks Test on the Sleep-EDF dataset and our
own dataset. That is, a statistical test is performed between the
results in Tables 2, 4 and Tables 3, 5. It is assumed that there
is no significant difference in the results of sleep staging with or
without the use of the proposed class balance strategy. However,
we obtained p-value 0.0036 < 0.05 and 0.0024 < 0.05 for the
Sleep-EDF dataset and our own dataset, respectively, after the
application of paired Wilcoxon Signed Ranks Test. These results
reject the hypothesis and indicate that the proposed class balance
strategy has a significant effect on the outcomes.

To provide a fair comparison with the results of the
unweighted experiment, the sleep data of the same person at
the same night were used to draw a sleep structure diagram,
and it is presented in Figure 5. As shown in Figure 5, after the
introduction of the class-balance strategy, the fluctuation from
N1 to N2 after 5:44 was more apparent than that in the sleep
structure diagramwithout the class-balance strategy. For the one-
night sleep data, the accuracy and F1 score of the proposedmodel
were 0.926 and 0.93, respectively.

4.3. Comparison of Different Channels
Channels C4, EMG, LEOG, REOG, F4, and O2, and
the following channel combination LEOG+REOG,
EMG+LEOG+REOG,C4+F4,C4+O2,F4+O2, C4+F4+O2,
C4+ EMG, C4+LEOG+REOG and C4+REOG+EMG were
used to explore the effects of different channels on the sleep
staging results.

The comparison results are presented Table 6, where it can be
seen that among the three EEG channels, C4 and F4 contained the
most information on the sleep quintuple tasks. The accuracy was
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FIGURE 5 | The comparison of the one-night sleep data diagrams, of which one was obtained by manual sleep data staging by a sleep expert and another one was

obtained by automatically sleep staging by the proposed model, and they are represented by the red and blue lines, respectively.

TABLE 6 | The experimental results for different channels and channel combinations.

Channel Accuracy WF1 Kappa
Sensitivity

Wake N1 N2 N3 REM

C4 0.859 0.84 0.81 0.96 0.4 0.9 0.87 0.81

F4 0.855 0.84 0.8 0.9 0.4 0.91 0.87 0.86

O2 0.827 0.81 0.77 0.94 0.2 0.83 0.86 0.83

LEOG 0.798 0.78 0.72 0.95 0 0.86 0.75 0.71

REOG 0.809 0.79 0.74 0.92 0 0.8 0.89 0.8

EMG 0.554 0.47 0.35 0.87 0 0.83 0 0.23

LEOG+REOG 0.832 0.82 0.77 0.92 0.11 0.83 0.85 0.86

LEOG+REOG+EMG 0.852 0.85 0.8 0.96 0.3 0.88 0.85 0.78

C4+EMG 0.877 0.87 0.83 0.97 0.41 0.91 0.76 0.89

C4+LEOG+REOG 0.879 0.87 0.83 0.93 0.35 0.87 0.85 0.92

C4+REOG+EMG 0.876 0.87 0.82 0.92 0.28 0.88 0.86 0.91

C4+O2 0.861 0.84 0.80 0.95 0.11 0.90 0.87 0.85

C4+F4 0.864 0.85 0.81 0.95 0.11 0.90 0.89 0.85

F4+O2 0.865 0.85 0.81 0.96 0.12 0.90 0.87 0.85

C4+F4+O2 0.872 0.86 0.82 0.96 0.13 0.91 0.89 0.86

ALL 0.901 0.899 0.866 0.97 0.52 0.90 0.88 0.92

above 0.85, the Kappa value was above 0.8, and the performance
was good. As more channels contain more sleep information,
the results of sleep staging are better than single channel. The
experimental results show that if there is only a portable EEG
acquisition system, a single-channel EEG can also get a better
result. However, the classification performance of the O2 channel
was slightly worse; the accuracy was 0.8269, and the Kappa
value was lower than 0.8. This could be because the electrode
placement was different from the first two channels. The O2
channel was located at the back of the brain and was too far
from the eye, so the information on eye movement could be
easily missed. Therefore, in the absence of EOG, it is better to
use C4 and F4 than the O2 channel. The information of the
two EOG channels was very similar; the accuracy was about 0.8,
and the Kappa value was above 0.7, but the overall effect of the
REOG data on sleep staging was better than that of the LEOG

data. This proves that the EOG data has a significant influence
on sleep staging. The EOG data contain much sleep staging-
related information. Thus, when it is inconvenient to collect the
EEG data, it is also a good choice to collect the EOG data to
conduct the sleep staging. As shown in Table 6, when the EMG
channel was used for sleep staging, the result was not very good;
namely, the recognition rates of the N1, N3, and REM stages
were very low, but the recognition rates of the Wake and N2
stages were good, reaching the value of above 0.8. These results
have proven the EMG-channel data contains many features of
the Wake and N2 stages, but the other stages could be difficultly
distinguished, so using only EMG data for sleep staging is not
recommended, and these data should be combined with the data
of the other channels.

The experiment with different channel combinations showed
that the combination of two EOG channels could achieve
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TABLE 7 | P-value of statistical test of different channels.

p-Value C4 F4 O2 LEOG REOG EMG
LEOG+

REOG

C4

F4 0.26

O2 0.0007 0.0008

LEOG 0.0028 0.0021 0.0193

REOG 0.0003 0.0002 0.0012 0.5365

EMG 0.0002 0.0002 0.0002 0.0005 0.0003

LEOG+REOG 0.0061 0.0448 0.1128 0.0061 0.0081 0.0003

LEOG+REOG+EMG 0.2582 0.1146 0.0005 0.0024 0.0001 0.0001 0.0014

C4+EMG 0.0038 0.0465 0.0001 0.0008 0.0005 0.0002 0.0032

C4+LEOG+REOG 0.0029 0.0042 0.0008 0.0022 0.0002 0.0001 0.0086

C4+REOG+EMG 0.0017 0.0009 0.0004 0.0007 0.0002 0.0001 0.0007

C4+O2 0.0411 0.0001 0.0003 0.0008 0.0001 0.0001 0.0041

C4+F4 0.2712 0.0003 0.0006 0.0006 0.0004 0.0001 0.0072

F4+O2 0.0263 0.0032 0.0002 0.0013 0.0008 0.0001 0.0027

C4+F4+O2 0.0203 0.0001 0.0005 0.0008 0.0003 0.0002 0.0024

ALL 0.0081 0.0004 0.0004 0.0006 0.0001 0.0001 0.0017

LEOG+RE

OG+EMG
C4+EMG

C4+LEOG

+REOG

C4+RE

OG+EMG
C4+O2 C4+F4 F4+O2

C4+F4

+O2

0.0024

0.0056 0.1594

0.0021 0.3205 0.6555

0.0004 0.2048 0.0856 0.0328

0.0023 0.0584 0.0595 0.0276 0.0133

0.0045 0.1441 0.0617 0.0451 0.7281 0.0165

0.0008 0.3321 0.1136 0.1411 0.2829 0.0139 0.2531

0.0021 0.0019 0.0313 0.0177 0.0071 0.0022 0.0042 0.0042

an accuracy of 0.832 in the sleep staging task, and the
Kappa value was 0.77. Compared with the single-channel EOG,
the sleep staging result of the two-channel EOG was better,
which proves that information of the two EOG channels
can compensate for each other. In addition, this proves that
using EOG data for sleep staging is a good choice when
it is inconvenient to collect EEG data. The results showed
that the combination of two EOG channels and one EMG
channel was the best choice when there were no EEG data
available for sleep staging; the accuracy, WF1, and Kappa
were 0.852, 0.85, and 0.8, respectively, which was completely
comparable to the result of the single-channel EEG data.
Hence, the results could meet the performance requirements
of sleep staging. When the two EOG channels were used, the
accuracy increased by 0.2, thus proving that the EMG channel
contains information that EOG cannot distinguish. When the
combination of C4 and EMG channels was used in sleep staging,
the accuracy, WF1, and Kappa were 0.877, 0.87, and 0.83,
respectively. Compared with a single C4 channel, the accuracy
improved by 0.2, which proves that the EMG channel data
are beneficial to the sleep staging results. In the multi-channel
combination experiment, the combined effect of C4 and two
EOGs was the second-best effect, the first one after that of the
combination of all channels; the accuracy, WF1, and Kappa

values were 0.891, 0.89, and 0.85, respectively. Accordingly,
when the objective is to reduce the number of channels while
obtaining good staging results, channel combinations C4+EMG,
C4+REOG+LEOG and C4+REOG+EMG can be used. In the
three EEG permutations and combinations, the sleep results
are similar, all around 0.86. Prove that the information of
the three EEG channels are mostly overlapped. Naturally, the
effect of six-channel data was the best; the accuracy rate
was 0.901, WF1 was 0.899, and Kappa was 0.866. This was
because the information contained in the six channels was
more comprehensive.

Table 7 shows the p-value statistical testing between different
channels. The part in bold is p > 0.05, which means there
is no significant difference. Since the difference d in the data
of the paired samples does not obey the normal distribution,
we use the wilcoxon signed ranks test of the paired samples
for data analysis. This method can be used for statistical
analysis of non-normal distribution data. This article uses paired
Wilcoxon Signed Ranks Test to perform statistical analysis on
different channels to see whether the results of different channel
combinations are statistically different from the results of full
channel combinations. Assuming that the results of different
channel combinations are not significantly different from the
results of the full channel combination, the paired wilcoxon
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TABLE 8 | Performance comparison of proposed algorithm with state-of-the-art studies in 5-class sleep staging on sleep-EDF dataset.

Reference Model Accuracy Kappa SEN-N1 p-value

Sharma et al. (2017) DESA 0.911 0.861 0.2285 0.032

Yildirim et al. (2019) CNN 0.9122 0.868 0.3974 0.018

Hassan and Haque (2015) Bagging 0.907 0.855 0.4702 0.0185

Hassan and Bhuiyan (2016) TQWT +RF 0.915 0.865 0.3742 0.0046

Zhu et al. (2014) DVG +SVM 0.889 0.830 0.3974 0.0069

Zhou et al. (2020) RF+LGB 0.912 0.865 0.4205 0.008

Hsu (2013) FNN+PNN 0.872 0.820 0.3874 0.021

Yu-Liang et al. (2013) Recurrent Neural 0.903 0.82 0.367 0.0051

Dong et al. (2018) MLP+LSTM 0.864 0.81 0.3416 0.0341

Sun et al. (2020) CNN+LSTM 0.872 0.82 0.3656 0.0126

Our model
Time attention 0.9218 0.8751 0.4177 -

Class balance+Time attention 0.8695 0.7974 0.7425 0.0036

signed ranks test is performed using the combination of C4
and the two EOG channels and the full channel combination,
and the p-value is 0.0182 < 0.05. The null hypothesis is
rejected, that is, C4 and two The combined result of the EOG
channel is significantly different from the result of the full
channel combination. The paired wilcoxon signed ranks test
was performed sequentially using different channel combinations
and full channel combinations, and all p-values were less than
0.05, proving that the results of different channel combinations
were significantly different from the results of full channel
combinations. The part in bold in Table 7 is the part with p
> 0.05, that is, the channel with no significant difference. It
can be seen from Table 7 that there is no significant difference
between C4 and F4 and can be substituted for each other. And
the two channels contain information redundancy. And the
staging results of C4 and F4 are not significantly different from
LEOG+REOG+EMG. O2 can be replaced by LEOG+REOG.
The two EOG channels can also be substituted for each other
because they are not significantly different. There is no significant
difference between C4+LEOG+REOG and other C4 combination
channels, the same is true for C4+REOG+EMG. However, O2 is
significantly different fromC4 and F4. Prove that O2may contain
information that C4 or F4 does not.

4.4. Comparison of Different Models
Table 8 compares the performance of our proposed method
for sleep stage classification using the Sleep-EDF dataset with
recent state-of-the-art works in terms of overall accuracy and
Cohen’s kappa. The highest accuracy, SEN-N1 andCohen’s kappa
are highlighted in bold, which show the performance of our
proposed method.

The results show that the evaluation indicators (including
ACC and Kappa) obtained by the proposed model are
competitive with the state-of-the-art results, and the proposed
method significantly improves SEN-N1. Among them, the
accuracy rate of the time attention model, Kappa and SEN-
N1 can reach 0.9218, 0.8751, and 0.4177, respectively. Using
class balance strategy combined with time attention model

accuracy, Kappa and SEN-N1 can reach 0.8695, 0.7974, and
0.7425, respectively.

Our own dataset were used set to compare the proposed
method with the other methods, and the results are shown in
Table 9. The part in bold is the best result of this column.
The latest proposed methods were used for the comparison. In
Dong et al. (2018), the model used by the author is common
MLP+LSTM, using single-channel EEG as input, and an accuracy
of 85% was obtained. The latest method proposed in 2020
is presented in Sun et al. (2020). The common CNN+LSTM
model was used to obtain an accuracy of 86%, which has been
very representative. As shown in Table 9, the accuracy of the
proposedmethod was 0.8934, the Kappa value was 0.86, and good
sensitivity was obtained in each stage. Also, the proposed method
achieved better results than other methods. After adding the class
imbalance strategy, the accuracy rate could also compete with the
methods proposed in Dong et al. (2018) and Sun et al. (2020), and
the N1 recognition rate was significantly improved.

In addition, in Tables 8, 9, we performed statistical tests on all
comparison algorithms and our proposed algorithm, and all p-
values were less than 0.05, which proved that our algorithm was
significantly different from the comparison algorithm.

5. DISCUSSION

In this study, an automatic sleep staging algorithm based on the
time attention mechanism combined with Bi-GRU is proposed.
The features, including time and spectrum factors, are extracted
from the physiological signals of the PSG channel and then
normalized. The time attention mechanism combined with the
two-way GRU is used to reduce computing resources and
time costs, and the CRF is used to obtain the relationships
between tags.

It should be noted that the sleep state is continuous in time,
but most of the automatic sleep staging results are prone to
step fluctuations. For instance, in the continuous and stable N3
stage, the intermediate result can be misjudged as the REM
stage, resulting in significant changes in the sleep structure
diagram. Previous studies mostly use machine learning models.
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TABLE 9 | Results comparison of different methods using our own dataset.

Reference Model Accuracy Kappa SEN-N1 p-value

Sharma et al. (2017) DESA 0.9001 0.85 0.237 0.024

Yildirim et al. (2019) CNN 0.8941 0.854 0.3843 0.0013

Hassan and Haque (2015) Bagging 0.898 0.852 0.4962 0.0066

Hassan and Bhuiyan (2016) TQWT +RF 0.8993 0.862 0.3851 0.0007

Zhu et al. (2014) DVG +SVM 0.872 0.824 0.4122 0.013

Zhou et al. (2020) RF+LGB 0.8974 0.861 0.4458 0.0034

Hsu (2013) FNN+PNN 0.866 0.814 0.4037 0.039

Yu-Liang et al. (2013) Recurrent Neural 0.889 0.808 0.346 0.0184

Dong et al. (2018) MLP+LSTM 0.850 0.80 0.31 0.0261

Sun et al. (2020) CNN+LSTM 0.861 0.81 0.33 0.0359

Our model
Time attention 0.9006 0.87 0.52 -

Class balance+Time attention 0.845 0.795 0.73 0.0024

For example, (Hsu, 2013; Yu-Liang et al., 2013; Zhu et al.,
2014; Hassan and Haque, 2015; Hassan and Bhuiyan, 2016;
Sharma et al., 2017; Yildirim et al., 2019; Zhou et al., 2020) only
analyzes the characteristics of a single sleep state and disrupts
training between epochs, cutting off the continuity between
tags. Dong et al. (2018) uses MLP to extract features, LSTM
to extract time series information, and (Sun et al., 2020) uses
CNN combined with LSTM to extract features and time series
information. However, LSTM can only extract the temporal
context information of a short sequence, and cannot do anything
about a long sequence, especially the time sequence information
of a sleep state all night. The proposed model has been compared
with the 19-layer 1D-CNN model of Yildirim et al. (2019),
whose accuracy rate is above 0.9, and which is suitable for
people who both fall asleep normally and have difficulty falling
asleep. However, the CNN used in Yildirim et al. (2019) can
extract less time information, has a large number of layers
and strong jumps, and ignores time continuity. In contrast, the
time attention introduced in this study assigns higher weights
to epochs with a relatively greater degree of relevance, which
is conducive to distinguishing long-term continuous staging,
while epochs with a relatively smaller degree of relevance are
assigned with low weights, which can reduce the fluctuations in
sleep staging, especially step fluctuations, and can also eliminate
unimportant information, thus saving the training time. The
CRF can extract the relationships between tags because the
time attention mechanism assigns weights only according to the
degree of association of PSG data, ignoring the relationships
between tags, so the CRF can overcome the shortcomings of the
time attention mechanism.

The proposed method has been verified by the experiments,
which were divided into three parts. In the first part, the time
attention mechanism combined with the CRF model was used.
After five-fold cross-validation on the Sleep-EDF dataset, the
values of accuracy, WF1, and Kappa were 0.9218, 0.9177, and
0.8751, respectively. After five-fold cross-validation on the our
own dataset, the values of accuracy,WF1, and Kappa were 0.9006,
0.8991, and 0.8664, respectively. In other words, the accuracy of
the proposed model in recognition of five sleep stages was above

0.9, and the variance was only 0.68. The results are better than
previous sleep staging studies.

As for the research on the attention mechanism, Phan (Phan
et al., 2019) combined the attention mechanism with CNN and
LSTM, which reduced time consumption to a certain extent, and
achieved an accuracy of 0.87. However, the network structure
was complex, and the recognition rate of the N1 period was
low. In Qu et al. (2020) used CNN to extract features and
combined the attention mechanism and residual neural network
for sleep staging; they obtained an accuracy of more than 0.84
and solved the problem of a large number of layers of deep
learning-based methods. However, the accuracy rate was low, the
network structure was complex, and the staging results fluctuated
significantly. In contrast, the model proposed in this study has a
simple structure and can effectively solve the problem of strong
instability of sleep staging results. The experimental results show
that the performance of the proposedmodel is significantly better
than that of the latest method (Qu et al., 2020), achieving small
variance and strong stability.

In the second part of the experiments, the class balance
strategy was introduced to solve the problem of low sensitivity
in the N1 period. Namely, since the N1 phase is the transitional
phase between the Wake phase and the N2 phase, it plays a
very important role in studying the process of falling asleep and
sleep regulation. However, due to a relatively small number of
data samples of the N1 stage, this stage can be easily misjudged
as the Wake or N2 stage, and the recognition rate of the N1
stage of the current sleep staging methods is below 0.5, which
results in a class imbalance problem. Previous studies have not
considered the problem of class imbalance in sleep state, which
has led to the low recognition rate of N1 stage, such as Yu-Liang
et al. (2013). Accordingly, improving the recognition rate of the
N1 phase has always been an important and challenging task.
For instance, although in most related studies, including Sors
(Sors et al., 2018) and Stephansen (Stephansen et al., 2018), the
accuracy rate of 87% was achieved, the recognition rate of N1 was
too low, and the highest accuracy rate of the N1 stage was only
0.58. Therefore, to solve the problem of low sensitivity in the N1
period without expanding the data of the N1 period, this study
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introduces a class balance strategy of assigning weights. After the
introduction of the class balance strategy, the recognition rate of
the N1 phase can reach a value of more than 0.7, and the accuracy
rate can be higher than 0.86, which can compete with the current
methods and significantly improve the recognition rate of the
N1 phase.

In the third part of the experiments, different
channels and channel combinations, including
C4, EMG, LEOG, REOG, F4, O2, LEOG+REOG,
EMG+LEOG+REOG, C4+F4,C4+O2,F4+O2,C4+F4+O2,
C4+EMG, C4+LEOG+REOG and C4+REOG+EMG, were used
to explore their effects on the sleep staging results. The results
showed that among the three EEG channels, the C4 channel
performed the best in recognition of five sleep stages, achieving
an accuracy rate of more than 0.85. The accuracy of the two
EOG channels was about 0.8. The results of the experiments with
different channel combinations showed that the combination of
two EOG channels provided better results in sleep staging than a
single EOG channel. Without using the EEG data, the accuracy
of the combination of two EOG channels and one EMG channel
could reach a value of 0.852, which was completely comparable
to the results of a single EEG channel, and the results could
also meet the requirements of sleep staging. The combination
of C4 and EMG channels achieved a sleep staging accuracy of
0.877. The accuracy of the combination of C4 and two EOG
channels was 0.891. Thus, if the main objective is to reduce the
number of channels while achieving good sleep staging results,
the channel combination of C4+EMG,C4+REOG+EMG or
C4+LEOG+REOG can be used.

However, compared with previous studies, the drawbacks and
limitations of the proposed algorithm lie in two points. First,
the experiment uses 6-channel data in polysomnography, which
has a large amount of data and is not as fast as single-channel
sleep staging. Second, there are too many experimental features,
it takes too much time to extract the features, and there is no
screening and comparison of features. Thus, this article analyzes
the impact of different channels on staging results only from the
perspective of channel comparison. In the future, we can make
the following further improvements to make it more effective.
First of all, we can reduce the number of channels and ensure
that results will not decrease. Second, we can filter the extracted
features by feature selection and compare feature importance.
Finally, we can develop a better sleep stagingmodel without using
EEG data.

6. CONCLUSION

This study proposes an automatic sleep staging method based on
the time attention mechanism. The time attention mechanism
combined with the two-way GRU was used to reduce computing
resources and time costs, and the CRF was used to obtain the
relationships between tags. The proposed method iswas verified
by the experiments, which can be divided into three parts. In
the first part, the time attention mechanism was combined with
the CRFmodel. After five-fold cross-validation on the Sleep-EDF
dataset, the values of accuracy, WF1, and Kappa were 0.9218,

0.9177, and 0.8751, respectively. After five-fold cross-validation
on the our own dataset, the values of accuracy, WF1, and Kappa
were 0.9006, 0.8991, and 0.8664, respectively, which is better
than the result of the latest algorithm; the proposed method also
has strong stability. In the second part, without expanding the
data of the N1 period, the class balance strategy of assigning
weights is introduced to solve the problem of low sensitivity
in the N1 period. After the introduction of the class balance
strategy, the recognition rate of the N1 phase is increased to
more than 70%, and the accuracy rate is improved to more than
0.86, which can compete with the results of the current related
methods and also significantly improve the recognition rate of
the N1 phase. The third part compares different channels and
channel combinations. The results show that when the main aim
is to used only one channel for sleep staging, the C4 channel
should be used; and when the objective is to reduce the number
of channels and obtain a good staging result simultaneously,
then the channel combination of C4+EMG, C4+REOG+EMG,
or C4+REOG+LEOG should be used. In addition, when EEG
data cannot be used, EOG and EMG data, if utilized, may also
contribute to model performance for excellent sleep staging.
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