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Abstract 

Multiple myeloma (MM) is an incurable hematological malignancy. Immunodeficiency results in the 
incapability of immunity to eradicate both tumor cells and pathogens. Immunotherapies along with 
antibiotics and other anti-infectious agents are applied as substitutes for immunity in MM. 
Immunotherapies including monoclonal antibodies, immune checkpoints inhibitors, affinity- 
enhanced T cells, chimeric antigen receptor T cells and dendritic cell vaccines are revolutionizing 
MM treatment. By suppressing the pro-inflammatory milieu and pathogens, prophylactic and 
therapeutic antibiotics represent anti-tumor and anti-infection properties. It is expected that deeper 
understanding of infection, immunity and tumor physio-pathologies in MM will accelerate the 
optimization of combined therapies, thus improving prognosis in MM. 
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Introduction 
Multiple myeloma (MM) is a heterogeneous 

malignancy developed with the accumulation of mal-
ignant plasma cells within bone marrow. Common 
complications of MM are infections, anemia, renal 
failure, hypercalcemia and osteolytic bony lesions. 
Median age of MM patients at diagnosis is 69 in the 
USA and 59 in China. Patients with MM are expecting 
better prognosis in more recent decades. With the 
introduction of proteasome inhibitors and immunom-
odulatory agents, MM median overall survival is now 
beyond 60 months.[1] Notwithstanding the improved 
early-term survival, MM remains an incurable 
disease. From precancerous monoclonal gammopathy 
of uncertain significance, active stage, to plateau 
stage, MM will eventually and inevitably progress 
into relapsing stage and drug resistant stage. Repeat-
ed infections, development of drug resistance and 
disease progression in MM are all closely associated 
with the acquisition of immunodeficiency. [2–5] 

Immunodeficiency principally results in the 
incapability of immunity to eradicate tumor cells and 

pathogens. The duality of immunodeficiency in MM 
patients is essential in understanding the latent 
interactions between malignant cells, pathogenic 
microorganisms and the host immunity, especially 
provided that we are to develop promising drugs to 
achieve curative potential. This review outlines the 
mechanisms and up-to-date clinical applications of 
several therapeutic strategies targeting immunodefic-
iency. We focus primarily on immunotherapies, 
especially novel treatment options of monoclonal 
antibodies and chimeric antigen receptor T cells, and 
anti-infectious agents, as substitutes for immunity to 
eradicate pathogens and malignant cells, respectively. 
Note that because of the same immunodeficiency 
background infections and myeloma share, a 
successful treatment on one can bring prospect for the 
other, which is demonstrated markedly in vaccines 
and antibiotics for MM.  

Immunodeficiency in MM 
The dysfunctional replication of plasma cells, 
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chemotherapy-induced granulocytopenia and the 
high-dose administration of dexamethasone are all 
responsible for immunodeficiency, which involves in 
tumor evasion from the immune response.[2,6–9] 
Both humoral immunity and cellular immunity are 
impaired in concordance with abnormities of B cell, T 
cell, dendritic cell (DC) and natural killer (NK) cell et 
al., in terms of quantity and function[2,10–16] It was 
demonstrated that serum β-2-microglobulin was 
significantly higher in the MM subgroup with a high 
ratio of CD4+ cells to CD8+ cells in peripheral blood 
than in the subgroup with a normal ratio (P < 
0.05).[12] Indeed, MM with a dismal long-term 
survival was accompanied with less-proliferated 
cytotoxic T-cell clones, lower Th17 cells and higher 
T-regulatory cells (Tregs).[17] Besides, DC function 
could be inhibited by profound immune dysregula-
tions of various immune agents including TGF-β, 
IL-10, IL-6, PGE2 within myeloma microenvironment. 
[18,19] Abused activation of programmed cell death 
protein-1 (PD-1) and cytotoxic T-lymphocyte associa-
ted protein 4 (CTLA-4) immune checkpoints also 
caused undesirable immunodeficiency in MM.[20,21] 
B7-H1 expression was upregulated on tumor cells, 
thus inducing T-cell suppression, tumor progression 
and drug resistance.[22,23] As for CTLA-4, it has been 
discovered in a polish cohort of 580 people that 
CTLA-4 gene polymorphism is relevant to suscepti-
bility to MM. The frequency of CTLA-4c.49A>G[G] 
allele was much higher in the MM patients than in the 
controls (p=0.03, OR=1.31, CI=1.03-1.68).[24] CTLA-4 
polymorphisms also have influence on outcomes of 
treatments involving bortezomib, the mechanism of 
which still waits to be fully elucidated.[25]  

In abridged, we enumerate major immunodefici-
ency mechanisms in MM of recorded clinical signifi-
cance: (1) abnormal expression of specific antigens on 
malignant cells;(2) enhanced expression of immune 
checkpoint inhibitory ligands by plasma cells;(3) 
T-cell abnormities;(4) dendritic cell dysfunctions;(5) 
immune microenvironment dysfunctions. Congruen-
tly, several therapeutic strategies targeting immuno-
deficiency are later addressed. 

Immunotherapy 
The fundamental basis for immunotherapy is to 

ameliorate the impaired immunity in MM through 
simulation or immune supplement. Apart from 
Arkansas total therapy protocols,[26] allogeneic stem 
cell transplantation (allo-SCT) is generally believed to 
be the only curative therapy for MM, despite the fact 
that high treatment-related mortality limits its 
use.[17,27,28] Notion that MM regresses by immune 
enhancement strongly justifies the application of 
immunotherapy.[29] In accordance with the 

immunodeficiency mechanisms, various treatments 
are subsequently elucidated to address this dilemma: 
(1) monoclonal antibodies (mAbs);(2) immune 
checkpoints inhibitors;(3) affinity-enhanced T cell 
therapies and chimeric antigen receptor T cell 
therapies;(4) DC vaccines; (5) immunomodulatory 
drugs.  

Monoclonal Antibody  
The monoclonal antibodies (mAbs) are among 

the most promising therapies for patients with 
hematological or solid malignancies.[30] mAbs take 
advantage of the unique immunoglobulin expression 
by malignant cells. They specifically target functional 
surface antigens or immune agents, leading to 
different mechanisms that keep tumor at bay. The key 
step toward monoclonal antibody treatment is to 
identify suitable surface antigens. Ideally, a target for 
mAb therapy should be exclusively or predominantly 
expressed on most MM cells or other target cells in 
order to minimize substantial on-target off-tissue 
toxicity and maximize efficacy.  

MAbs have shown encouraging ability to 
overcome MM resistance after traditional therapies. 
[31] Intriguingly, the anti-CD38 mAb daratumumab 
and anti-CS1 mAb elotuzumab were approved by 
FDA as breakthrough drugs for the treatment of MM 
in 2015. [32,33] Daratumumab (HuMax-CD38, Gen-
mab) is a human IgG1κ mAb that binds to the CD38 
epitope on MM cells.[34] Main anti-myeloma 
mechanisms of daratumumab exhibited in preclinical 
studies include antibody-dependent cellular cytotoxi-
city (ADCC), omplement-dependent cytotoxicity 
(CDC), antibody-dependent cellular phagocytosis 
(ADCP) and cross- linking apoptosis.[35,36] In 
CASTOR phase 3 Trial (NCT02136134), the addition 
of daratumumab to the regimen of bortezomib and 
dexamethasone resulted in a significantly higher rate 
of 12-month progression-free survival (60.7% vs. 
26.9%), as was the rate of overall response (82.9% vs. 
63.2%, P<0.001).[37] In another phase 3 trial POLLUX 
(NCT02076009), the addition of daratumumab to the 
regimen of lenalidomide and dexamethasone demo-
nstrated a significantly higher rate of overall response 
among patients with relapsed or refractory MM 
(92.9% vs. 76.4%, P<0.001).[38] Another mAb target, 
CS1, a member of the CD2 subset of immunoglobulin 
superfamily,[39] was expressed on NK cells and in 
more than 97% of MM patients.[40] The first-in-class 
humanized IgG1 anti-CS1 mAb, elotuzumab, was 
demonstrated to mediate ADCC, inhibit CS1- 
mediated MM cell adhesion and directly enhance NK 
cell cytotoxicity in the bone marrow milieu.[40,41] A 
combination of mAb elotuzumab, lenalidomide and 
dexamethasone was reported to induce an 
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over-12-month progression-free survival in 68% 
patients with relapsed or refractory MM, as compared 
to 57% in patients who received only lenalidomide 
and dexamethasone. As for 24-month progression free 
survival, the rates were 41% and 27%, respectively. 
Incidence of infusion reaction was 10%, with 29 of 33 
patients under grade 2.[42] Some of the most 
promising antigens and monoclonal antibodies for 
MM along with their mechanisms and clinical 
applications are described in this review. (see Table 1) 

Immune Checkpoint Inhibitor 
Immune checkpoints refer to an immune 

regulatory system which plays a crucial role in tumor 
immune evasion. CTLA-4 and PD-1 are both immune 
checkpoint receptors on T cells. The engagement by 
their cognate ligands B7-1 (CD80)/ B7-2 (CD86) or 
programmed cell death ligand-1 (PD-L1)/ program-
med cell death ligand-1 (PD-L2) on antigen-pres-
enting cells leads to a temporary attenuation of T-cell 
activation.[43–45] Comparisons of the immune check-
points CTLA-4 and PD-1 are generalized in Table 2. 

Thus far, a subset of immune checkpoint 
inhibitors has been approved for therapeutic use in 
certain solid tumors by FDA and CFDA (China Food 
and Drug Administration). However, whether they 
have the same effect in patients with MM is not yet 
clear. As MM is a genetically and immunologically 

complex disease, it is possible that targeting only one 
immune checkpoint pathway will not be sufficient. 
[44] Low expression of PD-1 and CTLA-4, minimal 
numbers of infiltrating T cells and a relatively modest 
mutational burden are probably relevant to patients’ 
suboptimal response to checkpoint inhibitors in MM 
compared with solid tumors.[46–48] The objective 
response rate of pembrolizumab, pomalidomide and 
dexamethasone was 50% in 24 patients with relapsed 
or refractory MM (NCT02289222).[49] What’s more, a 
phase III randomized trial of pembrolizumab (MK- 
3475), lenalidomide and dexamethasone is ongoing 
involving 640 participants with newly diagnosed and 
treatment-naïve MM who are ineligible for autolog-
ous stem cell transplantation (ASCT) (NCT02579863). 
[50] In the same trial, adverse events grade 3 to 4 
including hematologic toxicities, hyperglycemia and 
pneumonia were observed in 40% patients who 
received 28-day cycles of pembrolizumab and 
dexamethasone.[51] The combination of pidilizumab 
and lenalidomide has demonstrated acceptable safety 
results in 12 patients with relapsed or refractory 
MM.[52] Generally speaking, checkpoints inhibitors 
are enticing immunotherapies but unlikely to be a 
panacea across MM, and much remains to be done in 
order to maximize their therapeutic potential. (see 
Table 1) 

 

Table 1. Promising targets (antigens) for CARTs and monoclonal antibodies in multiple myeloma 

Surface antigens Monoclonal antibodies/ligands Relevant agents and pathways Preclinical 
CARTs  

Clinical 
CARTs  

References 

CD19 _ _ YES YES [104,105] 
CD20 rituximab, ibritumomab, tositumomab PAX5/BSAP _ _ [106,107] 
CD38 daratumumab, SAR650984, MOR202 CDC, ADCC, ADCP, apoptosis YES _ [32–36,38,108,109] 
CD40 G28-5, lucatumumab (HCD122), dacetuzumab 

(SGN-40), 5C11, 
IL-6, TNF, PI3K / AKT, VEGF _ _ [110–113] 

CD44 (serglycin proteoglycan) ARH460-16-2 IL-6, serglycin, IGF-1 YES _ [114–117] 
CD54 (ICAM-1) BI-505, TP15-Fc Mac-1, LFA-1 _ _ [118–121] 
CD56 (NCAM-1, Leu-19) HuN901, lorvatuzumab mertansine (IMGN901) several cytokines YES _ [122,123] 
CD74 milatuzumab (hLL1), IMMU-110 HLA-DR, NF-κB, IL-8 _ _ [124–127] 
CD81 _ PERK, IRE1, X-box binding 

protein-1 
_ _ [128] 

CD138 (syndecan-1) B-B4, BT062, 4B3 NF-κB, STAT3, Dll1/Notch YES YES [129–135] 
CD200 (MOX1, OX-2, MRC) samalizumab, ALXN6000  β2 microglobulin, IGF-1R, ERK _ _ [136,137] 
CD221 (IGF-1R) IGF-1 (natural), AVE1642, linsitinib (OSI-906) tyrosine kinase _ _ [138] 
BCMA (CD269, TNFRSF17) EM801, GSK2857916 BAFF (TNFSF13B), APRIL 

(TNFSF13) 
YES YES [58,139–144] 

CD274 (PD-L1, B7-H1)  MSB0010718C, atezolizumab, MEDI4716 PD-1 _ _ [46,145–148] 
CD317 (HM1-24, BST2) GFTKO-AHM ADCC _ _ [149] 
CD319 (SLAMF-7, CS1, 19A24) elotuzumab (HuLuc63, empliciti) ADCC, CS1 YES _ [32,39–41] 
IL-6 siltuximab Ras, IL-6 _ _ [150–152] 
RANKL denosumab Serum C-terminal telopeptide of 

type 1 collagen 
_ _ [153] 

Dickkopf-1 (DKK1) BHQ880 IL-6, Wnt signaling _ _ [154–156] 
PD-1 (CD279) nivolumab (MDX-1106), pembrolizumab 

(MK-3475), pidilizumab (CT-011) 
PD-L1 YES YES [47,157–163] 

CARTs: chimeric antigen receptor T cells; CD: cluster of differentiation; ICAM-1: intercellular cell adhesion molecule-1; NCAM-1: neural cell adhesion molecule-1; IGF-1R: 
insulin-like growth factor-1 receptor; BCMA: B cell maturation antigen; PD-L1: programmed cell death ligand-1; B7-H1: B7 homolog-1; SLAMF-7: signaling lymphocytic 
activation molecule family member-7; IL: interleukin; RANKL: receptor activator of nuclear factor-κB ligand; PD-1: programmed cell death protein-1; IGF-1: insulin-like 
growth factor-1; CDC: complement-dependent cytotoxicity; ADCC: antibody-dependent cellular cytotoxicity; ADCP: antibody-dependent cellular phagocytosis; TNF: tumor 
necrosis factor; HLA: human lymphocyte antigen; STAT3: signal transducers and activators of transcription-3; ERK: extracellular regulated protein kinase; BAFF: B-cell 
activating factor. 
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Table 2. Comparison of CTLA-4 and PD-1 receptors 

receptor CTLA-4 PD-1 
ligands B7-1/B7-2 PD-L1/PD-L2 
mechanism competitive inhibition of CD28 costimulatory pathway CD28 signaling regulation 
expression on Tregs highly expressed dispensable 
involved immune phase priming phase of T cell activation chronic antigenic stimulation 
other pathways - BCR signaling inhibition by recruiting SHP-2 
clinical application in MM - in combined therapy 
other clinical applications gastrointestinal, genitourinary cancers, melanoma broad 

  
T-cell Therapy 

T-cell therapies fall into two major categories: 
non–gene-modified strategies and gene-modified 
strategies, or affinity-enhanced and chimeric antigen 
receptor T cell therapies. Those therapies rely on 
affinity-enhanced T-cell receptors (TCRs) or chimeric 
antigen receptors (CARs) to recognize specific 
antigens.  

Affinity-enhanced T-cell Therapy 
Observations that affinity-enhanced T cells are 

more likely to be found close to tumor lay a basis for 
affinity-enhanced T-cell therapies. By selection and 
expansion of marrow-infiltrating or genetically engin-
eered T cells, the functional avidity between TCRs and 
tumor antigens was enhanced.[53] Unlike chimeric 
antigen receptor T cell therapies (CARTs), affinity- 
enhanced therapies are human leucocyte antigen 
(HLA)-dependent and highly potentiated to recognize 
intracellular peptides. Nevertheless, affinity-enhanc-
ed therapies may result in HLA downregulation and 
deleterious off-target effects.[54, 55] 

In NCT01245673, 27 patients with active and/or 
high-risk MM received the subcutaneous injection of 
MAGE-A3 Trojan peptide vaccine, poly-ICLC along 
with granulocyte macrophage colony-stimulating 
factor (GM-CSF) before ASCT. They had steady-state 
apheresis to have T cells collected 10 days after the 
injection. These T cells were depleted of monocytes, 
expanded, harvested and infused back to patients. 
High frequencies of immune responses were observed 
in patients.[56] 

Chimeric Antigen Receptor T-cell Therapy 
CARs are genetically engineered receptor- or 

ligand-based proteins exhibiting high, HLA-indepen-
dent specificity and tumor cytotoxicity. A chimeric 
antigen receptor normally consists of an extracellular 
single-chain variable fragment derived from mAbs or 
a domain derived from native receptors, a spacer 
region, a transmembrane domain, a tyrosine-based 
activation domain (usually CD3 ζ) (1st generation) , 
and one (2st generation) or two (3st generation) 
intracellular costimulatory domains (e.g., CD28, 
OX40, ICOS or CD137).[57]  

CARTs are the second step in T-cell engineering 
and there are currently satisfying early-stage clinical 
results in MM. Several targets have been under 
exploration, with B cell maturation antigen (BCMA) 
CARTs among the most promising.[58, 59] BCMA 
CARTs were both efficient and safe in heavily 
pre-treated relapsed or refractory MM according to a 
latest report of 16 patients. The rate of eradication of 
extensive bone and soft-tissue myeloma was 81%, 
very good partial response or complete response 63%, 
with severe but reversible toxicities.[60] However, one 
roadblock in the development of CARTs could be the 
lack of ideal targets. Ideally, targets for CART should 
be expressed on the surface of all MM cells but no 
normal tissues in most MM patients in order to avoid 
on-target off-tissue toxicity and maximize effective-
ness.[61] Clinical and preclinical applications of the 
most promising CARTs targeting BCMA, CD19, 
CD38, CD138 et al. are listed in Table 1. 

DC Vaccine  
Vaccines in MM share anti-pathogen as well as 

direct anti-tumor potency. In the CAPiTA random-
ized double-blind clinical trial of 84,496 participants 
of age 65 years and older in the Netherlands 
(NCT00744263), the 13-valent pneumococcal conju-
gate vaccine efficacy of 45.56% was demonstrated for 
the first episode vaccine-type pneumococcal 
community-acquired pneumonia. Vaccination could 
also assist in the prevention of common etiologies for 
recurrent infections in MM patients, such as 
influenza, varicella, meningitis.[62] Simultaneously, 
vaccines became attractive in the field of cancer 
immunotherapy. Although mAbs have demonstrated 
potency in targeting malignant cells in MM, the 
absence of immune memory limits the durability of 
remissions, under the circumstances of which we are 
anticipating a broader application in vaccines as 
immunotherapies. Nevertheless, a significant draw-
back of ordinary anti-tumor vaccines is their efficacy 
instability.[63] As already emphasized, this is 
partially because antigen presenting cells, in 
particular DCs, upon which costimulatory molecules 
are expressed to ensure satisfactory immune 
response, are insufficient both in number and 
function.[64] In order to circumvent this problem, the 
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application of DC vaccines and several immune 
adjuvants is suggested.[65] 

One research revealed that human dickkopf-1 
and human heat shock protein-70 fusion vaccine 
could effectively elicit tumor apoptosis and prolonged 
survival in murine MM.[66] With regard to DC 
vaccines, evaluated antigen loading strategies include 
peptide based vaccines, genetically engineered anti-
gen, viral/fungal vectors expressing cancer antigens 
and malignant cell apoptotic bodies,[67] while 
antigens of interest include mucin-1 (MUC1), New 
York-esophageal squamous cell carcinoma (NY-ESO- 
1), melanoma antigen family (MAGE)-A3, MAGE-C1, 
and receptor for hyaluronan-mediated motility 
receptor (RHAMM).[68,69] In a phase II clinical study, 
idiotype immunoglobulin-loaded DC vaccines were 
administered to patients intradermally. As a consequ-
ence, lower incidence of cumulative progression was 
observed 12 months after the first vaccination (p= 
0.099).[70] 

Immunomodulatory Drug 
Immunomodulatory drugs (IMiDs) (i.e., thalido-

mide (α-N-phthalimido-glutarimide), lenalidomide 
(CC-5013), and pomalidomide (CC-4047)) are analo-
gues with a multitude of direct and indirect anti- 
myeloma effects, including potent anti-angiogenesis, 
ADCC, immune modulatory and anti-inflammatory 
properties.[71,72] A leading mechanism of IMiDs in 
MM is the degradation of essential lymphoid 
transcription factors IKZF1and IKZF3 by the 
CRBN-CRL4 ubiquitin ligase.[73] In combination with 
dexamethasone or proteasome inhibitors, IMiDs 
represents a paradigm shift in the treatment of MM 
and are currently used as frontline therapy.[74] In 
year 2006, both in combination with dexamethasone, 
lenalidomide was approved for relapsed or refractory 
MM and thalidomide was approved for newly 
diagnosed MM by FDA. The FDA approval for 
pomalidomide in relapsed or refractory MM as a third 
line therapy was not issued until year 2013.[75] IMiDs 
are all contraindicated in pregnancy owing to proven 
teratogenic effects (e.g., phocomelia).[76] Other 
common side effects of IMiDs include fatigue, 
myelosuppression, peripheral neuropathy and 
thrombosis.[77] 

Antibiotics and Anti-viral Treatment  
Infection and Anti-infective Treatment  

A direct consequence of immunodeficiency is the 
high risk of infection. The incidence rate of infectious 
episodes in MM was about 10 times higher than other 
hospitalized patients and responsible for 62.5% of 
early mortality in elderly patients with MM.[78,79] 
The infectious and re-infectious rate was 17.9% and 

41.9% in 260 hospitalized patients. Risk factors of 
infection for those patients were female, Durie- 
Salmon stage IIIB, elevated serum creatinine, 
neutropenia, poor general condition and catheter 
indwelling.[80] 58% of MM patients developed 
respiratory infections following allo-SCT in the first 12 
months after diagnosis.[81] 

In this context, preemptive administration of 
antibiotics has been somehow widely applied in MM. 
Daily administration of acyclovir, valacyclovir or 
famciclovir proved to be effective in preventing 
herpes zoster virus in MM patients treated with 
bortezomib.[82] For ASCT recipients, prophylactic 
levofloxacin led to a 27% decrease in blood stream 
infection as well as a 31% decrease in fever and 
neutropenia.[83] However, the clinical significance of 
prophylactic antibiotic was limited due to increasing 
emergence of resistant strains, toxicity, drug interac-
tions and suspected antagonistic effects. As such, 
antibiotics should only be prescribed on “high- 
infection-rate circumstances” such as induction 
therapy, progression or refractoriness.[84] What’s 
more, previous data only suggest the validity of early 
prophylactic antibiotic use (about 2 months within the 
induction therapy) in MM patients.[85,86] Addition-
ally, the efficacy of prophylactic gamma globulin for 
MM was not verified and the reduction of the number 
of malignant cells was cited as a most effective way of 
improving host defense.[87] 

Infection and Tumor Progression 
The scenario that many patients with MM have 

severe bacterial infections shortly before or after 
diagnosis [88–90] and the significant role of certain 
viruses in MM pathogenesis reveal a link between 
infection and tumor progression.[91,92] Pathogenic 
microorganisms expressing pathogen-associated mol-
ecular patterns can trigger toll-like receptors on MM 
cells, accelerate MM cell growth and prevent 
chemotherapy-induced apoptosis. [93–95] What’s 
more, by promoting the secretion of immune agents, 
infections can accelerate tumor progression.[19,96,97] 
In this perspective, by promptly eradicating the 
pathogenic microorganisms and suppressing the 
pro-inflammatory immune milieu, antibiotics can 
theoretically represent both anti-tumor and anti- 
infection properties.  

In fact, it was revealed in vitro in 2016 that the 
anti-infective chloramphenicol could induce MM cell 
apoptosis in a dose-relevant and time-dependent 
manner.[98] Simultaneously targeting two prominent 
intracellular protein degradation systems of the 
ubiquitin-proteasome system and the autophagy- 
lysosome system, macrolide antibiotics led to endo-
plasmic reticulum stress mediated and pro-apoptotic 
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transcription factor CADD153 induced apoptosis in 
MM cell lines.[99] Besides, thalidomide and 
clarithromycin were discovered to synergistically 
downregulate TNF-α and IL-6 secretion probably via 
ERK1/2 and AKT inhibition.[100] As previously 
mentioned, antibiotics and other anti-infectious 
agents (i.e., vaccines, immunoglobulin, anti-viral 
drugs) have been successfully incorporated into MM 
regimens. Antibiotics suggest a synergistic action 
with other MM therapies. The combination of clarith-
romycin, low-dose thalidomide and dexamethasone 
(BLT-D) was of efficacy in patients with MM.[101] 
Another regimen of clarithromycin, lenalidomide, 
and dexamethasone (BiRD) also demonstrated 
effective in newly diagnosed MM.[102] Apart from 
antibiotics, for MM patients who underwent 
melphalan-based ASCT and developed ongoing 
parvovirus B19 infection, prophylactic intravenous 
immunoglobulin administration permitted prompt 
antineoplastic efficacy.[103] 

Conclusions and Future Directions 
Scientific progress is revolutionizing MM 

treatment, and development in immunotherapies as 
well as anti-infectious agents might thoroughly 
resolve the puzzle of immunodeficiency in near 
future. Promising immunotherapies involving mAbs, 
immune checkpoints inhibitors, therapeutic T-cells, 
vaccines/DC vaccines targeting specific immune 
mechanisms are currently under clinical and pre- 
clinical explorations. Rational combinations of 
immunotherapies, allo-SCT, chemotherapy, and 
antibiotics are ongoing to prolong progression-free 
survival with minimal toxicity. Further, some 
antibiotics such as clarithromycin and levofloxacin 
have been incorporated into MM treatment, and were 
of efficacy in prophylactic use. 

Multiple myeloma is a most captivating example 
of “immune cancer”, whereas in the authors’ perspec-
tive, some immune signatures of MM still wait to be 
thoroughly described: (1) better targets in the 
mechanisms of immunodeficiency for MM diagnosis, 
prognosis, prophylaxis treatment and immunothera-
pies; (2) the precise correlation between peripheral 
immunity, microenvironment and tumor progression: 
is it adverse or favorable? Is it stage-related? What’s 
the perfect timing for immunotherapies and 
antibiotics? (3) the distinct role of infection in different 
stages of MM and the clinical significance of 
prophylactic antibiotics.  

Undoubtedly, combined therapies integrated 
with optimized modern clinical management will 
continue to deliver better anticipations for patients in 
years to come. With more biomarkers for pre-clinical 
and clinical myeloma to be defined, more emphasis 

will be laid on prophylaxis or early treatment and 
precision medicine. Hopefully, with collaborative 
efforts from oncologists, orthopedists, pathologists, 
pharmacologists, specialized nurses and the patients, 
the goal of MM treatment will eventually convert 
from “improving the length and quality of lives, 
achieving long-term disease-free survival”, to 
ultimate cure of the disease.  
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