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Deep learning-based high-accuracy quantitation for
lumbar intervertebral disc degeneration from MRI
Hua-Dong Zheng 1,2,9, Yue-Li Sun 3,4,5,9, De-Wei Kong3, Meng-Chen Yin3,5, Jiang Chen6, Yong-Peng Lin7,

Xue-Feng Ma8, Hong-Shen Wang7, Guang-Jie Yuan1,2, Min Yao3,4,5, Xue-Jun Cui3,4,5, Ying-Zhong Tian 1,2✉ &

Yong-Jun Wang 3,4,5✉

To help doctors and patients evaluate lumbar intervertebral disc degeneration (IVDD)

accurately and efficiently, we propose a segmentation network and a quantitation method for

IVDD from T2MRI. A semantic segmentation network (BianqueNet) composed of three

innovative modules achieves high-precision segmentation of IVDD-related regions. A

quantitative method is used to calculate the signal intensity and geometric features of IVDD.

Manual measurements have excellent agreement with automatic calculations, but the latter

have better repeatability and efficiency. We investigate the relationship between IVDD

parameters and demographic information (age, gender, position and IVDD grade) in a large

population. Considering these parameters present strong correlation with IVDD grade, we

establish a quantitative criterion for IVDD. This fully automated quantitation system for IVDD

may provide more precise information for clinical practice, clinical trials, and mechanism

investigation. It also would increase the number of patients that can be monitored.
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G lobally, as a major public health problem, low back pain
has been the leading cause of disability worldwide for the
past 30 years, with a burden on individuals, healthcare,

and society1. IVD herniation, spinal stenosis, or ossification of the
facets may pinch nerves, which may contribute to worsening LBP
disease states. As an early pathological phenotype of LBP, IVD
degeneration is necessary but hardly being quantified. IVD
comprises a gel-like nucleus pulposus (NP), collagenous annulus-
fibrosis (AF) layers, and ring-like cartilaginous endplates (EP),
playing an important role in mechanical transmitting loads from
body weight and daily activity through the spine column2.

The extracellular matrix such as collagen and aggrecan provide
tensile strength and osmotic-pressure regulation3,4, which may
degrade with aging. Accumulated compressive loads may accel-
erate this progressive process in IVD degeneration5–7, which may
lead to LBP with increased inflammation8, nerve compression9,
and release of pain factors4. For IVD degeneration, T2-weighted
(T2W) MRI is excellent at detecting the morphologic changes,
including height loss and water-intensity loss. Pfirrmann et al.
developed a grading system for IVD degeneration according to
signal intensity and geometric features, which is one of the most
accepted around the world10. However, it is highly dependent on
the level of reader expertise, which showed only moderate
interobserver agreement between readers in most studies5, and
the qualitative grading method cannot accurately reflect pro-
gressive changes in IVD-degeneration process11. Some measured
IVD quantitative parameters were reported in early
researches12–17, which showed a better capacity to reflect the
aging effect of IVD degeneration with relatively lower measure-
ment error, thereby improving the quality of research on inter-
vertebral disc degeneration18. However, the consistency and
efficiency are not good enough to widely use, due to the need in
manually segmenting the relevant area of IVDs and marking the
corresponding feature points, as well as the inevitable subjective
error and the limitation of the grayscale discrimination ability of
human eyes. To some extent, researches on etiology and patho-
genesis of IVD degeneration are progressing slowly with the
limitation of measurement methods16. In addition, many studies
reported the relationship between IVD height and demographic
factors such as age and gender19–23. Although Shao et al.17

established a linear model of IVD height-related parameters, the
relationships between IVD height and other factors were not
unified yet.

With the development of machine learning and deep learning,
many studies regarded IVD-degeneration grading as a classifi-
cation task. From the “shallow learning” task of manually making
the degenerative features of the IVD24–27, to the “deep learning”
task of using the entire lumbar IVD bounding box to let the
convolutional network learn the degenerative features by itself28,
the accuracy of these classification methods is comparable to that
of radiology experts. However, these methods still require some
manual input or complex detection algorithms, and hardly reflect
progressive IVD-degeneration process. Meanwhile, many studies
used manual segmentation methods to achieve quantitative ana-
lysis of the signal intensity and height characteristics of
IVDs13,14,16. There has also been some studies on the quantitative
measurement of intervertebral discs based on deep learning, but
they did not use quantitative data to evaluate IVD degeneration,
which may cause subjective bias and limit its clinical
application18,29. Although the U-Net semantic segmentation
model for the first time to achieve automatic segmentation and
feature extraction of IVD-related regions18, they did not reveal
the IVD-degeneration process from their extracted geometric
parameters.

Here, we developed an improved deeplabv3+ segmentation
network with newly designed modules and a quantitative method

for IVD degeneration. After evaluating model performance in
segmentation accuracy, quantitation consistency, and application
compatibility, a baseline characteristic of IVD signal intensity and
geometric morphology among different gender and age and
lumbar segments was established by extracting over 1000 MR
images of a large patient population at different institutions in
China, to develop a quantitative IVD-degeneration structured
report. A diagram of this workflow is illustrated in Fig. 1.

Result
Segmentation-performance improvement with modelus (DFE,
ST-SC, and MFF). Figure 2 and Table 1 depict segmentation
performance of the BianqueNet model with or without modelus
(DFE, ST-SC, and MFF). The segmentation performance of
deeplabv3+ network without any modelus showed a moderate
accuracy, whose mDice and mIoU were 94.45% and 89.88% for
the whole lumbar spine, 96.71% and 93.66% for vertebral body,
and 94.38% and 89.43% for IVD. The segmentation performance
of BianqueNet showed a better accuracy, whose mDice and mIoU
were 94.70% and 90.35% for the whole lumbar spine, 97.03% and
94.25% for vertebral body, and 94.80% and 90.19% for IVD,
indicating that segmentation performance of deeplabv3+ com-
bined with the three modules (DFE, ST-SC, and MFF) has been
improved significantly. Even in the smaller sample Data Set B,
BianqueNet also showed good segmentation performance.

Notably, our model’s segmentation contained more accurate
and detailed structural information in IVDs and vertebral bodies
in case 1 and case 2, while better discrimination in the boundary
of IVD and vertebral body can be seen in case 3 (Fig. 2). The
enhancement of the segmentation performance can significantly
improve the accuracy of the corner detection for subsequent IVD-
degeneration calculation, as shown in the feature-point part of
Fig. 2.

Segmentation performance in clinical sites with different
magnetic field strength. To test whether the model trained with
MR images from Longhua Hospital (Data Set A) is applicable for
other MR images from different hospitals, 60 MR images from
other hospitals (Data Set C) and 80 MR images from Longhua
Hospital (Data Set A) were randomly selected and segmented
with the researcher and BianqueNet. Supplementary Table 1
depicts segmentation performance around these four hospitals.
The segmentation performance for MR image from Dongzhimen
Hospital was acceptably moderate, while those for other two
hospitals showed no significant difference with the training set
(Longhua Hospital).

Quantitation performance in different MR images with dif-
ferent resolutions. A total of 230 IVDs and 276 vertebral bodies
of 46 subjects were segmented after resolution had been adjusted
from 320*320 to 512*512. The results showed a good consistency
in using different parameter-calculation algorithms for MR
images with different resolutions. Among them, the normalized
IVD geometric parameters (DHI and HDR) have extremely high
ICC values, which are 0.958 (p= 0.000) and 0.956 (p= 0.000),
respectively, while the normalized IVD signal intensity (ΔSI)
showed high ICC value of 0.874 (p= 0.000), as shown in Sup-
plementary Table 2. The reason why we set MR image resolution
of 512*512 for final model input and model A for the final model
is because a large proportion of images present resolution of
512*512 among all collected MR images. Considering that using
interpolation method may miss or change information from the
image by reducing or enlarging image sizes, we finally chose the
middle-image resolution of 512*512 to retain the original infor-
mation of MR images at the most extent.
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Comparison with automatic quantitation and manual mea-
surement. For comparison, the mean values of DH, DHI, and
HDR were set as control to test model quantitation performance
(Table 2). Thanks to carefully measuring all the IVDs by two
senior residents, the intraobserver agreement between the two
residents’ measurements on the 75 IVDs in 15 MR images pre-
sents ICC value of 0. 944 for DH (95% CI: 0.912, 0.964), 0.913 for
DHI (95% CI: 0.862, 0.945), and 0.881 for HDR (95% CI: 0.730,
0.939), indicating a good interobserver agreement in all the IVD-
related area measurements and index calculation between the two
senior residents. Subsequently, mean of their measurements, as a
control, was used to compare with the results extracted by the
proposed network. There was moderate-to-good intraobserver
agreement between machine and manual measurements with ICC
value of 0.954 for DH (95% CI: 0.928, 0.971), 0.908 for DHI (95%
CI: 0.856, 0.941), and 0.917 for HDR (95% CI: 0.810, 0.957).

Compared with clinical radiologists and residents, the model
provided highly repeatable and accurate IVD geometric measure-
ments. In particular, the consistency in VB area-measured results
between model and residents was the highest (ICC: 0.964), which
may accord with segmentation validation in these areas (Fig. 2).
The consistency in IVD area-measured results between model
and residents was relatively lower because area for average IVD
height calculation was selected with residents’ own discrimination
(Supplementary Fig. 1), while it was detected with featured points
by model calculation (Fig. 6h). For calculated parameters (DH,
DHI, and HDR), both measurement error and selection
subjectivity may affect consistency between model and residents,
but our evaluation result still presents acceptable good perfor-
mance (ICC > 0.9).

Model performance in patient subgroups by gender, age, and
segments. After screening 1508 MRI images in 4 sites around
China, a total of 1051 individuals were collected, in which there
are 73 excluded for unaligned outlines (diagnosed as lumbar
spondylolisthesis), 45 excluded for abnormal signal intensity
distribution (diagnosed as spine tumors), 364 excluded for irre-
gular structures (diagnosed as IVD herniation or vertebral body
ossification), and 144 excluded for imaging quality (segmentation
results and corner detection did not meet the requirements of
parameter calculation). The demographic information (age and
gender) distributed evenly as shown in Supplementary Table 3,
which was integrated to conduct correlation analysis with IVD
parameters.

Supplementary Fig. 2 and Table 3 show comprehensive
baseline characteristics of IVD parameters in a larger population.
ΔSI in IVDs decreased with age, while DH of IVDs increased with
age, reaching peak at the age of 50–60 (P < 0.01). There is no
significant difference between male and female in ΔSI in IVDs,
while DH, DHI, and HDR of IVDs were significantly higher in
males than those in females (P < 0.01). In addition, DH, DHI, and
HDR were significantly higher in lower segmental IVDs (L3–L4,
L4–L5 and L5–S1) than upper ones (L1–L2 and L2–L3), and disc
height of L4–L5 IVDs was the highest (P < 0.01). Through
multivariate linear-regression analysis (MLR), we investigated the
distribution of IVD geometric parameters and signal intensity of
each segment in a large population with different age and gender
(shown in Table 5). Variables such as gender and segments have
significant correlations with ΔSI, while variables such as age,
gender, and segments have significant correlations with geometric
parameters.

Fig. 1 A flowchart of the study process from training and testing phase to data analysis phase with BianqueNet. Mid-sagittal T2W lumbar MR images
exported into two different resolutions (512*512, 320*320) are used to train and test two models (Model A, Model B). After segmentation accuracy
evaluation, IVD parameters are quantified based on IVD-related area. As Model A shows good performance on quantitation consistency for MR images
with various resolutions, it is used to establish baseline characteristic with different IVD degeneration among 5255 IVDs. Workflow diagram at the bottom
presents the segmentation network, IVD quantitation method, and IVD degeneration determination.
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Validity in IVD-degeneration grading performance. Consider-
ing height decrease and water-content loss with IVD degenera-
tion, a regression analysis was conducted to investigate the
correlation between IVD parameters and degeneration grading
(ΔSI with corresponding grading (1, 2, 3, 4, and (5–8)), geometric

parameters (DH, DHI, and HDR) with corresponding grading
((1–5), 6, 7 and 8)) in each segment. As shown in Table 4, IVD
parameters showed a good accordance to the modified Pfirrmann
grade.

The result from a stronger correlation between the modified
Pfirrmann grade (1, 2, 3, 4, and (5–8)) and ΔSI (ρ=−0.966,
P= 0.000), which demonstrates that the water content of NP is
decreasing with the whole IVD-degeneration process. Therefore,
specific ranges of ΔSI according to the modified Pfirrmann grade
(1, 2, 3, 4, and (5–8)) were calculated and set as automatic grading
criteria, which are shown in Fig. 3a and Supplementary Table 4.

According to these statistical results, ranges of IVD geometric
parameters and levels of IVD signal intensity for each segment in
these participates of different ages and genders were established
as Chinese population baseline, which is shown in Fig. 3 and
Supplementary Tables 5–8.

Although our method is focused on quantitative measurement
other than degeneration-grade classification, it still presents
strong accordance with manual IVD-degeneration grading
(macroF1: 92.02% and 90.63% in two data sets) by means of
quantifying IVD degeneration, which is shown in Table 5.

Discussion
In this work, we propose an automatic IVD-degeneration quan-
titative method based on deep-learning segmentation, in which a
powerful semantic segmentation network (BianqueNet) was
designed to achieve accurate segmentation with IVD-related areas
from T2W MR images. In the quantitation section, an improved
histogram method was proposed, and automatic calculation
methods were modified to qualify signal intensity and geometric
information of vertebral bodies and IVD. To investigate baseline
characteristics of IVD, this method was used in a large population
to collect IVD geometric parameters (structural collapse) and
signal intensity (water content) with different degeneration grade,
age, and gender. A IVD-degeneration quantitative criteria in
different population subgroups were finally established by cor-
relation analysis and multiple-regression analysis. Finally, the
deviation method was used to achieve the degeneration grading
and quantitative analysis on IVDs.

The deep-learning approach allows the network to perform
lumbar IVD segmentation and parameter quantitation simulta-
neously, which may help doctors and patients obtain more IVD-
degeneration status information from traditional T2W MR ima-
ges. Considering large time-consuming and high internal/external
differences of IVD manual measurement shown in previous
studies, this approach may provide a relatively efficient and
accurate solution in a large population to extract more consistent
IVD parameters and benefit several clinical applications (such as
preventive screening, therapeutic evaluation, decision secondary,
and mechanism investigation).

To provide a valuable diagnosis tool for IVD degeneration,
quantitative-analysis methods may improve currently used qua-
litative classification methods15. Although many IVD quantitative
methods were proposed and developed, the measured IVD
parameters were not accepted and used with limited reliability
and validity12,13,15,30. In this work, based on previous studies,
some appropriate improvement was designed in signal intensity
and geometric information, achieving automatic IVD parameter
extraction by means of the latest deep-learning and image pro-
cessing techniques. The precise segmentation of IVD-related
areas is a key step to achieve the automatic extraction of IVD
parameters. The proposed DFE and MFF modules integrate
multi-scale-rich semantic information to improve the capacity of
scene analysis, which may improve the ability to distinguish
boundaries between vertebral bodies and IVDs. Meanwhile, the

Fig. 2 The segmentation performance of BianqueNet in three typical
cases and the influence of different segmentation accuracy on feature-
point detection and calculation. Segmentation results in case 1 and case 2
indicate that detailed information on the boundaries of vertebral bodies and
IVDs is hard to detect. Segmentation in case 3 shows that irregular
boundaries between the IVD and the vertebral bodies may interrupt
segmentation with slight structural lesions or imaging defects. Feature-
point-extracted results indicate that the precise segmentation may
significantly improve the corner detection on vertebral bodies (red dots),
thereby affecting the calculation results of the characteristic points on IVDs
(green dots).
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Table 1 Segmentation performance of BianqueNet compared with those without other modules (DFE, ST-SC, and MFF) in
test sets.

Model Module Vertebral body IVD Lumbar spine

DFE ST-SC MFN mDice mIoU mDice mIoU mDice mIoU

DeepLabv3+ 0.9671 0.9366 0.9438 0.8943 0.9445 0.8988
DeepLabv3++DFE √ 0.9681 0.9384 0.9444 0.8960 0.9455 0.9006
DeepLabv3++DFE+ ST-SC √ √ 0.9692 0.9405 0.9458 0.8982 0.9468 0.9028
DeepLabv3++DFE+ ST-SC+MFF (BianqueNet) √ √ √ 0.9703 0.9425 0.9480 0.9019 0.9470 0.9035
BianqueNeta √ √ √ 0.9599 0.9255 0.9310 0.8717 0.9345 0.8832

aMeans MR images were from Data Set B, others were from Data Set A, all MR images of the training model were from Longhua Hospital, Shanghai University of TCM.

Table 3 The results of multiple regression analysis of 4SI, DH, DHI, HDR and gender, different ages, and different segments.

measure-ment ΔSI DH DHI HDR

Coef. P > |t | Coef. P > |t | Coef. P > |t | Coef. P > |t |

female −0.0279 0.141 −0.2541 0.000 −0.1121 0.000 0.1115 0.000
male 0.000 / 0.000 / 0.000 / 0.000 /
20–30 0.000 / 0.000 / 0.000 / 0.000 /
30–40 −0.1669 0.000 0.0796 0.003 0.0557 0.057 0.1100 0.000
40–50 −0.3802 0.000 0.1110 0.000 0.0927 0.001 0.0980 0.001
50–60 −0.4826 0.000 0.1612 0.000 0.1577 0.000 0.0440 0.118
60–70 −0.6002 0.000 0.1427 0.000 0.1687 0.000 0.0099 0.730
70–90 −0.5137 0.000 0.0328 0.120 0.0806 0.000 −0.0674 0.006
L1-L2 0.2800 0.000 −0.7181 0.000 −0.6708 0.000 −0.4932 0.000
L2-L3 0.1719 0.000 −0.3832 0.000 −0.4155 0.000 −0.2912 0.000
L3-L4 0.0907 0.000 −0.1593 0.000 −0.1942 0.000 −0.1122 0.000
L4-L5 0.000 / 0.000 / 0.000 / 0.000 /
L5-S1 0.1526 0.000 −0.0520 0.023 −0.0312 0.206 0.1105 0.000
Adj R2 0.4191 0.4739 0.3872 0.3078

95% confidence interval; Multivariate regression analysis of standardized regression coefficients.

Table 4 Correlations between IVD parameters and modified Pfirrmann grading.

lumbar level ΔSI DHa DHI HDR

female male female male female male

L1/L2 −0.966* −0.421* −0.296* −0.304* −0.235* −0.473* −0.397*
L2/L3 −0.481* −0.417* −0.354* −0.398* −0.575* −0.455*
L3/L4 −0.639* −0.470* −0.530* −0.443* −0.626* −0.539*
L4/L5 −0.656* −0.696* −0.560* −0.665* −0.709* −0.758*
L5/S1 −0.701* −0.687* −0.641* −0.664* −0.744* −0.778*

ρ, Spearman rank correlation coefficients.
*at the p < 0.01 level (two-tailed), the correlation is significant.
aDH is the only parameter that is not standardized, while ΔSI can be applied to MRI at different centers, and DHI and HDR can be applied to different types of imaging means and physical measurements.

Table 2 Consistency analysis of IVD parameters measurements between model and residents.

Intraclass correlationa Model vs residents Resident A vs resident B

ICCb 95%CI ICCb 95%CI

IVD geometric measurements VB area 0.964*** (0.933, 0.979) 0.952*** (0.912, 0.972)
IVD area 0.934*** (0.785, 0.971) 0.916*** (0.763, 0.961)
DH 0.954*** (0.928, 0.971) 0.944*** (0.912, 0.964)
DHI 0.908*** (0.856, 0.941) 0.913*** (0.862, 0.945)
HDR 0.917*** (0.810, 0.957) 0.881*** (0.730, 0.939)

aType A intraclass correlation coefficients using an absolute agreement definition.
bThe estimator is the same, whether the interaction effect is present or not. Two-way mixed effects model where people effects are random and measures effects are fixed. ICC, intraclass correlation
coefficient; 95% CI, 95% confidence interval. ***, P < 0.001.
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proposed ST-SC module can increase the focus on target infor-
mation in different spatial domains, providing more accurate and
fine-grained structural information for the upsampling path, to
enhance the model obtaining more accurate and detailed contour
information of IVDs and vertebral bodies. Notably, the trained
model has been validated among additional data sets from other
three hospitals, demonstrating that BianqueNet may perform
consistency segmentation on MR images from different
machines.

A normalized processing was added to improve general per-
formance and application, by optimizing the IVD histogram

analysis method. Benefiting from powerful segmentation perfor-
mance of BianqueNet, our proposed IVD quantitative method
may be able to precisely detect angle points of vertebral bodies
and rapidly calculate feature points of IVDs, thus achieving an
automatic IVD area-based quantitation in the first time. In
addition, consistency evaluation indicated no significant differ-
ence between automated approach and senior radiologists/
orthopedic residents’ measurements.

The normalized ΔSI showed excellent linear correlation with
IVD degeneration (R=−0.966, P= 0.000), suggesting that IVD
histogram analysis is a suitable tool for objective and continuous

Fig. 3 Baseline characteristics of IVD parameters in geometric and signal intensity. The mean and standard deviation (σ) of the ΔSI of each of the
modified Pfirrmann grading system (levels 1, 2, 3, 4, and 5) were calculated from Dataset C, which is used to quantify IVD degeneration (a), ΔSI (b), DH
(c), DHI (d), and HDR (e) were quantified in different age, gender, and segments to establish population baseline.

Table 5 Accuracy of IVD degeneration grading with ΔSI in IVD.

Modified Pfirrmann grade 1 2 3 4 5–8 macro-average (%) macroF1(%)

Data set A Precision (%) 60.76 97.28 99.40 97.89 89.08 88.89 92.02
Recall (%) 100 90.96 97.84 90.05 98.15 95.40

Data set B Precision (%) / 81.82 93.55 100 85.71 90.27 90.63
Recall (%) / 90.00 90.63 83.33 100 90.99
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IVD-degeneration classification, which is similar to the conclu-
sion of Waldenberg et al.13 Thus, we statistically analyzed IVD
characteristic in ΔSI with different degeneration grades (corre-
sponding to the modified Pfirrmann grade system), in which the
results showed that the histogram features of IVD signal intensity
had strong applicability in IVD-degeneration grading.

As IVD-structure collapse status is another important refer-
ence in IVD-degeneration grading, we carried out a correlation
analysis between IVD geometric parameters (DH, DHI, and
HDR) and IVD-structure collapse status. HDR presents the
strongest linear correlation with IVD structural collapse, due to
its containing both height and shape information that may be the
main references in manual degeneration grading. In contrast,
DHI showed limited correlation with manual grading, for the
height of vertebral bodies used in DHI calculation is not likely
considered in manual degeneration grading according to both
Pfirrmann grade system and its modified version. Considering the
variability of individual IVD height, it may affect the overall
linear correlation between the geometric parameters and IVD-
degeneration grades in structural collapse.

We further investigated the relationship between IVD quanti-
tative parameters (DH, DHI, HDR, and ΔSI) and baseline
demographic information (age, gender, and segment) with a
multiple-regression analysis. IVD signal intensity (ΔSI) showed a
stronger correlation with age and segment, indicating that accu-
mulated loads may lead to water-content loss in IVD. On the
other hand, height of IVD presents a phenomenon of increasing
in young age and decreasing in older age, which accorded with
previous studies23. However, our study revealed that there are no
linear relationships between IVD geometric parameters (DH,
DHI, and HDR) and age, which showed disagreement with pre-
vious studies19. For the DH parameter, the influence of gender is
greater than that of the age. For the normalized parameters DHI
and HDR, the influence of gender and age seems similar. The
position of the structure shows the greatest influence on the
geometric parameters. In fact, Pfirrmann grade system was
designed based on symptomatic patients with an average age of
about 40 years old19, whose reliability for early IVD degeneration
or IVD degeneration in the elderly people may be unsatisfied. In
our study, these correlation results played important roles in IVD
quantitative degeneration-criterion establishment, achieving
automatic quantitation for IVD degeneration in asymptomatic
patients of different ages.

An important distinction of our study from previous works is
the accurate IVD-parameter extraction from MR images of a
large population to establish a criterion of IVD-degeneration
quantitation, by means of a powerful segmentation network
(BianqueNet) and improved area-based calculation.

Regarding future clinical practice and assessment, we will insert
this network into MR-image system (Computer Software Intel-
lectual Property Right, National Copyright Administration, P.R.
China, No. 2021SR1211447) and export a structural lumbar
intervertebral disc degeneration report like Supplementary Fig. 3
and Video 1 for doctors, patients, and researchers. Compared
with traditional text-description MRI report, our quantitative
report may provide more accurate IVD parameters to reflect
height collapse and water-content loss with IVD degeneration.
According to IVD baseline characteristic criteria in each age,
gender, and segments, deviation of IVD geometric parameters
and Pfirrmann grade based on signal intensity will be obtained
automatically to reflect both structural collapse status and water-
content loss in IVD comprehensively, which may provide more
precise information for clinical practice (lumbar MR-image
structural report), clinical trials (efficacy assessment), and
mechanism investigation (biomechanics research and finite-
element analysis). Notably, these baseline characteristics will be

updated dynamically as these MR-image data are collected and
summarized.

In our result, we found that the turning point for “peak IVD
height” is in the 50–60 age range, which may be a secondary
degenerative process. Due to the changes in vertebral osteo-
porosis, the endplate of the vertebral body becomes more
depressed, which may make IVD sink into the vertebral body,
resulting in lower vertebral height and higher disc height20,31.

Also, there are many studies on the relationship between age
and height of IVD and vertebral bodies. H.S. Monoo-Kuofi
et al.32 concluded that IVD height increases with age, but not in a
linear fashion, with alternating periods of overgrowth and thin-
ning, and a significant decrease of 2.5% after age 50. These studies
support our results. In the future, we will continue to collect data
from more MRI and possibly investigate these IVD parameters
as aging.

Our study has some limitations. First, this retrospective study
may be subject to potential selection bias. Some prospective
studies should be rigorously conducted to test the clinical utility
of this proposed model. Second, our deep learning model was
trained and tested using Chinese patients, so its reproducibility
among different ethnic people should be further evaluated. In
future, it will be important to combine radiomics and prospective
design and integrate all kinds of clinical examination, fluid-flow
biomechanics, and molecular approaches to improve accuracy in
IVD-degeneration evaluation.

In conclusion, we present a fully automated deep-learning-
based lumbar-spine segmentation network and an area-based
quantitative method to evaluate IVD degeneration according to
the extracted parameters from a large population. Our approach
can be used to improve IVD-degeneration evaluation with high
accuracy and consistency.

Methods
Patients and datasets. This study was approved by the Institutional Review Board
(IRB) in all the participating sites. Written informed consent was waived because of
the retrospective nature of the data collection (age/gender) and the use of dei-
dentified MR images.

Two separate segmentation models were trained and tested among mid-sagittal
T2 lumbar-spine images of different resolution (512*512 in Data Set A and
320*320 in Data Set B). All the subjects’ lumbar-spine MR imaging was included in
the Longhua Hospital, Shanghai University of TCM between January 1, 2019, and
December 31, 2020, among which there are 223 subjects using a 1.5-T MRI unit
(MAGNETOM Aera XJ, SIEMENS, Data Set A) and 63 subjects using another 1.5-
T MRI unit (MAGNETOM Avanto, SIEMENS, Data Set B). These MR images were
exported and randomly allocated into each training set or test set (Fig. 1). All
images were labeled by LabelMe (version 3.3.6, CSAIL, Massachusetts Institute of
Technology)33. Based on the structural features mentioned in the modified
Pfirrmann grading system, the segmentation area of 14 parts included 5 vertebral
bodies (L1–L5), 5 lumbar IVDs (L1/L2–L5/S1), sacrum (S1), presacral fat area,
cerebrospinal fluid area (CSF) in the spinal canal, and background as Fig. 4b.
Segmentation performance of IVD-related areas was tested by the mean Dice
coefficients (mDice) and mean Intersection over Union (mIoU).

In order to establish lumbar IVD baseline data in a large population, Data Set C
composed of 1051 mid-sagittal T2 lumbar-spine images with different age (20–90)
and gender was used to extract data by segmentation model and quantitative
method among four hospitals around China, including Longhua Hospital,
Shanghai University of TCM, Guangdong Provincial Hospital of Chinese Medicine,
Shenzhen Pingle Orthopedics Hospital, and Dongzhimen Hospital, Beijing
University of Chinese Medicine between January 1, 2019 and March 30, 2021. The
imaging parameters of all sites are summarized in Supplementary Table 9.

Proposed network model
Overview of the BianqueNet architecture. As presented in Fig. 4, mid-sagittal T2W
lumbar MR images are input into the backbone (a resnet101 network34 that uses the
atrous separable convolution to improve the last stage) for 16 times the down-
sampling, from which richer semantic information and more dense features are
extracted through the depth feature extraction module (see Depth feature extraction
section for details). To restore more detailed features of segmentation targets, the
original quadruple upsampling operation in Deeplabv3+35 was modified with
double upsampling, while the general bilinear interpolation was replaced to trans-
pose convolution for upsampling. At the same time, input the feature maps of
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different resolutions obtained by downsampling to the Swin Transformer-skip
connection module (see “Swin Transformer–skip connection” section for details),
and then fuse the upsampled feature maps of the same resolution to obtain feature
maps of different scales. According to Feature Pyramid Network36, multi-scale
feature fusion module (MFF) is used to combine the feature maps with strong low-
resolution semantic information and feature maps with weak high-resolution

semantic information but rich spatial information. Then a 3*3 double-convolutional
layer is used for the fused feature map to improve the feature, and finally a double
upsampling operation is performed to obtain a dense prediction image.

Swin transformer–skip connection module. Applications with transformer-based
vision backbones such as Vision Transformer (ViT) achieved innovative

Fig. 4 The proposed BianqueNet consisted of three innovative modules. a Input MRI, (b) annotations, feature map before (c) and after (d) DFE module,
and (e) each image-channel output by the model corresponds to a segmentation area. Feature map of different skip-connection path with (f) and without
(g) ST-SC module.
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technological breakthrough in recent years37,38, in which Swin Transformer, a
layered transformer based on shifted windows, makes it compatible with a broad
range of vision tasks. Compared with earlier sliding-window-based self-attention
approaches39,40, Swin Transformer performs higher efficiency and lower com-
plexity. In this study, a skip-connection module was designed with two successive
Swin Transformer blocks, called as ST-SC module. As shown in Fig. 4, the Swin
Transformer block is consisting of a shifted-window-based multi-head self-atten-
tion (MSA) module and a 2-layer multi-layer perceptron (MLP) with GELU
nonlinearity. A layer norm (LN) layer is applied before each MSA and MLP
module, while a residual connection is applied after each module37. At the same
time, a 1*1 convolutional layer is applied after two successive Swin Transformer
blocks, and finally the two output features are spliced to provide more accurate and
fine-grained structural information for upsampling. To avoid affecting dense-
feature output from upsampling, the number of output channels for the ST-SC
module is adjusted to 1/8 times that of the downsampled feature maps. Calculation
formulas are shown as the following:

SC0 ¼ W-MSA LN Xð Þð Þ þ X ð1Þ

SC0 ¼ MLP LN SC0

� �� �þ SC0 ð2Þ

SC1 ¼ SW-MSA LN SC0

� �� �þ SC0 ð3Þ

SC1 ¼ MLP LN SC1

� �� �þ SC1 ð4Þ

Y ¼ +f ðX̂; SC1Þ ð5Þ
where X and X̂ denote the down-sampled feature maps of different resolutions and
their output of 1*1 convolution, respectively; SC and SC denote the output features of
the ðSÞW-MSA module and the MLP module, respectively; W-MSA and SW-MSA
denote window-based multihead self-attention using regular and shifted-window
partitioning configurations, respectively37.+f is the feature-fusion function, and Y is
the output of ST-SC module.

Compared with segmentation by deeplabv3+ without ST-SC module, the
contour information of the vertebral body in the feature map of skip-connection
middle path is more accurate, and the contour information of intervertebral disc
and cerebrospinal fluid in the feature map of skip-connection high path is more
accurate (Fig. 4f, g). Therefore, the ST-SC module may provide more accurate
detailed information for the upsampling path by increasing the focus on target
information in different spatial domains.

Depth feature extraction module. In this study, the depth-feature extraction module
(DFE) is designed between backbone output section and upsampling sections.
Feature-map output from the backbone is extracted-feature information of dif-
ferent depth through pooling operation with different scale in the pyramid pooling
module41. Combining the fused global feature map with the backbone–output-
feature map, a multiscale contextual information feature map of 4096 channels was
obtained to further extract a dense semantic feature map of 256 channels through
the atrous spatial pyramid pooling (ASPP) module35.

Weighted dice-loss function. A weighted dice-loss function as below was proposed
to enhance segmentation performance by estimating the difficulties in different
images with typical or atypical structure, which ensured consistency in segmen-
tation:

Lwdice ¼
1
C
∑
C

j¼1
ξj 1� 2∑N

i¼1p1ig1i
2∑N

i¼1p1ig1i þ∑N
i¼1p0ig1i þ∑N

i¼1p1ig0i

 !

ð6Þ

This formula was used in the output of the SoftMax layer, where the p1i is the
probability of voxel i (target) and p1i is the probability of voxel i (nontarget). So was
for g1i and g0i . j represents different segmentation areas, C represents the total
number of channels, which is taken as 14. ξ represent the weight of different
segmentation channels. According to the experimental analysis results, channel
weight was set to 0.9, 0.8, and 1 for vertebral body, IVD, and the other, respectively,
which may achieve the best segmentation performance.

For avoiding that the subsequent feature-extraction operations are affected,
corrosion and expansion operations were used to remove the burrs (Fig. 4e).

Lumbar IVD quantitative analysis
Parameter calculation based on IVD-related area segmentation. Based on previous
studies18,25–27, signal-intensity difference (ΔSI) in IVD areas was used to quantify
the blurring degree of boundary between NP and AF, which indicates water-
content loss with IVD degeneration. Average disc height (DH), disc-height index
(DHI), and disc height-to-diameter ratio (HDR) were used to quantify structural
collapse with IVD degeneration (Fig. 5). Detailed quantitative methods were
described as below.

Signal-intensity histogram features. The histogram feature is used to quantify dif-
ferent signal-intensity distribution in different areas from MRI, in which the X axis
represents different signal intensities, and the Y axis represents the corresponding

number of pixels. A two-peak distribution has been analyzed in healthy IVD from
MRI, because the sharpness of the boundary between the NP and the AF can be
well characterized with large amounts of pixel with two major signal intensities
(Fig. 5d)13. With IVD degeneration, water-content loss in NP can be measured in
histogram-feature distribution changes, which presents that previous higher signal
intensity (light) in the IVD area gradually becomes lower (dark) (Fig. 5g). The
difference in pixel numbers corresponding to different signal intensities can well
describe the degeneration state. To reduce the influence of individual differences
and MR-imaging condition, a modified method was used in calculating the dif-
ference between the two peaks in IVD signal intensity histogram after being
normalized with the peak signal intensity of CSF in the spinal canal (Fig. 5f). The
calculation formula of the signal-intensity difference (ΔSI) between two peaks is
shown as the following:

4SIi ¼ SIi2 � SIi1
SICSF

´ 255 ð7Þ

Among them, SIi1 and SIi2 respectively represent the signal-intensity values
corresponding to the 1st and 2nd peaks of the histogram of the IVD, i represents the
position of the ith IVD. SICSF represents the signal intensity corresponding to the
peak of the histogram of the CSF area, and 255 is an amplification factor.

Vertebral body height. According to the channels of the segmented vertebral body,
the Shi–Tomasi corner detection method was used to accurately point the four
corner vertices (superior–anterior (Lisa), superior–posterior (L

i
sp), inferior-anterior

(Liia), and inferior-posterior (Liip)) of the vertebral body (Fig. 5h). The Euclidean

distance between two midpoints (Lima of L
i
sa and Liia , L

i
mp of Lisp and Liip) is defined

as the vertebral body diameter (Fig. 5h). The vertebral body diameter (VD) cal-
culation formula is shown as the following:

VDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑2
j¼1 Lima j � Limp j

� �2
r

ð8Þ

where i denotes the ith vertebral body, in the range from 1 to 5, j denotes the
midpoint coordinate dimension, values of 1,2.

The area of the vertebral body was calculated with the sum of all the pixel values
of the vertebral body mask channel, and then the vertebral body height was
obtained by dividing by VD. The vertebral body height (VH) calculation formula is
shown as the following:

VHi ¼ 1

VDi ∑
h

x¼1
∑
w

y¼1
Pxy ð9Þ

Among them, h and w respectively represent the height and width of the picture,
Pxy represents the pixel value when the height coordinate is x and the width
coordinate is y, and the value of Pxy is 0 or 1.

Disc height. In the field of IVD height calculation, previous study showed that using
area-based quantitative-measurement method was better than using point-based
method, in which the result with excellent reliability showed that IVD height was
equal to 60% or 80% of IVD diameter in sagittal view14. Therefore, in this study,
the lumbar IVD height was calculated as 80% of lumbar-disc diameter.

After the feature-location points being obtained (Fig. 5i), the area of the lumbar
IVD was calculated with the sum of all the pixel values between the two-line
segments (Fig. 5j), while the lumbar IVD height was obtained by dividing by the
lumbar IVD diameter. The IVD height (DH) calculation formula is shown as the
following:

DHi ¼ 1

μjjDi
aD

i
pjji

∑max XD
x¼minXD

∑maxYD
y¼min YD

Pxy ð10Þ

Among them, μ represents the percentage of the center area of the entire lumbar

IVD, taken as 80%, jjDi
aD

i
pjj

i
represents the diameter of the ith lumbar IVD, and XD

and YD represent the width and height coordinate sets of the four characteristic
location points respectively. fxDi

1a
; xDi

2a
; xDi

1p
; xDi

2p
g、fyDi

1a
; yDi

2a
; yDi

1p
; yDi

2p
g

Disc-height index. To reduce individual differences, disc-height index (DHI) was
used as normalized geometric parameter. Once the angle of the vertebral body and
the midpoint of the endplate marked, the measurement line was drawn according
to the marked point15. The DHI calculation formula is shown as the following:

DHIi ¼ 2 ´DHi

VHi þ VHiþ1
ð11Þ

Among them, DHi represents the height of the ith lumbar IVD, and VHi and
VHi+1 respectively represent the height of the ith and the (i+1)th vertebral body.

Disc height-to-diameter ratio. Disc height-to-diameter ratio (HDR) is proposed to
simultaneously characterize the height and shape of the IVD, which is considered
to be the most accurate and repeatable30. In this study, the maximum IVD dia-
meter was obtained by feature-location points, while average IVD height was
calculated using the area-based method. Therefore, HDR calculation formula is
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shown as the following:

HDRi ¼ DHi

jjDi
alD

i
pr jj

i ð12Þ

where jjDi
alD

i
pr jj

i
represents the maximum diameter of the ith lumbar

intervertebral disc.

IVD-degeneration quantitation
Signal-intensity peak-deviation degree. With IVD-degeneration process, water-
content loss can be reflected in signal-intensity changes and height decrease. In this
study, the signal-intensity peak-deviation degree from the center (ΔSI) was mainly
calculated to describe the water-content loss status with IVD degeneration. Based
on IVDs with modified Pfirrmann grade (levels 1, 2, 3, 4, and 5–8), mean and
standard deviation of the standard signal-intensity peak difference (ΔSI) of each
grade were established as grading standard to quantitatively analyze IVD degen-
eration (Supplementary Fig. 4). The calculation formula is shown as the following:

4 ¼ jj4SI� μiþ1jj
σ iþ1

� jj4SI� μijj
σi

ð13Þ

where ΔSI is the current peak signal-intensity difference of the IVD, μi and σi are
the mean and standard deviation of the standard signal-intensity peak difference of
the ith level, and i is 1–4.

Quantitative analysis on IVD degeneration. For the original parameter DH, the
ratio of the current DH to the average DH of the corresponding healthy inter-
vertebral disc was used to calculate the collapse percentage. For the nonoriginal
parameters ΔSI, DHI, and HDR, which involve the influence of variables such as
vertebral body height and intervertebral disc diameter, the same method as J.Jar-
man et al. is used to calculate the degree of deviation from the range center of the
corresponding healthy intervertebral disc-height parameter15:

βk ¼
X � μji
σ ji

ð14Þ

where βk represents the degree of deviation between the kth nonoriginal parameter
and the mean value of the corresponding healthy intervertebral-disc parameter,
and k is from 1 to 3. When βk is smaller, the degree of signal intensity of the
intervertebral disc degenerates or the collapse is higher. j represents gender, which
is 0 or 1, and i represents structure position.

Evaluation of model performance
Accuracy evaluation on IVD-segmentation performance. To ensure that the model
trained with images from one hospital may present equally good accuracy in
segmentation for all images from other three hospitals, 20 images randomly
selected from each hospital were used to test.

Dice index and Intersection over Union (IOU) were used to measure the
similarity between the segmented IVD-related areas and the manual labeled
boundaries.

Consistency evaluation on IVD-parameter quantitation. In our study, accuracy in
segmentation performance and consistency in IVD quantitative analysis are equally
important. To evaluate consistency in IVD quantitative analysis in different reso-
lution, 46 MR images with resolution of 320*320 were randomly selected from
Data Set B to be segmented and quantified by model B. Meanwhile, these images
were adjusted to 512*512 for segmentation and quantitation by model A. If IVD
parameters extracted from model A and model B show good consistency, model A
(trained with resolution of 512*512) will be considered applicable enough to
extract IVD parameters among a larger population (Data Set C) with different
machines.

Although manual measurement may present a greater error and lower
consistency than machine measurement, IVD parameters measured by a senior
radiologist and orthopedic residents are important as control standard. A 4th-year
radiology resident (DW Kong), and a 4th-year orthopedic resident (MC Yin)
measured and calculated all the IVD parameters (HDR and DHI) among these 15
MR images randomly selected from Data Set B. Each IVD was measured and
recorded three times (Supplementary Fig. 1), from which mean values of three-time
measurements were used to compare with each other. In addition, to avoid fatigue
in long-term measurement, these residents were asked to have a 20-minute rest
after measuring every two MR images.

The intraclass correlation coefficient (ICC) was used to analyze the consistency
between the IVD-parameter extraction and IVD manual measurement. Mean time
spent on each IVD quantitation was used to describe efficiency.

Validity evaluation on IVD-degeneration quantitation. To test the validity of signal-
intensity quantitation on IVD degeneration, 46 MR images randomly selected from
Data Set A and Data Set B, respectively, were used to automatically grade IVD-
degeneration levels. Meanwhile, a research team, composed of a 4th-year radiology
resident (DW Kong), two 8th-year orthopedic resident (J Chen, XF Ma), and three
4th-year orthopedic residents (YL Sun, YP Lin, and MC Yin), graded all the IVD-
degeneration levels independently according to the modified Pfirrmann grading
system10. They were all blinded to the automatic quantitative measures. Dis-
agreements were resolved by consensus with additional two 10th-year orthopedic
residents (XJ Cui and YJ Wang). MacroF1 score was used to analyze the validity
between the automatic grade results and final manual grade results.

Baseline characteristic of IVD parameters in a large population. A retrospective
study was conducted at four hospitals around China, in which the study population
composed of patients who completed lumbar-spine MRI examination between
January 1, 2019 and March 30, 2021. Further screening was conducted to exclude
IVD herniation, lumbar spondylolisthesis, spine tumors, and severe ossification in
vertebral bodies, whose abnormal signal-intensity distribution or irregular
boundaries in IVD-related areas may enhance heterogeneity in IVD-degeneration

Fig. 5 Scheme diagram of IVD parameter calculation. Signal-intensity histogram calculation: (a) vertebral body area, (b) presacral fat area, (c)
cerebrospinal fluid area, and (d) intervertebral disc area. e The outline of the segmented area is displayed on the original image. f Schematic diagram of ΔSI
calculation. g Signal-intensity histogram corresponding to different Pfirrmann grade. h A geometric calculation method of lumbar disc-height parameters
based on area, (i) vertebral body corner detection result (red points) and feature-point calculation result (green points), and (j) 80% area-extraction result
of the intervertebral disc center.
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parameters. The screened MR images (Data Set C) were finally used to determine
the relationships of baseline variables (age, gender, segments, and degeneration
grades) and IVD quantitative parameters (ΔSI, DH, DHI, and HDR).

Statistical analysis. For performance evaluation in IVD segmentation and
quantitation, the intraclass correlation coefficient (ICC) was used to analyze the
consistency in IVD quantitation. The Dice coefficient and the Intersection over
Union (IOU), also known as the Jaccard index, were used to evaluate the seg-
mentation performance of the model. They are given by the following expression:

mDice ¼ 1
C
∑
C

i¼1

2 � jGi \ Pij
Gi

�� ��þ jPij
ð15Þ

mIOU ¼ 1
C
∑
C

i¼1

jGi \ Pij
jGi ∪ Pij

ð16Þ

where Gi is the ground-truth annotation and Pi is segmentation result for the ith
segmentation area, and C takes 14, indicating 14 segmented areas.

For IVD characteristic analysis, the mean and standard deviation were
calculated for continuous variables and frequency and proportion for categorical
variables. The following test was used: T-test, Mann–Whitney U for continuous
variables, Chi-square for nominal variables, and Spearman rank correlation. MLR
was carried out to determine the relationships of baseline variables (age, gender,
segments, and degeneration grades) and IVD quantitative parameters (ΔSI, DH,
DHI, and HDR). Spearman rank correlation analysis was used to investigate the
correlation between IVD signal intensity and degeneration grades. The
macroF1 score and the Kendall correlation coefficient were used to analyze the
validity in IVD-degeneration grading performance.

An absolute value of r of 0–0.4 was considered as weak correlation, 0.4–0.6 as
moderate correlation, and greater than 0.6 as strong correlation. p-value of <0.05
was considered statistically significant. The calculations were made using IBM SPSS
Statistics (version 26, IBM, USA) and Stata (version 15.1, USA).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw demographic and MRI data are protected and are not publicly available due to
hospital regulations, even all the identification has been removed. The data that support
the findings of this study are available on request from the corresponding authors (YJ.
Wang and YZ. Tian) for noncommercial, research purposes. Reply will be sent in
two weeks.

Code availability
Some of the core code generated or used during research is available in repositories or
online: https://github.com/no-saint-no-angel/BianqueNet
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