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Abstract
The production of gametes (sperm and eggs in mammals) involves two sequential cell divisions, meiosis I and meiosis II. In 
meiosis I, homologous chromosomes segregate to different daughter cells, and meiosis II resembles mitotic divisions in that 
sister chromatids separate. While in principle the process is identical in males and females, the time frame and susceptibility 
to chromosomal defects, including achiasmy and cohesion weakening, and the response to mis-segregating chromosomes are 
not. In this review, we compare and contrast meiotic spindle assembly checkpoint function and aneuploidy in the two sexes.

Keywords  Meiosis · Oocyte · Spermatocytes · Chromosome segregation · Aneuploidy · Recombination · Cohesin · 
Chiasma · Crossover

Abbreviations
APC	� Anaphase-promoting complex
BPA	� Bisphenol A
DSB	� Double-strand break
NEB	� Nuclear envelope breakdown
MCC	� Mitotic checkpoint complex
PAR	� Pseudoautosomal region
PSSC	� Premature separation of sister chromatids
RNAi	� RNA interference
SAC	� Spindle assembly checkpoint
SCC	� Sister chromatid cohesion

Introduction

Life begins with the fusion of two haploid gametes. Gam-
etes (eggs and sperm in mammals) are produced from dip-
loid progenitor cells through a series of carefully orches-
trated chromosomal events that include one round of DNA 

replication, followed by two rounds of cell division termed 
meiosis I and meiosis II (Fig. 1). During cell division, the 
spindle assembly checkpoint (SAC) is the guardian of faith-
ful chromosome segregation. Compromised SAC function 
in meiosis can lead to the formation of aneuploid gametes 
that, in the vast majority of cases, are incompatible with 
subsequent development of the embryo, presumably because 
the incorrect complement of chromosomes leads to massive 
gene imbalances [1]. Permissible autosomal aneuploidies 
in humans invariably involve the gain of a chromosome 
(Box 1). Gamete aneuploidy often results in an inability of 
a couple to achieve pregnancy, or in increased chance of 
early pregnancy loss. Indeed, around one in seven couples 
now require assisted reproductive techniques to aid concep-
tion and pregnancy [2]. Most (84%) embryonic trisomies are 
found to derive from female meiosis, with errors in meiosis I 
contributing significantly more than meiosis II [3].

Aneuploidy arises from a two-step process that consists 
of the occurrence of a chromosome with the propensity to 
mis-segregate, followed by failure of the meiotic SAC to 
react to such a situation. In this review, we will look at both 
steps. Generally, oocytes fare poorly compared to spermato-
cytes when it comes to accuracy of chromosome segrega-
tion. Cells of the male and female germ line are on uneven 
playing fields, both with regard to chromosomal events lead-
ing up to the first meiotic division, as well as SAC function. 
Here, we compare the origins and fate of mis-segregating 
chromosomes in male and female mammals. Our emphasis 
will largely be on aneuploidy and the SAC in mice, where 
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genetic studies have provided most of our current under-
standing of this topic. We also focus on the contributions 
of chromosomal events in prophase I to meiotic aneuploidy.

viable monosomy in humans. Autosomal monosomies 
in humans are embryonically lethal, presumably because 
the lowered gene dosage of any one complete autosome 
causes a huge imbalance in protein homeostasis. Auto-
somal trisomies that are sometimes viable are trisomy 21 
(Down syndrome), trisomy 13 (Patau syndrome) and tri-
somy 18 (Edwards syndrome). Of these, Down syndrome 
is most common. Its incidence drastically increases with 
increased age of the mother.

Pre-meiotic DNA replication
(S-Phase)

Metaphase II Anaphase II

Double-strand breakCohesin

Prophase I

Synaptonemal complexKinetochore Crossover Microtubules

Metaphase I
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Chiasma Formation

Spindle Assembly 
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Cohesion Resolution
Homologous interactions are stabilized by the 

structure. These inter-homolog connections 
culminate at pachytene stage, where homologs are 
aligned along their entire lengths. DSB repair takes 
place in the context of the synaptonemal complex. 
In mammals, approximately 9 out of 10 meiotic DSBs 
are repaired via homologous recombination as 
non-crossovers, and the remainder is destined to 
become crossovers.  Crossovers are essential to 
ensure that each chromosome is physically 
connected to its homolog in 
late meiosis I. SCC is disman-
tled locally around crossover 
sites.

Meiotic sister chromatid cohesion (SCC) is established along 
the length of chromosome arms at the time of pre-meiotic 
DNA replication. On the newly replicated DNA, >200 
programmed double-stranded breaks (DSBs) form that are 
required for homology search and chromosome pairing. 

Crossovers mature 
into chiasmata, which are necessary for 
maintaining homologs as bivalents. 
Chiasmata are kept locked in place by SCC.

Prometaphase is characterized by chromatin 
condensation and congregation of chromosomes 
at the spindle equator. Kinetochores begin to 
form attachments to spindle microtubules. 

Correct attachments are progressively 
stabilized.  The SAC monitors that 

kinetochores are occupied by 
microtubules; those with no 
or too few correctly 
attached spindle microtu-
bules maintain an active 
SAC which delays 
anaphase onset.

number of stable 
microtubule-to-ki-
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formed for all 

chromosomes, the SAC is 
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can proceed to anaphase.
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cell can divide. 
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second meiotic 
division.
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Sister Biorientation
At 
meta-
phase II sister chromat-
ids cease to act as a 
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Anaphase I

Fig. 1   Key events of meiosis I

Box 1: Human aneuploidy syndromes

There are several well-defined aneuploidy-associated 
clinical phenotypes in humans. It is noteworthy that ane-
uploid gametes are vastly (by several orders of magni-
tude) more common than live-born aneuploid individu-
als. Further, the incidence of aneuploidy syndromes does 
not reflect the propensity of particular chromosome pairs 
to mis-segregate but rather, the viability of abnormal 
karyotypes. When spontaneous abortuses are consid-
ered, aneuploidy of chromosome 16 is most common, 
but this chromosomal abnormality is not compatible with 
life. Even of the theoretically permissible aneuploidies 
(below), the vast majority do not come to term ([109, 
110] and references therein).

Sex chromosome aneuploidies, Klinefelter syndrome 
(XXY, trisomy for sex chromosomes) and Turner syn-
drome (X0, monosomy for the X chromosome), are a 
common class of chromosomal abnormality in live-born 
individuals. Klinefelter syndrome affects 1 in 500–600 
baby boys. Turner syndrome constitutes the only 

Key events in meiosis I

Duration of meiosis I in males and females

Perhaps the most striking difference in the formation of 
female and male gametes is their developmental timescale 
(Fig. 2): meiosis I takes years in females, but less than 
14 days in male mice [4]. Oocytes are created from mitotic 
divisions in the foetal ovary, entering meiosis I and arrest-
ing at diplotene of prophase. This arrest is referred to as the 
dictyate stage. Completion of meiosis (and maturation of the 
oocyte to make a fertilisable gamete) does not occur until 
the oocyte is recruited during an ovarian cycle. Recruitment 
takes place in any cycle between menarche and menopause; 
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thus, in humans, oocytes can remain arrested in meiosis I 
between ~ 13 and ~ 51 years. Even in mice, the dictyate stage 
lasts for up to 2 years.

Chromosome pairing

Despite the vastly different overall timescales, the key steps 
of male and female meiosis are essentially identical. A 
successful first meiotic division requires that homologous 
chromosomes find each other, pair, undergo recombination 
and then segregate to different daughter cells. An outline of 
this complex process is presented in Fig. 1. In pre-meiotic 
S phase, each chromosome is replicated and cohesion is 
established between sister chromatids [5, 6]. For an in-depth 
review of meiotic cohesin complexes, we refer readers to 
Brooker and Berkovitz [7]. Early in meiosis, several hundred 
programmed double-strand breaks (DSBs) are introduced 
into the genome that enable subsequent homology search [8, 
9]. Only a subset of meiotic DSBs matures into crossovers, 
that is, into reciprocal genetic exchanges between non-sister 
chromatids.

At least one crossover per homolog pair (the “obligate 
crossover”) is necessary for guaranteeing accurate chromo-
some segregation subsequently [10]. For a detailed review 

of meiotic crossover control, see Gray and Cohen [11]. 
Most crossovers in mammals are cytologically marked by 
the protein MLH1, and its immunofluorescent detection is a 
standard tool for estimating crossover frequency and loca-
tion. Subsequently, crossovers mature into chiasmata that 
link homologs until anaphase I. The configuration of inter-
linked homologs is referred to as the bivalent. Non-exchange 
chromosomes (those without a crossover) are called achias-
mate chromosomes at this stage, and they can only exist as 
univalents.

Chromosome segregation

One key difference for chromosome segregation between 
mitosis and meiosis I is that in the latter, homologous chro-
mosomes—rather than sister chromatids—must segregate to 
opposite spindle poles. Each homolog consists of replicated 
sister chromatids, whose sister kinetochores in meiosis I 
should achieve mono-orientation (Fig. 1), that is, they should 
be attached to the same pole by their kinetochores.

In prometaphase, bivalents begin to congregate and align 
on the cell equator. At this time, they form attachments to 
spindle microtubules via their kinetochores. These micro-
tubules are referred to as kinetochore fibres or k-fibres. 
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Fig. 2   Female versus male meiosis. The duration of female meiosis is substantially longer than that of male meiosis, mainly due to the dictyate 
arrest that can last for years
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Tension, which is critical for the progressive stabilization 
of k-fibres, is provided by chiasmata between the homologs. 
The SAC monitors microtubule-to-kinetochore attachments 
and controls the progression from metaphase to anaphase, 
as discussed in more detail below. Once the SAC is satisfied, 
the cell divides and homologs end up in different daughter 
cells.

Crossover failure and/or cohesion loss 
generates abnormal chromosome 
configurations

Having described above the physiology of chromosome seg-
regation, we now address how shortcomings in this process 
can lead to aneuploidy. As mentioned, aneuploidy requires 
that chromosomes be susceptible to mis-segregation, and 
that this be followed by a failure of the cell to identify or 
respond to those chromosomes. Here we discuss two ways in 
which abnormal chromosome configurations that predispose 
to aneuploidy may be created in the first meiotic division, 
namely non-exchange/achiasmy or premature cohesion loss.

Non‑exchange and/or achiasmate chromosomes

In both male and female mice, autosomes rarely suffer from 
lack of crossing-over [12–14]. However, recombination of 
male sex chromosomes and their subsequent segregation 
is challenging because the X and Y chromosomes are for 
a large part non-homologous [15]. This means that X–Y 
recombination, crossovers and chiasmata are spatially 
restricted to the small region of homology, the pseudoau-
tosomal region (PAR) [16, 17]. Failure to form a DSB on 
the PAR will lead to non-exchange sex chromosomes [18] 
that, in turn, increase the chances of X–Y mis-segregation. 
Indeed, of all chromosomes, the X and Y are most frequently 
aneuploid in sperm. The vulnerability of the PAR to recom-
bination failure appears to apply to humans as well (see also 
Boxes 1 and 3).

Loss of arm and/or centromeric cohesion

Cohesion along the arms of the chromosomes is necessary 
for securing chiasmata in place. In females at least, crosso-
vers that are located close to the telomere may “slide off” 
the ends of homologous chromosomes when they spend an 
extended period of time in this configuration and SCC weak-
ens [19]. This can lead to premature separation of homologs, 
i.e. univalent formation [20].

In meiosis I, sister kinetochores are required to act as a 
single functional unit, ensuring separation of the homologs, 
but not the sister chromatids. Centromeric cohesion is essen-
tial for tethering sister chromatids together, and its loss 

results in greater separation of the sister kinetochores within 
each homolog of the bivalent [21–23]. Significant cohesion 
loss in the pericentromeric region permits separation of the 
two sister kinetochores to a point where they can start to 
behave independently [24]. This, in turn, enables aberrant 
bi-orientation of sisters.

To summarize, failure to form a crossover on the PAR (for 
male mice) and cohesion loss (for female mice) are major 
contributors in generating chromosomes that are prone to 
mis-segregation at anaphase (Fig. 3). These paths to ane-
uploidy are also interlinked—when cohesion weakens, chi-
asmata are lost and sister kinetochores begin to separate [22, 
23]. Premature cohesion loss and achiasmy both generate 
defective chromosome configurations that the meiotic SAC 
should monitor during prometaphase and metaphase. Next, 
we will discuss this central cellular surveillance mechanism 
that keeps such errors in check.

The spindle assembly checkpoint

Aneuploidy in the germ line should only occur if the sur-
veillance mechanisms employed to detect chromosomes at 
risk for mis-segregation are ineffective. In this section, we 
discuss the spindle assembly checkpoint (SAC). By way of 
introduction, we first tackle the SAC in mitosis, where it has 
been best studied.

Central to SAC function are the kinetochore, where the 
SAC is located and where chromosome-spindle attach-
ments are monitored, and the anaphase-promoting com-
plex (APC), the downstream target of the SAC that drives 
cells irreversibly from metaphase to anaphase. The pro-
cess of assembling the spindle and then correctly aligning 
all chromosomes in a bi-oriented fashion at the spindle 
equator is somewhat stochastic, and the time required to 
achieve this will vary from one division to the next [25]. 
The SAC, therefore, must be able to control cell cycle pro-
gression, only permitting advancement to anaphase when 
all chromosomes have formed correct attachments to the 
spindle. The SAC, therefore, inhibits the APC throughout 
prometaphase, only releasing the inhibition at metaphase, 
when satisfied by correct kinetochore–microtubule attach-
ments. The APC then initiates the metaphase-to-anaphase 
transition by orchestrating proteolytic destruction of key 
proteins Cyclin B1 and securin [26].

The core of the SAC is the mitotic checkpoint com-
plex (MCC) which acts to inhibit the APC. The MCC 
consists of the proteins MAD2, BUBR1, BUB3 and the 
APC activator CDC20. Other SAC proteins include MAD1 
which is key to catalysing MCC formation at kinetochores, 
BUB1 which is required for the hierarchical recruitment 
of other SAC proteins to kinetochores, and MPS1 which 
is considered the master kinase of the checkpoint. MPS1 
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phosphorylation of the outer kinetochore protein KNL1 
occurs in a microtubule-binding-dependent manner, and 
thus allows the SAC to be responsive to attachment status 
of individual kinetochores. MPS1 phosphorylation sites 
on the outer kinetochore proteins form the most upstream 
sites of recruitment of the aforementioned SAC proteins. 
Lastly, the kinase Aurora B has a role in recruiting MPS1 

to the kinetochore, in addition to roles in tension sens-
ing and in promoting correction of erroneous microtu-
bule–kinetochore attachments [27].

Activation of the SAC at a kinetochore causes hierar-
chical recruitment of proteins to the outer kinetochore. 
Central to MCC formation is a MAD1 homodimer bound 
to MAD2, which acts as the catalytic unit, incorporating 

semoctuO elbissoPI esahpateM

Alternatively,  univalents may biorientate 
their sister chromatids on the metaphase I 
spindle, leading to lagging chromosomes 
and/or separation of  sister chromatids 
during meiosis I, and probable aneuploidy.

Anaphase I

Weakened
Cohesion

Loss of centromeric cohesins leads to loss of 
sister chromatid cohesion either before, 
during (depicted) or after anaphase I. 
Unpaired sisters will segregate at random in 
meiosis II, often leading to aneuploidy. 

Loss of arm cohesion can lead to premature 
resolution of chiasmata, resulting in two 
independent univalents. In this situation, 
aneuploidy could occur as  depicted in A.

Attachment of both homologs to the same 
spindle pole (depicted), or failure of one or 
both homologs to attach at all can lead to 
segregation of both homologs to the same 
daughter cell.  

Non-Disjunction
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to gain or loss of whole chromosomes. 

Fig. 3   Meiosis I defects can result in aneuploidy. a Chromosomes 
without a crossover (non-exchange chromosomes) face problems at 
metaphase. They cannot be aligned with appropriate orientation on 
the cell equator because they lack the physical tether required for 
generating inter-homolog tension. This leads to random segregation 
at anaphase and a high likelihood of aneuploidy. b Weakened cohe-
sion can result in the destabilization of the bivalent configuration 

of homologous chromosomes. Some reports suggest univalents are 
formed in metaphase I, leading to segregation akin to a. In the exam-
ple shown here, premature loss of centromeric cohesion allows for 
the premature resolution of sister chromatids. c Non-disjunction, as is 
often observed in young mouse oocytes. Here, a failure of the homol-
ogous chromosomes to establish bi-orientation leads to their co-seg-
regation to one spindle pole, resulting in loss or gain of chromosomes
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further molecules of MAD2 and CDC20 with preformed 
BUB3 and BUBR1 to make the MCC. The MCC is then 
free to diffuse from the kinetochore and inhibit the APC 
throughout the cell (in the case of oocytes, across an unu-
sually large cellular volume, see Box 2). An important 
facet of the SAC is that to achieve fidelity in chromosome 
segregation, the signal from only a single kinetochore must 
be sufficiently strong to inhibit the APC throughout the 
entire cell. For a detailed review of the molecular work-
ings of the SAC, we refer the reader to [28]. The SAC is 
highly conserved across eukaryotes and appears to be very 
efficient (errors are estimated to occur only 1 in ~ 4000 
mitoses [29]).

bivalents being the apparent threshold. This increased 
ability was only apparent, however, if oocyte volume was 
halved prior to nuclear envelope breakdown (NEB) indi-
cating that the added stringency was not due to volume 
alone. Their work showed it was likely due to increased 
concentrations of the SAC proteins, which accumulate on 
the nuclear pores in prophase and then become diluted 
by the cytoplasm at NEB. Lane and Jones only investi-
gated the effect of reduced volume and only after NEB 
[118]. Consistent with the work of Kyogoku and Kita-
jima, they found no ability of the oocyte to implement 
the checkpoint, even when volume was reduced to one 
eighth. Further, live imaging following spindle disrup-
tion with nocodazole in these small oocytes showed that 
even many non-aligned chromosomes could not prevent 
anaphase. Hoffmann and colleagues investigated halv-
ing oocyte volume after NEB and found that a single 
chromosome could delay APC activity in prometaphase 
[112], but whether it could prevent anaphase in response 
to non-alignment is not clear. In summary, it seems that 
the large volume of oocytes is not solely responsible for 
reduced SAC stringency, and that concentrations of SAC 
proteins available to kinetochores in meiosis I may be a 
more important factor.

Box 2: Oocyte volume

The SAC’s ability to respond to errors is thought to 
depend on the ratio of signalling kinetochores to cyto-
plasmic volume. Mouse oocytes are some 200 times 
larger than typical somatic cells [111], making this ratio 
pertinent. Several papers have now addressed this issue in 
mouse oocytes [49, 112, 113] as well as in Xenopus egg 
extract [114] and Caenorhabditis elegans early embryos 
[115].

Xenopus eggs are around 1mm in diameter and lack a 
spindle assembly checkpoint [116]. Interestingly, they do 
not display aneuploidy, suggesting another mechanism is 
at play to ensure correct chromosome segregation [117]. 
Xenopus egg extracts have the ability to periodically 
enter and depart from a mitotic state, even in the absence 
of DNA replication and division. Addition of sperm 
nuclei and the microtubule de-polymerising drug noco-
dazole could halt this cyclic progression, at concentra-
tions of 9000 sperm nuclei per µL, but not at 4500 nuclei/
µL [114]. Intriguingly, the volume per nucleus at which 
the checkpoint becomes apparent (active, 111 pL; not-
active, ~ 222 pL) is in the same ballpark as a mouse 
oocyte (~ 200 pL), but orders of magnitude lower than 
in the Xenopus egg (0.52 µL). The number of signalling 
kinetochores per nuclei is also similar.

Galli and Morgan found a strong relationship between 
mitotic arrest time and kinetochore-to-volume ratio in 
C. elegans [115]. This relationship held true when either 
cell volume or kinetochore numbers were manipulated. 
In mice, the relationship between oocyte cytoplasmic vol-
ume and checkpoint strength has now been investigated in 
detail. Kyogoku and Kitajima used mouse oocytes, either 
doubled or halved in volume, and showed a relation-
ship between volume and checkpoint stringency [113]. 
Smaller oocytes gained the ability to delay anaphase 
in response to non-alignment, with two non-aligned 

The SAC in meiosis I

Most SAC proteins studied behave similarly in mitosis and 
in meiosis of both sexes [30]. MAD2’s meiotic localiza-
tion has been studied most extensively [31]. In mitosis, its 
association with the kinetochore is transient and is lost once 
stable microtubule attachments have been formed; this is 
also the localization pattern in meiosis I oocytes [31]. Inter-
estingly, immunofluorescent localization experiments on rat 
and mouse spermatocytes (but not oocytes, see also [32]) 
showed that MAD2 remains on kinetochores throughout the 
entire first meiotic division [31]. A possible explanation is 
that kinetochores of first-division spermatocytes never expe-
rience full microtubule occupancy [31] but the significance 
of this remains unclear. As expected, unaligned meiosis I 
homolog pairs showed substantially brighter MAD2 kine-
tochore signals.

In addition to MAD2, MAD1 decorates prometaphase 
kinetochores in mouse oocytes and both proteins are 
recruited to unaligned chromosomes at metaphase ([33–35] 
and Fig. 4). Moreover, MPS1 [36], BUBR1 [37], BUB1 [38] 
and BUB3 [39] localize to oocyte kinetochores/centromeres 
in mice; BUB1 and BUBR1 have been shown to correctly 
localize in human oocytes [40]. SAC proteins have not been 
found to behave differently in female meiosis I when com-
pared to mitosis, excepting that events take place over much 
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Fig. 4   SAC proteins localize to 
meiotic kinetochores. MAD1 
localizes to kinetochores of 
a mouse oocyte expressing 
MAD1-2GFP (green) and H2B-
mCherry (blue) in prometa-
phase (a) and metaphase (b) of 
meiosis I. Note the non-aligned 
chromosome in b recruiting 
modest levels of MAD1. Modi-
fied from Ref. [35]

A B

H2B / MAD1 H2B / MAD1

longer timescales in oocytes. One notable deviation from 
mitosis, however, is the meiotic expression of Aurora kinase 
variant Aurora C, which has high sequence similarity with 
Aurora B. The two appear to have somewhat overlapping 
roles during meiosis I, with Aurora C localizing to chro-
mosomes like Aurora B but with additional functionality, 
e.g. localizing to spindle poles like Aurora A [41, 42]. Both 
Aurora B and C bind to the chromosomal passenger com-
plex, and Aurora C can completely compensate for Aurora B 
loss in mitosis [43]. Aurora C is more stable in oocytes than 
aurora B and may be the dominant Aurora kinase [44, 45].

Aurora kinases are central to the debate (in mitosis and 
meiosis) as to whether the SAC detects tension across kine-
tochores (or chromosomes), or whether it is sensitive to 
microtubule attachment status only. Since loss of tension 
results in Aurora kinase-dependent loss of attachment, the 
two possibilities are not trivial to unravel. This has recently 
been addressed in oocytes, where it was found that Aurora 
kinase microtubule attachment is sufficient for SAC satisfac-
tion, whilst lack of tension across bivalents is important for 
subsequent error correction [46].

Lower levels of some, but not all, SAC 
proteins result in meiotic aneuploidy

In oocytes a “baseline” rate of non-disjunction, in the 
absence of any structural changes to the homologs, exists at 
around 3–4% even in young mice, and thus appears to be age 
independent [47–50]. In older mice, the error rate increases, 
presumably as abnormal chromosome configurations begin 
to factor in. This age-decline trend, seen in both mice and 
humans [48, 51], is consistent with a loss of cohesion during 
the protracted prophase arrest (see “Age-related cohesion 
loss”).

In mitotically dividing cells in vivo, heterozygosity of 
many SAC genes can lead to accelerated progression into 
anaphase and to aneuploidy (see, e.g. [52] and references 
therein). Wild-type SAC protein levels, therefore, seem to 
be critical for normal SAC stringency.

Meiotic studies in males are limited to reducing SAC 
protein dosage genetically and then examining chromosome 
segregation outcomes in spermatocytes or sperm. Interest-
ingly, genes whose heterozygosity produced aneuploid 
splenocytes (Bub3, Rae1, Bub3/Rae1 double heterozygotes 
and Rae1/Nup98 double heterozygotes) did not show such 
effect in spermatocytes [52]. Thus far, the only mouse mod-
els where reduced SAC protein levels have been shown to 
result in lower SAC fidelity in male meiosis are BubR1 hypo-
morphs [53] and Mad2 heterozygotes [54] (Table 1).

Thanks to oocyte culture, experimental approaches to 
manipulate SAC function in female meiosis are more var-
ied. In addition to genetic studies, RNAi and morpholinos 
can be utilized. In contrast to spermatocytes, effectively all 
investigations concluded that reducing the function of a SAC 
component results in measurable chromosomal defects and/
or aneuploidy in oocytes (Table 1). SAC function in males, 
therefore, appears more robust compared to females.

SAC sensitivity in oocytes 
versus spermatocytes

In addition to manipulating SAC components themselves, 
differences in SAC function in male versus female meio-
sis I can be revealed using mouse models with increased 
frequencies of abnormal chromosomes that ought to acti-
vate the SAC. One example is the Mlh1−/− mouse where 
almost no meiotic crossovers form, resulting in univa-
lents in meiosis I (Fig. 3a). In spermatocytes, this leads to 
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metaphase arrest, apoptosis and subsequently, infertility 
[55]. Although Mlh1−/− females are also infertile, their 
oocytes can occasionally progress through meiosis I to 
extrude a polar body [55, 56], indicating that the SAC in 
Mlh1−/− females is more permissive than in males. Male 
mice carrying Robertsonian fusion chromosomes (fusions 
of two telocentric chromosomes to form a single meta-
centric one) have increased numbers of unpaired and non-
aligned chromosomes in meiosis I and show increased 
metaphase I arrest and apoptosis in spermatocytes [57]. 
This is again consistent with a SAC response, albeit an 
incomplete one, as aneuploid sperm are also formed [57]. 
In females, single Robertsonian fusions do not appear to 
cause metaphase arrest [58]. In Sycp3 knockout females, 
modest numbers of univalents are produced, and these 
fail to trigger a checkpoint arrest in meiosis I [59]. The 
XO mouse, where the X chromosome lacks a homolog, 
is an example where only a single aberrantly behaving 

chromosome is present in oocytes [60, 61]. Oocytes do 
not arrest in metaphase I but have high rates of polar body 
extrusion. In contrast, in mice genetically engineered to 
lack a Y chromosome, the unpaired X chromosome trig-
gers a robust metaphase I arrest in spermatocytes [62]. 
One caveat with this comparison is that the type of attach-
ment between the univalent and the spindle, which has 
implications for detection by the SAC, is unclear. This is 
discussed further below (see “Univalents with bi-polar 
attachments can evade the SAC”).

The conclusion is that the female SAC can detect aber-
rantly behaving chromosomes only when they are present 
in high numbers, whereas in males, SAC sensitivity may 
be set at the level of a single chromosome, as is the case 
in mitosis. Next, we will examine factors that contribute 
to SAC leakiness in oocytes.

Table 1   Consequences of compromised SAC protein function in meiosis

F female, M male

Gene Setting Gender Consequence References

Mad2 In vivo (Mad2+/−) F Accelerated meiotic progression and meiosis I chromo-
some mis-segregation in > 20% of oocytes

[124]

In vivo (Mad2+/−) M Low-level sperm aneuploidy in the presence of non-
exchange sex chromosomes

[49]

Microinjection of dominant-negative Mad2 into 
oocytes

F Premature anaphase onset [32]

Depletion in oocytes using morpholino F Increased aneuploidy, premature degradation of cyclin 
B and securin, accelerated meiosis I progression

[50]

Bubr1 In vivo (Bubr1+/−) F Unstable microtubule-to-kinetochore attachments, 
relaxed SAC

[37, 125]

In vivo (Bubr1+/−) M No effect reported [125]
In vivo (hypomorph Bubr1H/H) M Elevated aneuploidy in secondary spermatocytes  [125]

Bub1 Oocyte-specific conditional KO F Accelerated chiasma resolution, PSSC, bivalent malo-
rientation, chromosome mis-segregation

[126]

In vivo (Bub1+/−) F Meiosis I aneuploidy and PSSC in oocytes; males: no 
effect

[127]

In vivo (Bub1+/−) M No effect reported [127]
Bub3 RNAi in oocytes F Chromosome misalignment, aneuploidy [39]
Mps1 Oocyte-specific conditional KO F MAD2 fails to localize to kinetochores, premature 

APC activation, 70% of meiosis II oocytes aneuploid
[36]

AurkB/C Oocyte-specific conditional ATP-binding pocket 
mutant of AURKC

F Most oocytes arrest at metaphase I, escapees are ane-
uploid

[41]

In vivo (Aurkc−/−) F Increased metaphase I arrest, increased chromosome 
misalignment, aneuploidy not increased

[44]

In vivo (Aurkc−/−) M No effect on meiosis I, subfertility due to post-meiotic 
spermatogenic defects

[128]

Spermatocyte-specific conditional KO of Aurkb M Metaphase I arrest and apoptosis [128]
Microinjection of kinase-dead Aurkc into oocytes F Misaligned chromosomes, premature chromosome 

segregation, abnormal k-fibre attachments, BUB1 
and BUBR1 fail to localize to kinetochores

[129]

Aurora kinase inhibitor F Frequent chromosome misalignment, accelerated mei-
otic progression, premature anaphase onset

[130]
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The leaky SAC in oocytes

In oocytes, SAC proteins localize as expected (see above), 
and interfering with their function leads to aneuploidy. On 
the other hand, multiple lines of investigation have shown 
that SAC stringency in oocytes is low. How can these 
observations be reconciled? In the last decade, improve-
ments in live cell imaging of oocytes have made it pos-
sible to discover the origins of mis-segregation by direct 
observation in vitro.

Detailed 3D time-lapse tracking of kinetochores in 
mouse oocytes demonstrated that initial attachments of 
bivalents to the meiotic spindle are inherently unstable 
[63]. Chromosomes often failed to make stable attach-
ments at all; unstable attachments were unable to activate 
the SAC in both wild-type oocytes [64, 65] and in oocytes 
with disrupted spindle architecture [66, 67]. In these stud-
ies, SAC proteins were found to be recruited to the kine-
tochores of non-aligned chromosomes, consistent with a 
functional checkpoint, yet at the same time APC activity 
was not inhibited. Thus, the SAC in oocytes responds to 
errors but is unable to provide the power required to pre-
vent anaphase. When SAC strength was measured (by its 
ability to prevent APC activity) during meiosis I, it was 
found to be partially active, even during metaphase when 
chromosomes were aligned. This activity contributes a 
significant delay to the timing of anaphase and reduces 
aneuploidy rates [68]. The SAC, therefore, seems to func-
tion more as a timer or gentle brake in female meiosis I, 
rather than a strict checkpoint. This limited checkpoint 
activity is consistent with observations in mitotic cells that 
checkpoint response can be graded [69]. An interesting 
facet of the SAC in female meiosis I is its ability to gener-
ate a strong checkpoint in response to DNA damage [35, 
70–72], demonstrating that the oocyte is capable of com-
plete APC inhibition. Why this power cannot be brought to 
bear in response to chromosome attachment errors requires 
further investigation.

Large oocyte volume can dampen SAC signalling

Compared with spermatocytes, SAC function in oocytes 
appears more dependent on wild-type protein levels 
(Table 1). Because protein levels vary cell-to-cell, in any 
given oocyte there may be a SAC-associated component 
whose local concentration is below a critical threshold for 
ensuring normal SAC function. This effect is likely exac-
erbated by the unusually large volume of oocytes (Box 2). 
Similarly, the kinetochore-to-volume ratio in oocytes is some 
orders of magnitude less than in a typical somatic cell. This 

may explain the SAC’s inability to fully restrain the APC 
when the wait-anaphase signal emanates from a small num-
ber of kinetochores. Recent work has addressed the issue of 
cell volume in the oocyte and early embryo (Box 2).

Univalents with bi‑polar attachments can evade 
the SAC

Univalents may bi-orient their sister kinetochores and, sub-
sequently, segregate sister chromatids at meiosis I. This 
type of “predivision”, i.e. premature division of meiosis I 
kinetochores, was first described for human oocytes [73]. 
Predivision can be either balanced, such that both univalent 
homologs separate their sisters into different daughter cells, 
or unbalanced, in which case one homolog undergoes sister 
chromatid separation while the other does not (Fig. 3a, bot-
tom). Alternatively, sister kinetochores can be maintained as 
a functional unit, with both attaching to a single spindle pole 
as is normal for meiosis I. This arrangement may be more 
likely to generate a non-disjunction outcome (Fig. 3a, top).

The type of attachments formed by the univalents may 
have implications for their detection by the SAC, although 
in females it is likely that either arrangement falls below the 
threshold for detection. Univalent bi-orientation would be 
expected to satisfy the SAC, as tension is generated across 
the univalent, leading to stable attachment [59]. However, 
when sister kinetochores are maintained as a functional unit, 
they would not be expected to generate stable attachment, 
and should be more likely to promote SAC signalling. Stud-
ies in the XO mouse suggest that at anaphase, ~ 40% of uni-
valents undergo predivision whilst ~ 60% are segregated to 
one spindle pole, inferring a reasonably even split between 
the two modes of attachment [74]. Mechanistic insight into 
this process was recently provided by high-resolution imag-
ing of aged live mouse oocytes [75]. In a subset of aged 
oocytes, bivalents first separated into univalents, followed by 
unscheduled sister chromatid separation in meiosis I, favour-
ing a view where univalents bi-orientate, and are thereby 
likely to evade the SAC.

Abnormal bi-polar attachment of univalents is likely 
relevant for human females as well. Using MeioMap-
ping to track genetic markers in human oocytes and polar 
bodies, Ottolini et al. recently identified a novel pattern 
of chromosome segregation that they termed reverse 
segregation [76]. This refers to a situation where both 
homologs undergo sister chromatid separation at meiosis 
I. Chromosome arrangements that could facilitate such 
a division have been observed at metaphase in human 
oocytes [77]. Reverse segregation lends support to the 
idea that the SAC in human females, as in mice, tolerates 
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unusual meiosis I chromosome configurations, at least in 
the IVF-treated population.

The above-cited studies and others have demonstrated 
that in female meiosis I, univalents can escape SAC sur-
veillance, essentially by behaving like mitotic chromo-
somes. Whether or not univalents in males could poten-
tially utilize the same strategy is not clear. The general 
consensus that the SAC in female meiosis is leaky, but 
against this backdrop, it should be appreciated that the 
meiotic SAC in males is not especially stringent either, 
as we shall discuss next (see also [78]).

Evidence for SAC leakiness in males

Compared to females, and aged females in particular (see 
below), male mice are able to segregate meiotic chromo-
somes quite accurately. This, we propose, is due to a low 
incidence of chromosomes prone to mis-segregation in 
the first place, rather than high SAC fidelity.

A stringent SAC response should prevent the forma-
tion of aneuploid daughter cells. This is not exactly true 
in male meiosis, as demonstrated by the following exam-
ples. First, univalents in Robertsonian translocation mice 
frequently evade that SAC, resulting in aneuploid sperm 
[57], as already mentioned. Second, in vivo treatment 
with nocodazole, a microtubule-disrupting chemothera-
peutic agent, delays meiotic progression but ultimately 
a fraction of spermatocytes divides with non-disjoined 
chromosomes, forming disomic sperm [79]. Moreover, 
inter-strain differences in the frequency of aneuploid 
sperm testify to relaxed SAC stringency. For example, 
sperm aneuploidy in PL/J mice is substantially higher 
than in C57BL/6 mice [80]. In XYSxr mice on a mixed 
C3H/HeH-101/H strain background, more than 10% of 
spermatocytes with non-exchange X–Y chromosomes 
can escape the SAC (calculated from data presented in 
[81]). The fact that under all these conditions, aneuploid 
sperm are produced—albeit at variable frequencies—
implies that the male SAC is leakier than perhaps gener-
ally appreciated. This effect may simply be masked by 
the low incidence of misbehaving homolog pairs in most 
wild-type spermatocytes.

Genetic background matters for fidelity 
of chromosome segregation

In addition to the variability in SAC stringency and 
sperm aneuploidy between different strains of laboratory 
mice (above), there is evidence that genetic background 

substantially affects chromosome segregation outcomes 
in females as well. The ability of the univalent X chro-
mosome in XO mice to bi-orientate depends to a degree 
on strain background [74]. Strain background also has a 
major impact on age-related oocyte aneuploidy: the most 
commonly used laboratory strain C57BL/6 appears rela-
tively resistant to age-related aneuploidy and to loss of 
the cohesin protector SGO2 when compared to the Swiss 
CD-1 strain [82].

No doubt there are numerous modifying factors respon-
sible for this variation, even in the presence of a “wild-
type”, i.e. unperturbed SAC. How much of this variation 
can be explained by inter-strain differences in critical SAC 
protein levels remains to be investigated. For instance, 
strain-specific polymorphisms in regulatory regions of key 
SAC genes could lead to substantial changes in SAC pro-
tein levels, thus leading to altered SAC stringency. Similar 
processes are likely responsible for inter-individual varia-
tion in sperm aneuploidy in humans (Box 3) as well.

Box 3: Sperm aneuploidy in men

Meiotic chromosome configurations and sperm ane-
uploidy in normal and infertile men have been assessed 
in many studies. The percentage of metaphase cells with 
aberrant chromosome configurations is surprisingly high, 
15–16%, and practically all abnormalities involve the X 
and Y chromosomes [119]. Therefore, as in mice, the X 
and Y in humans are the weak point for meiotic chromo-
some segregation.

Aneuploid sperm are relatively common (4%) in nor-
mal control males [120]. Individuals with defects in X–Y 
pairing often also produce aneuploid sperm [121–123]. 
Meiotic SAC surveillance in men thus appears inefficient 
compared to mice. In men undergoing infertility treat-
ment, substantial inter-individual variability was reported 
both in the inherent propensity to X–Y recombination 
defects, as well as the stringency with which meiocytes 
defective for sex chromosome recombination are elimi-
nated [123].

Age‑related cohesion loss and aneuploidy

In females, the extended period of prophase arrest in 
oocytes places extraordinary demands on sister chroma-
tid cohesion. The cohesive ties that hold chromatids and 
chromosomes together are susceptible to gradual loss over 
the female reproductive lifespan, in both mice and humans 
[22, 23, 83, 84]. In males, maintenance of sister chromatid 
cohesion is not a weak point for chromosome segregation 
due to the short duration of meiosis I (Fig. 2).
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The half-life of typical proteins is estimated to be only a 
few days in mice and humans [85], although some, notably 
in the brain, have been found to be stable for up to a year 
[86]. Cohesin cannot be loaded onto chromosome arms 
during dictyate arrest or during oocyte growth in mice 
[87, 88], and loss of cohesion protein expression after 
oocytes enter meiotic arrest is not detrimental to fertil-
ity [89], together indicating non-renewal of cohesin after 
its initial loading in pre-meiotic S phase. In contrast, in 
Drosophila cohesion replenishment during meiosis I is 
required to prevent aneuploidy [90]. Further, aneuploidy 
was increased in mice with haploinsufficient cohesion 
proteins [91], indicating sensitivity of the oocyte to lev-
els of these proteins before entering arrest. Maintenance 
of cohesion, therefore, probably relies on the exceptional 
longevity of cohesin ring proteins loaded during S-phase, 
far longer than is typical of other proteins, and not on 
renewal during the long period of arrest. Interestingly, age-
related loss of cohesion may also be promoted indirectly 
by increased separase activity during interkinesis between 
meiosis I and II, in turn stemming from greater securin 
loss during meiosis I in oocytes from older mice [92]. 
This is consistent with other observations in aged oocytes, 
where formation of single sister chromatids is observed 
after completion of MI during interkinesis [82] and the 
incidence of single chromatids in MII is more frequent 
than that of univalents in MI [22].

Unscheduled cohesin loss can lead to aneuploidy through 
the most direct route, premature release of the homologous 
chromosomes from one another in meiosis I, that is, the 
bivalent falling apart into univalents, or by the premature 
release of sisters in meiosis I ([75], Fig. 3) or II. However, 
aneuploidy can also be generated by more subtle changes 
in chromosome structure arising from only partial loss 
of cohesion. This can be measured as increased distance 
between sister kinetochores within each kinetochore of a 
bivalent, thought to be indicative of loss of cohesion leading 
to increased flexibility within the centromeric region [23]. In 
turn, this may cause the establishment of erroneous k-fibre 
attachments to the meiotic spindle, leading to increased 
chance of chromosome mis-segregation at anaphase and 
subsequently to aneuploidy [24, 75, 77].

When aberrant chromosome configurations are present, 
it then falls to the SAC to detect them and to prevent pro-
gression to MII. However, as discussed above in the case 
of univalents in MI, if erroneous attachments sufficiently 
occupy the kinetochores and generate enough tension to 
be stabilized, they will likely satisfy the SAC. Still, there 
is evidence that the SAC is weaker in aged oocytes: when 
aged oocytes were challenged with nocodazole they were 
more likely to complete meiosis I than young oocytes. This 
may be explained by lower kinetochore levels of MAD2 and 
phosphorylated Aurora C, preventing the checkpoint from 

responding to attachment errors [82]. Lower levels of BUB1 
and BUBR1 were also found on the kinetochores of aged 
human oocytes [40]. Increased APC activity in aged oocytes 
adds further weight to the notion that the SAC’s ability to 
limit progression to meiosis II decreases with age [92].

There is some indication of age-dependent increase in 
sperm aneuploidy in mice, but this mostly stems from meio-
sis II, not meiosis I [93]. Also in human males, an asso-
ciation between increased age and sperm aneuploidy was 
noted [94, 95]. Jeganathan and van Deursen observed an 
increase in aneuploid secondary spermatocytes of wild-
type mice older than 2 years (3–7% of cells, compared to 
0% in 5-month-olds [52]), indicating propensity to errors 
in meiosis I of older males as well. Koehler et al. reported 
no change in crossing-over in aging male mice [13]. More 
recently, crossover levels were actually found to increase 
with age; univalency of sex chromosomes and small auto-
somes also increased [96], implying overall mis-regulated 
crossover control. Intriguingly, in juvenile males, crossover 
assurance is less stringent, with reduced crossover levels 
and more non-exchange homolog pairs compared to adults 
[96, 97]. At present, there are no studies that pinpoint the 
mechanism(s) responsible for increased sperm aneuploidy 
with age. It seems plausible that a key factor is a decline in 
SAC stringency.

In contrast to the at best modest effects in older men, in 
women above the age of 35, gamete aneuploidy increases 
sharply. Maternal age remains the strongest associated risk 
factor overall for aneuploidy in embryos. Indeed, almost half 
of oocytes from IVF-treated women over the age of 38 are 
aneuploid [98]. Drivers of this aneuploidy include cohesin 
loss, which is likely the major age-related factor, and (age-
independent) SAC function deficits, which are compounded 
by difficulties in bivalent bi-orientation on the meiotic spin-
dle. It is worth noting that aneuploidy rates are surprisingly 
high even in oocytes of young women. Inefficient crosso-
ver maturation and subsequent achiasmy in human females 
[99] are age-independent factors that help explain this. On 
the other hand, oocytes with increased recombination are 
enriched in successful pregnancies in older women [76, 
100], thereby counteracting crossover control defects [99, 
100] in the overall oocyte pool.

Environmental factors

The above settings, most of them created in laboratory 
mice in vivo or ex vivo, have provided profound insights 
into meiotic chromosome segregation and/or SAC fidelity. 
Some, such as reduced SAC protein levels (possibly via, 
e.g. miRNA-mediated downregulation, as demonstrated for 
mitotic cells [101]), likely apply to humans also. However, 
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perhaps biologically the most relevant scenario to consider 
is how environmental factors may predispose to meiotic 
aneuploidy.

Many studies have assessed the effects of mutagen expo-
sure on meiotic chromosome segregation. In males, there 
is no clear consensus about the identity of true aneugens. 
Exposure to chemotherapeutic agents has a transient effect 
on sperm aneuploidy [79, 102], with important implications 
for reproductive counselling of men undergoing cancer treat-
ment. Alcohol and caffeine intake have also been reported 
to increase sperm aneuploidy [95]. A modest increase in 
sperm aneuploidy was reported in pesticide factory work-
ers [103]. Exposing mice to cigarette smoke causes spindle 
abnormalities in oocytes [104], but whether this actually 
leads to aneuploidy is not clear.

To date, the most straightforward aneugenic effect is 
induction of oocyte aneuploidy by bisphenol A (BPA), a 
component of plastics and epoxy resins [105]. More recently, 
it was also shown that BPA leads to reduced crossing-over in 
spermatocytes. This effect was indirect, however, via expo-
sure of spermatogonial stem cells to BPA [106] and it is not 
known whether these reduced crossover levels subsequently 
result in sperm aneuploidy. Non-ionizing radiofrequency 
radiation, emitted by mobile phones, seems to increase reac-
tive oxygen species and DNA damage in sperm (reviewed in 
[107]) but no data exist on its possible effect on the fidelity 
of chromosome segregation. Since this environmental factor 
is now ubiquitous in developed countries, studies assessing 
germ cell aneuploidy after long-term exposure would be of 
major interest in the future.

Concluding remarks

Over more than two decades, mouse genetics has provided 
fundamental insights into the molecular mechanisms of 
SAC function and chromosome segregation in male and 
female meiosis. Recent advances in high-resolution micros-
copy (mice) and high-throughput sequencing technology 
(humans) have unravelled how univalent chromosomes in 
females can escape meiotic SAC surveillance and how cohe-
sion declines irreversibly with age. Studies of male meio-
sis have been limited by the inability to manipulate these 
biological processes ex vivo. With the advent of testicular 
fragment culture (now successfully used in meiotic recom-
bination studies by Pacheco et al. [108]), it will be possible 
to expose spermatocytes to, e.g. small molecule inhibitors 
of SAC components, akin to experiments in oocytes. Com-
bining these approaches will continue to elucidate the fasci-
nating similarities and differences in meiotic chromosome 
segregation between males and females.
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