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Expression of the epithelial cell adhesion molecule EpCAM is upregulated in a variety of carcinomas. This antigen is therefore
explored in tumour diagnosis, and clinical trials have been initiated to examine EpCAM-based therapies. Notably, the possible
intracellular effects and signalling pathways triggered by EpCAM-specific antibodies are unknown. Here, we show treatment of the
mouse lung carcinoma cell line A2C12, of the human lung carcinoma cell line A549 and the human colorectal cell line Caco-2 with
the monoclonal EpCAM antibody G8.8 to cause dose dependently an increase in cell proliferation, as determined by the MTS and
the 50-bromo-20-deoxyuridine (BrdU) labelling assay. Furthermore, a genome-wide approach identified networks of regulated genes,
most notably cell cycle regulators, upon treatment with an EpCAM-specific antibody. Indeed, changes in the expression of cell cycle
regulators agreed well with the BrdU labelling data, and an analysis of differentially expressed genes revealed the processes with the
strongest over-representation of modulated genes, for example, cell cycle, cell death, cellular growth and proliferation, and cancer.
These data suggest that EpCAM is involved in signal transduction triggering several intracellular signalling pathways. Knowing EpCAM
signalling pathways might lead to a reassessment of EpCAM-based therapies.
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The epithelial cell adhesion molecule (EpCAM) was initially described
as tumour-associated antigen (Koprowski et al, 1979). However,
EpCAM was then shown to be a panepithelial marker that is enriched
at the basolateral membrane (Winter et al, 2003b). The level of
EpCAM expression has been associated with cellular differentiation,
for example the germinal regions in normal colonic crypts display
high levels of EpCAM expression, which decrease as cells differentiate
and migrate to the top of the villi (Schiechl and Dohr, 1987).

Expression of EpCAM is known to be upregulated in a variety of
carcinomas including those of the lung and colon (Went et al,
2006). Recent evidence is suggestive of EpCAM to serve as a cancer
stem cell marker (Yamashita et al, 2007). The correlation between
EpCAM expression and prognosis seems to be tissue specific. In
breast, ovarian, and oesophageal squamous cell carcinoma,
EpCAM overexpression has been correlated with poor prognosis
(Spizzo et al, 2002, 2004, 2006; Stoecklein et al, 2006). In contrast, a
positive impact of EpCAM overexpression on survival was found
in renal cell carcinoma and the subgroup of pT2 adenocarcinomas
of the lung (Seligson et al, 2004; Songun et al, 2005). On account of
its high level of expression in several carcinomas, it is a candidate
target for tumour diagnosis and therapy. Several clinical trials
targeting EpCAM have been conducted with variable success
(Baeuerle and Gires, 2007). Mouse-derived monoclonal antibodies

directed to EpCAM have been successfully used for adjuvant
treatment of minimal residual disease of colon carcinoma
(Riethmuller et al, 1994, 1998). Initially, the approach appeared
to improve long-term survival of patients, but a larger study could
not corroborate these promising therapeutic effects (Punt et al,
2002). At present, there are several ongoing clinical trials using
murine or human antibodies directed against EpCAM (reviewed in
Armstrong and Eck, 2003; Baeuerle and Gires, 2007). In vitro
studies demonstrated several possible mechanisms of action.
Antitumoral effects have been ascribed to antibody- and
complement-dependent cellular toxicity or anti-ideotypic immune
response (Fagerberg et al, 1995; Armstrong and Eck, 2003).
Therefore, targeting EpCAM for immunotherapy mainly aims to
break self-tolerance towards EpCAM. However, recent studies
showed that EpCAM itself can function as a signalling molecule.

Epithelial cell adhesion molecule is a membrane protein with
two EGF-like repeats, followed by a cysteine-poor region and a
short cytoplasmic tail (Baeuerle and Gires, 2007). It is known as
a Ca2þ -independent, homophilic cell– cell adhesion molecule.
However, there is growing evidence that EpCAM plays a functional
role not only in cell adhesion, but also in diverse processes such as
signalling, cell migration, differentiation, and proliferation.
Despite its function as a cell adhesion molecule, it has been
associated with metastasis formation (Gastl et al, 2000; Spizzo
et al, 2004; Varga et al, 2004), and silencing of EpCAM expression
was shown to decrease the migration rate (Osta et al, 2004; Winter
et al, 2007). Epithelial cell adhesion molecule has been shown to be
involved in the abrogation of E-cadherin-mediated cell–cell
interactions by disrupting the link between a-catenin and F-actin
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(Winter et al, 2003a). Epithelial cell adhesion molecule itself has
been shown to interact through a-catenin with the actin
cytoskeleton, thereby inducing the formation of stress fibres
(Guillemot et al, 2001). Moreover, a direct impact of EpCAM on
cell cycle control by upregulating the proto-oncogene c-myc and
the cyclins A and E has been reported (Munz et al, 2004). Recently,
it has been shown that EpCAM formed complexes with the tight-
junction protein claudin-7, the variant isoform of the cell–matrix
adhesion protein CD44v6, and the tetraspanin CD9, which
facilitated metastasis formation (Kuhn et al, 2007). Thus, EpCAM
signalling might depend on the microenvironment and interaction
with other membrane molecules as well as on the expression level
and subsequent possible oligomerisation. However, the exact
mechanisms of EpCAM signalling are yet to be elucidated.

In this study, we investigated the EpCAM-mediated signalling
upon crosslinking with a monoclonal rat anti-human antibody
G8.8. Therefore, we used a novel mouse lung carcinoma cell line
that was isolated from the lung tumour of a c-raf/c-myc double-
transgenic mouse as a model to investigate EpCAM signalling.
Moreover, we compared the results obtained from this cell model
with the two human cell lines A549 (lung carcinoma) and Caco-2
(colorectal carcinoma), both of which are well known to express
EpCAM highly, with the goal of understanding EpCAM signalling
across a broader scope of different tumour origins.

MATERIALS AND METHODS

Cell culture

The spontaneously transformed mouse lung carcinoma cell line
A2C12 was isolated from lung tumours of double c-myc and c-raf
transgenic mice. Cells were isolated from lung tumours of
8-month-old transgenic mice using the protocol for the isolation
and culture of rodent primary respiratory cells (Hansen et al,
2006). The human colorectal adenocarcinoma cell line Caco-2, the
human lung carcinoma cell line A549, and the mouse cell line
A2C12 were cultured in Dulbecco’s modified Eagle’s medium
supplemented with 10% foetal calf serum, 2 mM L-glutamine,
100 U ml�1 streptomycin, and 100mg ml�1 penicillin in a humidi-
fied atmosphere containing 5% CO2 at 371C.

Western blot analyses

Whole-cell extracts were prepared by harvesting and lysing the
cells with lysis buffer (50 mM Tris (pH 6.8), 1.5% w v�1 sodium
dodecyl sulphate). Samples were boiled for 10 min, sonicated 20
times at an interval setting of 0.5 (UP 200 s; Dr Hielscher, Teltow,
Germany) in 500 ml lysis buffer on ice, and centrifuged at 12 000 g
for 10 min at room temperature. The supernatant was recovered.
Protein content of the lysate was determined by Smith protein
assay.

Eighty micrograms of total protein extracts were separated on a
12% SDS– polyacrylamide gel and blotted onto a PVDF membrane
in 25 mM Tris and 190 mM glycin at 41C for 2 h at 350 mA. Blots
were blocked in Rotiblock (Roth, Karlsruhe, Germany) for 1 h and
then incubated overnight at 41C with rabbit anti-human antibodies
Raf-1 (C-12), c-Myc (N-262), CD44 (N-18), or CD133 (K-18) (all of
which are also recommended to detect mouse antigens respec-
tively; 1 mg ml�1; Santa Cruz, Heidelberg, Germany), or rat anti-
mouse EpCAM antibody (2 mg ml�1; kindly provided by Micromed,
Munich, Germany). Results for CD133 expression in mouse A2C12
were confirmed using rat anti-mouse CD133 antibody (13A4,
2.5mg ml�1; ebioscience, San Diego, CA, USA), with protein lysate
of mouse kidney as a positive control. After washing with Tris-
buffered saline (25 mM Tris and 135 mM NaCl; pH 7.6) containing
0.1% Tween and incubation with horseradish peroxidase-coupled
anti-IgG antibody (1 : 10 000; Chemicon, Temecula, CA, USA) at

room temperature for 1 h, the blot was washed extensively,
developed using enhanced chemiluminescent detection (Perkin-
Elmer, Jügesheim, Germany), and recorded with Kodak IS 440 CF
(Kodak; Biostep GmbH, Jahnsdorf, Germany).

Flow cytometry

Cells were trypsinised, washed twice with phosphate-buffered
saline (PBS; 140 mM NaCl, 10 mM Na2HPO4, 2.6 mM KCl, 1.4 mM

KH2PO4 (pH 7.4)), and immunoassayed, as described previously
(Maaser et al, 2001). Cells were incubated for 1 h at room
temperature with primary rabbit anti-mouse CD44 or rabbit anti-
human CD133 (both 4 mg ml�1; Santa Cruz), or with rat anti-mouse
EpCAM antibody (10 mg ml�1; kindly provided by Micromed),
respectively. Results of EpCAM expression in human cell lines
were confirmed using mouse anti-human EpCAM antibody
(10mg ml�1, clone 0.N.276; Santa Cruz). Cells were washed twice
with PBS and then incubated with 4 mg ml�1 secondary Alexat
488-labelled goat anti-rabbit (CD44 and CD133) or goat anti-rat
(EpCAM) IgG antibody (Molecular Probes, Eugene, OR, USA),
respectively, for 1 h at room temperature. Donkey anti-mouse IgG
(4mg ml�1; Dianova, Hamburg, Germany) was used as secondary
antibody for the mouse anti-human EpCAM antibody. Fluore-
scence was detected by flow cytometry on a FACSscan (Becton
Dickinson, Heidelberg, Germany) and analysed using CellQuest
software.

Cell proliferation

Cells were plated in 96-well microtitre plates at a density of 5000
cells per well 24 h before treatment. Cells were treated with
monoclonal rat anti-mouse EpCAM antibody at concentrations
of 1 –100 mg ml�1 for 48 h. Cell proliferation was measured using
two different methods: incorporation of 50-bromo-20-deoxyuridine
(BrdU) and metabolic conversion of 3-(4,5-dimethylthiazol-2-yl)-
5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium
(MTS).

Incorporation of BrdU 50-Bromo-20-deoxyuridine incorporation
was measured using BrdU Cell Proliferation Assay (Merck,
Darmstadt, Germany) according to the manufacturer’s instruc-
tions. Cells were labelled with BrdU (1 : 100) for the last 4 h of
incubation. Cells were washed, fixated, and incubated with mouse
anti-BrdU antibody (1 : 100; 100 ml per well) for 1 h at room
temperature. Antibody labelling was detected by secondary
peroxidase-coupled goat anti-mouse antibody (1 : 1000; 100ml per
well; 30 min at room temperature). After washing, peroxidase
substrate was added for 15 min. The peroxidase reaction was
stopped by adding 100 ml 2.5 N sulphuric acid, and absorbance was
measured using dual wavelengths 450 and 595 nm.

MTS assay The CellTiter 96s AQueous Non-Radioactive Cell
Proliferation Assay (Promega, Mannheim, Germany) was used to
determine the number of viable cells in culture. The MTS assay is
based on the ability of viable cells to convert a soluble tetrazolium
salt to a formazan product. After exposure to rat anti-mouse
EpCAM antibody, MTS reagent was added and cell cultures were
incubated at 371C for 1 h. Absorbance was recorded at 492 nm
(Victor multireader; PerkinElmer).

Isolation of RNA, production of c-RNA, array
hybridisation, and scanning

The c-RNA samples were prepared following the Affymetrix Gene
Chips Expression Analysis Technical Manual (Santa Clara, CA,
USA). Ten micrograms of biotinylated fragmented cRNA were
hybridised onto the Mouse Genome 430A 2.0 Array or the Human
Genome U133 Plus 2.0 Array, respectively. The procedures for
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isolation of RNA, production of c-RNA, array hybridisation, and
scanning were performed according to Affymetrix’s manual and as
described earlier (Borlak et al, 2005). Each hybridisation image
was scaled to probe set intensity of 250 for Mouse Genome 430A
2.0 Arrays and of 200 for the Human Genome U133 Plus 2.0 Arrays
for comparison between chips.

Gene expression data analysis

Data analysis was performed as described earlier (Borlak et al,
2005). For single arrays, a statistical expression algorithm within
the Affymetrixs Microarray Suite software (version 5) yielded
gene expression values as numeric values (signal intensities) and
detection calls (‘present’ or ‘absent’) produced with different
algorithms. A comparison between two arrays (tumour and control
lung) resulted in the signal logarithm ratio (log2 ratio) and a
change call (‘increase’ or ‘decrease’) for the expression level of
each gene. The group of differentially expressed genes was
restricted to those genes that were detected (‘present’ call) in
antibody-treated samples for the upregulated genes and in all
control samples for the downregulated genes. Further criteria were
a minimum intensity of 100 in treated samples, a fold change 42,
and 100% of ‘increase’ calls in comparative ranking analysis for
treated vs untreated samples for upregulated genes, and a
minimum intensity of 100 in control samples, a fold change
o�2, and 100% of ‘decrease’ calls accordingly for downregulated
genes. The list of differentially expressed genes was submitted to
Ingenuity Pathway Analysis 5.5 (www.ingenuity.com) to analyse
gene functions. The significance of functional enrichment was
computed by a Fisher’s exact test and represented by a range of P-
values associated with specific functions.

Reverse transcription and real-time semiquantitative PCR

Total RNA from each sample (2mg) was used for reverse
transcription (Omniscript Reverse Transcriptase; Qiagen GmbH,
Hilden, Germany). Real-time PCR was performed in a mixture
containing a c-DNA equivalent to 25 ng of total RNA, 1mM of each
primer, 0.5 mM dNTP mixture, 0.625 U Thermostart-Taq (ABgene,
Hamburg, Germany), and 1� PCR buffer (ABgene), 0.66 mg ml�1

bovine serum albumin, 1.75 mM MgCl2, and 5% SYBR Green (Roche
Diagnostics, Mannheim, Germany) in a total volume of 20ml. Real-
time RT–PCR measurement was performed with the LightCyclers

(Roche Diagnostics, Mannheim, Germany). Experimental condi-
tions and detailed oligonucleotide sequence information are given
in Supplementary Table S1. Specificity of primers was confirmed by
agarose-gel electrophoresis of PCR products. Differences in gene
expression are shown as fold changes of antibody-treated probes vs
untreated probes and calculated by DDCt values. Mean expression
values of the mitochondrially encoded ATP synthase 6 (MT-ATP6)
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were
taken as housekeeping genes.

RESULTS

Expression of c-raf, c-myc, EpCAM, CD133, and CD44

The cell line A2C12 was isolated from lung carcinomas of mice that
were double transgenic for c-myc and c-raf-1-BxB. Expression of
c-myc, c-raf, and transgenic c-raf-1BxB was detected by immunoblot.
The expression of wild-type c-raf (72 kDa) in A2C12 cells was
markedly stronger than in non-neoplastic lung tissues, A549 cells, or
Caco-2 cells (Figure 1A). However, the transgenic expression of
c-raf-1BxB (42 kDa) could not be detected in these cells, indicating
that A2C12 cells lost the transgenic c-raf-1BxB. Expression of c-myc
was detectable in all cell lines as well as in non-neoplastic lung tissue.

All investigated cancer cell lines expressed EpCAM, as revealed
by western blot analysis. In contrast, no EpCAM expression was

found in non-cancerous lung tissue (Figure 1A). Expression of
EpCAM in the cancer cell lines was confirmed by flow cytometry
(Figure 1B).

Epithelial cell adhesion molecule was found to be highly elevated
in pre-malignant hepatic tissues (Kim et al, 2004) and was
discussed as a marker for tumour progenitor cells (Yamashita et al,
2007). Therefore, we investigated whether the lung and colorectal
carcinoma cells used in this study express additional tumour stem
cell markers such as CD44 and CD133, as we showed that they
expressed EpCAM.

Expression of CD44 was shown for all investigated carcinoma cell
lines, but not in healthy mouse lung tissue, as determined by
western blot analysis (Figure 1C). CD44 expression was higher in
the mouse lung carcinoma cell line A2C12, which was isolated from
c-myc and c-raf transgenic mice, than in the human lung carcinoma
cell line A549 and the human colorectal carcinoma cell line Caco-2.
In contrast, the tumour stem cell marker CD133 was detected in
Caco-2 cells only. mRNA expression analysis for CD133 and CD44
by microarray analysis resembled the protein expression results. No
CD133 mRNA expression (detection call ‘absent’) could be detected
in the lung carcinoma cell lines A2C12 and A549, whereas a high-
expression signal intensity was seen in Caco-2 cells (Figure 1C).
CD44 mRNA was detected in all the three cell lines. Expression of
CD44 protein was confirmed by flow cytometry (Figure 1D).

Monoclonal anti-EpCAM antibody G8.8-induced
proliferation

After 48 h of treatment, monoclonal rat anti-mouse EpCAM
antibody G8.8 dose-dependently increased the number of meta-
bolically active cells. A significant increase in cell number was
observed in the mouse lung carcinoma cell line A2C12 already at
10 mM antibody treatment and in the human colorectal carcinoma
cell line Caco-2 at 100 mM antibody treatment (Figure 2A). In the
human lung carcinoma cell line A549, anti-EpCAM antibody
induced a slight (at 10 mM up to 114% as compared with untreated
control), but not significant, increase (data not shown).

Next, BrdU incorporation was measured to assess the prolifera-
tion-modulating effects of the anti-EpCAM antibody G8.8. In
A2C12 cells as well as in A549 cells, a significant increase in BrdU
incorporation was detected upon treatment with 100mM anti-
EpCAM for 48 h (Figure 2B). However, in contrast to the
proliferation-inducing effects measured by MTS assay, no changes
in BrdU incorporation could be measured in Caco-2 cells. This
might be due to the long generation time of about 62 h of Caco-2
cells, leading to a lower sensitivity of the BrdU assay in these cells.

Anti-EpCAM antibody-induced modulation of gene
expression

The genome-wide expression profile of EpCAM antibody-treated
cells was analysed to investigate the molecules involved in EpCAM
signalling. Epithelial cell adhesion molecule antibody modulated
gene expression in all investigated cell lines, however, to different
extents (Supplementary Table S2). Gene expression modulation
was most prominent in mouse and human lung carcinoma cell
lines, A2C12 and A549, in both of which expression of more genes
was downregulated than upregulated. In A2C12 cells, anti-EpCAM
antibody treatment modulated the expression of 1973 gene
transcripts (probe sets), 901 (46%) of which were increased and
1072 (54%) decreased. The modulation of gene transcription was
similarly high in A549 cells (1743 modulated gene transcripts, 598
(34%) of which were increased and 1154 (66%) decreased). In the
colon adenocarcinoma cell line Caco-2, less genes were modulated
in total, with a higher extent of upregulation than downregulation.
In Caco-2 cells, the expression of 378 gene transcripts was
changed, 246 (65%) of which were increased and 142 (35%)
decreased.

EpCAM antibody-induced proliferation

K Maaser and J Borlak

1637

British Journal of Cancer (2008) 99(10), 1635 – 1643& 2008 Cancer Research UK

T
ra

n
sl

a
ti

o
n

a
l

T
h

e
ra

p
e
u

ti
c
s

www.ingenuity.com


Analysis of function of differentially expressed genes was
computed using Ingenuity Pathway Analysis software. Interestingly,
the processes with the strongest over-representation of differentially
expressed genes were the same for A1C12, A549, and Caco-2 cells.

These processes include cell death, cell signalling, cellular growth and
proliferation, cancer, cell cycle, and gene expression (Table 1A).

We further analysed genes related to cell cycle modulation with
respect to their relevance for the distinct phases of the cell cycle.
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Figure 1 Expression of c-raf, c-myc, EpCAM, CD44, and CD133. (A) Expression of c-raf in A2C12 cells (lane 2) was markedly stronger than that in non-
neoplastic lung tissue (lane 1), A549 cells (lane 3), or Caco-2 cells (lane 4). Expression of c-myc was detected in non-neoplastic lung tissue (lane 1) as well as in
A2C12 cells (lane 2), A549 cells (lane 3), and Caco-2 cells (lane 4). Epithelial cell adhesion molecule was found to be expressed in the cancer cell lines A2C12
(lane 2), A549 (lane 3), and Caco-2 (lane 4), but not in non-cancerous lung tissue (lane 1) as determined by western blot analysis. (B) Epithelial cell adhesion
molecule expression in A2C12, A549, and Caco-2 cells was determined by flow cytometry using anti-EpCAM antibody G8.8. The mean fluorescence of
EpCAM-labelled cells (filled curve) was increased 1.98-fold for A2C12 cells, 1.92-fold for A549 cells, and 1.46-fold for Caco-2 cells as compared with the
respective controls (black line). (C) CD44 was found to be highly expressed in the mouse lung carcinoma cell line A2C12 (lane 2), but not in non-cancerous
lung tissue (lane 1), as determined by western blot analysis. A low CD44 expression was found in the cell lines A549 (lane 3) and Caco-2 (lane 4). CD133 was
found to be expressed in Caco-2 cells (lane 4) only, but not in non-cancerous lung tissue (lane 1), A1C12 cells (lane 2), and A549 cells (lane 3). Expression
signal intensities for CD133 and CD44 of control cells (white columns) and G8.8 antibody-treated cells (black columns), as determined by microarray analysis.
In the case of more than one probe set per gene (CD44), highest intensities of the probe sets, which are specific for only one transcript designated as
number_at, are shown. Signal intensities of probe sets 1419700_a_at (mouse CD133), 204304_s_at (human CD133), 1423760_at (mouse CD44), and
212063_at (human CD44) are shown. (D) CD44 expression was confirmed for A2C12, A549, and Caco-2 cells by flow cytometry. Cells were stained with
the rat anti-human CD44 antibody (filled curve) or isotypic control antibody (black line) and secondary FITC-labelled anti-rat antibody. Results of one
representative experiment each are shown. EpCAM¼ epithelial cell adhesion molecule.
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Most differentially expressed genes are related to the G1/G0 phase
of the cell cycle in all investigated cell lines (Table 1B). It is worth
noting that not all differentially expressed genes associated with
cell cycle functions can be explicitly related to specific phases.
Moreover, some genes were related to more than one cell cycle
phase.

Three genes, which can be associated with specific cell cycle
phases, were found to be commonly upregulated in all the three
investigated cell lines (see also Table 2): the growth arrest and
DNA-damage-inducible gene, b (GADD45B, all cell cycle phases),
the large tumour suppressor, homologue 2 (LATS2, G1/S-phase
transition and G2/M phases), and the pim-1 oncogene (PIM1, G2/
M phases).

The expression of 11 different genes, which can be associated
with specific cell cycle phases, was commonly modulated by
antibody treatment in both lung carcinoma cell lines A2C12 and
A549, but not in the colorectal carcinoma cell line Caco-2. Eight of
these genes were found to be upregulated, whereas only three
genes were downregulated. Interestingly, the downregulated genes
include only those genes that have been exclusively associated with
the G1/G0 phase of the cell cycle. These data indicate that cells in

the G1/G0 phase are under-represented upon EpCAM antibody
treatment, thereby reflecting the pro-proliferative effects of this
treatment. Downregulated genes include CD44, met proto-onco-
gene (MET), and the apartyl-t-RNA synthetase (DARS). DARS is
known to decrease G1/S-phase transition (Yamashita et al, 1999),
and its downregulation by EpCAM antibody treatment might
therefore contribute to the proliferative effects of antibody
treatment. However, two genes exclusively linked to the G1/G0
phase were found to be upregulated in A2C12 and A549 cells, the
cysteine-rich angiogenic inducer 61 (CYR61) and the dual-
specificity phosphatase 1 (DUSP1). Other cell cycle-associated
genes upregulated in A2C12 and A549 cells include the superoxide
dismutase 2 (SOD2, G1/G0 and S phases), basic helix – loop–helix
domain containing class B 2 (BHLHB2, S phase), jun B proto-
oncogene (JUNB, S and G2/M phases), jun oncogene (JUN, G1/G0
and G2/M phases), leukaemia inhibitory factor (LIF, G1/G0 and
G2/M phases), and MDM2 (all cell cycle phases).

Three genes, which can be associated with specific cell cycle
phases, were found to be commonly modulated in both human
carcinoma cell lines A549 and Caco-2. The DNA-damage-inducible
transcript 3 (DDIT3), also known as GADD153, and the growth
differentiation factor 15 (GDF15), which have been associated with
the G1 phase of the cell cycle, were found to be upregulated. The
expression of thymidylate synthetase (TYMS, G1 and S phases) was
downregulated in A2C12 and A549 cells by EpCAM antibody
treatment.

Most differentially expressed genes associated with cell cycle
were related to specific cell cycle phases in A2C12 cells. Therefore,
we focused on A2C12 cells during single-gene analysis (Figure 3A).
We identified mainly three functional groups of genes associated
with cell cycle regulation: first, genes whose products are directly
involved in cell cycle regulation such as cyclins, cyclin-dependent
kinases, phosphatases, and cell cycle inhibitors; second, genes that
code for growth factors, growth factor receptors, and their adaptor
and signalling proteins. Moreover, several transcription factors
were found to be differentially expressed. Several of these genes
can be considered as p53 network (Figure 3B), which might play a
role in the signal transduction leading to the proliferative effects of
EpCAM antibody treatment. Epithelial cell adhesion molecule
antibody altered proliferation similarly in the three investigated
cell lines. We therefore focused on genes that were significantly
modulated in A2C12, A549, and Caco-2 cells in parallel to further
investigation of EpCAM signalling (Table 2). Interestingly, five out
of 13 commonly modulated genes were related to cell cycle-
regulating or apoptotic functions. Expression of the genes
positively regulating the cell cycle (LATS2, FOSL2, and PIM1) or
inhibiting apoptosis (GADD45 and PIM1) was increased, whereas
the expression of a pro-apoptotic gene transcript was decreased
(DIDO1). Other genes differently regulated by anti-EpCAM anti-
body treatment include genes for three enzymes of biosyntheses
(FDFT1, LCMT2, and MAT2A), one topoisomerase (TOP2A), one
gene associated with protein folding (DNAJA1), and four
transcripts of unknown functions (Table 2).

Validation of microarray data by real-time PCR

Expression of selected genes was investigated with real-time PCR
using the LightCycler. Comparisons of fold changes determined by
microarray analysis and real-time PCR are shown in Table 3 and
Supplementary Figure S1. In almost all cases, the significant
change found by microarray analysis could be confirmed by real-
time PCR analysis. Although the level of altered expression varied,
there was strong concordance between both methods. Only a few
divergent results between the two methods have been detected,
which might be due to the different probe sets/fragments of the
specific gene targeted by the respective method. For example, a
decreased expression of Trp53 in microarray analysis was
measured only in two probe sets that recognise multiple alternative
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Figure 2 Anti-EpCAM antibody-induced proliferation. Cells were incu-
bated with monoclonal rat anti-mouse EpCAM antibody G8.8 for 48 h,
and metabolically active cells were measured using MTS assay (A) and
proliferation was determined by measurement of incorporation of BrdU
(B). Means±s.d. of four independent experiments is shown. *Po0.05.
BrdU¼ 50-bromo-20-deoxyuridine; EpCAM¼ epithelial cell adhesion mole-
cule; MTS¼ 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulphophenyl)-2H-tetrazolium.
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transcripts from the same gene each, whereas a third definite probe
set did not recognise any modulation of expression. In general,
criteria defining differential expression (see Materials and
Methods) are more restricted in microarray data analysis than in
real-time PCR analysis, resulting in fewer genes identified as
differentially expressed by microarray analysis.

DISCUSSION

Epithelial cell adhesion molecule is one of the first tumour-
associated antigens identified with monoclonal antibodies (Herlyn
et al, 1979). A variety of cancer therapy strategies and clinical trials
have since made use of EpCAM as a target molecule for (single-
chain) monoclonal and bispecific antibodies. However, only
recently has it become apparent that EpCAM itself triggers
intracellular signalling. Consequently, little is known so far about
the possible intracellular signalling induced by EpCAM-specific
antibodies. In this study, it was shown that treatment with

monoclonal rat anti-mouse EpCAM antibody G8.8 induced
proliferation of mouse and human lung carcinoma cells as well
as human colorectal carcinoma cells. The in vitro pro-proliferative
effects of anti-EpCAM treatment shown in this study are
surprising, as in vivo application of anti-EpCAM antibody resulted
in tumour growth suppression (Naundorf et al, 2002). However,
proliferative effects have also previously been shown for the mouse
anti-rat EpCAM monoclonal antibody D5.7 (Wurfel et al, 1999).
Immobilised D5.7 induced proliferation in non/low-metastasising
rat pancreatic adenocarcinoma, fibrosarcoma, and pheochromo-
cytoma cell lines, which had previously been transfected with
EpCAM. These data suggest that crosslinking of EpCAM by
bivalent antibodies and possible subsequent di-/oligomerisation
triggers pro-proliferative signals. High EpCAM expression has
been associated with an increased proliferation of keratinocytes
(Schon et al, 1994). On the other hand, knockdown of EpCAM by
EpCAM short-interfering RNA resulted in a decrease in the cell
proliferation rate in four different breast cancer cell lines (Osta
et al, 2004). Thus, both treatment with EpCAM-specific antibodies

Table 1 Analysis of function of differentially expressed genes

Number of differentially expressed genes (induced/repressed)

(A) Functional category A2C12 A549 Caco-2 A2C12/A549a

Cell cycleb 232 (126/106) 153 (73/80) 33 (25/8) 29 (20/9)
Cellular growth and proliferationc 415 (204/211) 306 (139/167) 46 (33/13) 48 (29/19)
Cell deathd 395 (202/193) 265 (128/137) 62 (48/14) 49 (33/16)
Cancere 462 (242/220) 344 (155/189) 77 (54/23) 54 (31/23)

Number of differentially expressed genes (induced/repressed)

(B) Cell cycle phase A2C12 A549 Caco-2 A2C12/A549/Caco-2a A2C12/A549a A549/Caco-2a

G0/G1 phases and G1/S transition 58 (25/33) 38 (20/18) 8 (5/3) 2 (2/0) 9 (6/3) 3 (2/1)
S phase 36 (21/15) 28 (16/12) 1 (0/1) 1 (1/0) 4 (3/0) 1 (0/1)
G2/M phases 38 (27/11) 18 (12/6) 5 (4/1) 3 (3/0) 4 (4/0) 0

(A) Most significantly over-represented functional categories in the group of significantly regulated genes are shown. (B) Analysis of cell cycle-related differentially expressed
genes. aCommonly modulated in the cell lines mentioned. bIncludes the functions and stages of the cell cycle including cell division. Functions associated with mitosis and meiosis
are included in this category. Some examples of functions in this category are assembly of telomeres, cell cycle progression, and G0 phase of cells. cIncludes functions associated
with the growth and proliferation of cells. Some examples of these functions include colony formation, proliferation, and outgrowth of cells. dIncludes functions associated with
cellular death and survival. Some examples of functions included in this category are cytolysis, necrosis, survival, and recovery of cells. eIncludes functions associated with cancer.
This includes any process associated with a tumour, cancer cell, or cancerous tissue, as well as any object associated with a cancer process such as transformation and metastasis.
This category also includes all cancerous diseases.

Table 2 Genes differentially regulated by anti-EpCAM antibody in A2C12, A549, and Caco-2 cells in parallel

Probe set ID Fold change

A2C12 A549 Caco-2 Gene symbol Gene title A2C12 A549 Caco-2

1426156_at 230348_at 230348_at LATS2 Large tumour suppressor homologue 2 16 9.9 4.3
1450971_at 209304_x_at 209304_x_at GADD45B Growth arrest and DNA damage-inducible gene 45b 18.4 2.5 2.3
1422931_at 218880_at 218880_at FOSL2 FOS-like antigen 2 12.1 6.5 2.1
1435458_at 209193_at 209193_at PIM1 Pim-1 oncogene 13.9 4.6 2.1
1456405_at 227335_at 227335_at DIDO1 Death inducer-obliterator �5.3 �3.5 �5.7
1438322_x_at 239358_at 239358_at FDFT1 Farnesyl-diphosphate farnesyltransferase 2.1 13.9 2.0
1427285_s_at 226675_s_at 226675_s_at MALAT1 Metastasis-associated lung adenocarcinoma transcript 1 (non-coding) 5.3 2.1 3.7
1454694_a_at 237469_at 237469_at TOP2A Topoisomerase IIa 2.6 2.8 2.8
1416958_at 209750_at 209750_at NR1D2 Nuclear receptor subfamily 1, group D, member 2 2.0 2.3 2.3
1455171_at 218242_s_at 222566_at SUV420H1 Suppressor of variegation 4-20 homologue 1 �4.3 �2.6 �2.5
1424055_at 239815_at 225145_at NCOA5 Nuclear receptor coactivator 5 �2.1 �3.7 �3.0
1423667_at 200769_s_at 200769_s_at MAT2A Methionine adenosyltransferase IIa �3.0 �2.1 �2.3
1460179_at 200880_at 200880_at DNAJA1 DnaJ (Hsp40) homologue, subfamily A, member 1 �2.8 �2.0 �2.1

EpCAM¼ epithelial cell adhesion molecule.
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Figure 3 Cell cycle-related genes significantly regulated by anti-EpCAM treatment of A2C12 cells. The gene expression profile was investigated by
microarray analysis, and significantly modulated genes were analysed using ingenuity software. (A) Shown are all the genes identified as functionally relevant
to cell cycle regulation in the specific cell cycle phases. (B) Differentially expressed genes upon EpCAM antibody treatment of A2C12 cells, which can be
considered as p53 network. Genes induced by anti-EpCAM treatment are indicated in bold, whereas genes that were repressed are indicated in italic.
EpCAM¼ epithelial cell adhesion molecule.

Table 3 Modulation of gene expression as detected by microarray analysis and real-time PCR

A2C12 A549 Caco-2

Fold change Fold change Fold change

Gene Microarray analysisa Real-time PCR Gene Microarray analysisa Real-time PCR Microarray analysisa Real-time PCR

Lats2 16.0 1.7 LATS2 9.9 2.5b 4.3 2.5b

Gadd45b 18.4 Inducedc GADD45B 2.5 Inducedc 2.3 Inducedc

Mdm2 2.1 1.5b MDM2 2.9 3.2b Ncd 1.3
Pim1 13.9 Inducedc PIM1 4.6 10.7b 2.1 2.9b

Trp53 �3.5 2.4b TP53 Ncd 2.8b Ncd �1.5
Ccna2 2.6 2.4b CCNA2 1.5 4.1b Ncd 1.1
Ccnd2 �3.3 �3.2b CCND2 Ncd 2.3 1.5 2.5b

EpCAM¼ epithelial cell adhesion molecule. aIn the case of more than one probe set identifying modulated gene expression, the highest fold change value is shown. All values
p�2 or X2 are statistically significant for Po0.002. Fold changes between �2 and 2 have not been considered as significant according to the applied criteria (see Materials and
Methods). bDifferences of gene expression between EpCAM antibody-treated and untreated cells were statistically significant (Po0.05). cFold change could not be calculated, as
no expression was detectable in the non-treated control probe. Expression of the specific PCR product in the antibody-treated probes was shown by agarose gel electrophoresis
(Supplementary Figure S1). dNc: no change.
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and EpCAM overexpression led to an increased cell proliferation.
It is tempting to speculate that spatial proximity of EpCAM
molecules, either induced by crosslinking or by higher density,
may be the trigger for proliferative signalling and that both
processes involve similar pathways.

The exact pathways by which EpCAM modulates proliferation
are, however, unknown. In this study, we performed gene
expression analysis to further identify the molecules possibly
involved in EpCAM antibody-induced signalling. The number of
differentially expressed genes upon EpCAM treatment differed
between the cell lines. The expression of most genes was found to
be regulated in A2C12 and A549 cells, less in Caco-2 cells. In this
study, all cell lines were treated with EpCAM-specific antibodies
for the same time period. However, the investigated cell lines differ
in their biological properties, for example EpCAM expression (see
Figure 2) and generation time. The doubling time of the
investigated cell lines ranged from 6.7 h for A2C12 and 22 h for
A549 to 62 h for Caco-2 cells. Therefore, it cannot be excluded that
the quantity of differentially expressed genes depends on the
biological features of the cells and adapted treatment modalities, so
that for example, different antibody concentrations or different
incubation times might lead to similar numbers of regulated genes.

Despite the differences in the quantity of differential gene
expression, a wide overlap was detected when analysing the
functions of regulated genes. Grouping the differentially regulated
genes into functional processes, the cellular processes with the
strongest over-representation of differentially expressed genes
were the same for A1C12, A549, and Caco-2 cells. These processes
include cell cycle, cell death, cellular growth and proliferation, and
cancer. The identified functional groups resemble well the
proliferative phenotype of cells treated with EpCAM antibody.

On the individual gene level, we concentrated on those genes
that were commonly expressed in the cell lines A2C12, A549, and
Caco-2. Five out of 13 commonly modulated genes were related to
cell cycle-regulating or apoptotic functions. Gene expression
analysis revealed that induction of proliferation was accompanied
by an induction of genes whose products induce cell cycle
progression (LATS2, FOSL2, and PIM1) or exert an antiapoptotic
action (GADD45 and PIM1), whereas expression of pro-apoptotic
genes was repressed (DIDO1). Lats2 was shown to interact
physically with Mdm2, thereby inhibiting p53 ubiquitination and
promoting p53 activation (Aylon et al, 2006). FOSL2 belongs to a
family of transcription factors that have been implicated as
regulators of cell proliferation, differentiation, and transformation
(Tulchinsky, 2000). The GADD45B belongs to a group of genes that
respond to environmental stresses and are involved in the
regulation of growth and apoptosis. They are known to exhibit
pro-apoptotic functions (Takekawa and Saito, 1998). However,
recent reports showed that GADD45 genes also function in cell
survival (Gupta et al, 2006). PIM1 is a serine/threonine kinase that
is involved in cell cycle progression and apoptosis (Bachmann and
Moroy, 2005). DIDO1 was shown to be upregulated in early
apoptosis and to trigger apoptosis (Garcia-Domingo et al, 2003).
These data showed that the gene expression profile well reflects the
functional pro-proliferative effects of anti-EpCAM antibody.

Several differentially expressed genes can be considered as p53
network, which might play a role in the signal transduction leading
to the proliferative effects of EpCAM antibody treatment. p53
expression was downregulated upon EpCAM antibody treatment
possibly due to an overexpression of its regulator Mdm2. Cyclin G
(Ccng2) was one of the earliest p53 target genes. Moreover, cyclin
G directly interacts with Mdm2 and can stimulate the ability of
PP2A to dephosphorylate Mdm2, leading to a degradation of p53
(Chen, 2002). In contrast, the p53 activator Lats2 was found to be
upregulated. However, induction of other genes inhibiting p53 and
repression of genes positively regulating p53 might as well
contribute to the downregulation of p53. The transcription factor
Jun is known to inhibit p53 transcription, whereas the transcrip-
tion factor Sp1 is known to be a positive regulator of p53. The
RB1-inducible coiled-coil 1 (Rb1cc1) was shown to stabilise
p53 (Melkoumian et al, 2005). Likewise, the phosphorylation of
p53 by mitogen-activated protein kinase 14 (Mapk14), also known
as p38, activates p53 (Harris and Levine, 2005). Epithelial cell
adhesion molecule expression has recently been associated
with cell cycle regulation. Ectopic expression of EpCAM in kidney
cells resulted in the upregulation of c-myc as well as cyclins A
and E (Munz et al, 2004). In this study, the expression of cyclin A
was also found to be upregulated in A2C12 cells after 48 h of
EpCAM treatment.

The application of EpCAM-specific antibodies as antineoplastic
agents led to inconsistent results (reviewed in Baeuerle and
Gires (2007) and Chaudry et al (2007)). The mechanisms by which
anti-EpCAM antibodies exert tumour inhibition in vivo remain
controversial. The cytotoxic mechanisms include antibody-depen-
dent cell cytotoxicity mediated by natural killer cells and
T lymphocytes, complement-mediated cytolysis, and opsonisation
promoting phagocytosis mediated by polymorphonuclear cells.
Taken together, EpCAM antibody treatment seems to make
tumour cells recognisable for immune response in vivo, and the
antineoplastic effects of the antibody require the immune
response. These in vivo effects might overlay the possible EpCAM
antibody-triggered pro-proliferative intracellular signalling seen
in this study. However, future studies will have to show whether
anti-EpCAM antibodies clinically applied as antitumour agents
display the same pro-proliferative intracellular signalling as the
antibody G8.8 used in this study.
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