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Abstract
Differentiation of chondrocytes towards hypertrophy is a natural process whose control is

essential in endochondral bone formation. It is additionally thought to play a role in several

pathophysiological processes, with osteoarthritis being a prominent example. We perform a

dynamic analysis of a qualitative mathematical model of the regulatory network that directs

this phenotypic switch to investigate the influence of the individual factors holistically. To

estimate the stability of a SOX9 positive state (associated with resting/proliferation chondro-

cytes) versus a RUNX2 positive one (associated with hypertrophy) we employ two mea-

sures. The robustness of the state in canalisation (size of the attractor basin) is assessed by

a Monte Carlo analysis and the sensitivity to perturbations is assessed by a perturbational

analysis of the attractor. Through qualitative predictions, these measures allow for an in sil-
ico screening of the effect of the modelled factors on chondrocyte maintenance and hyper-

trophy. We show how discrepancies between experimental data and the model’s results

can be resolved by evaluating the dynamic plausibility of alternative network topologies.

The findings are further supported by a literature study of proposed therapeutic targets in

the case of osteoarthritis.

Introduction

Relevance of developmental biology to bone tissue engineering
In bone tissue engineering (TE) strategies, progenitor cells are combined with a bioartificial
scaffold and/or specific growth factors to initiate a process of new bone formation with the aim
of addressing an unmet clinical need in treating large bone defects [1]. For TE constructs, an
important obstacle for clinical translation lies in controlling the variability in the cell popula-
tions available for this approach. Typically these populations are heterogeneous and may fur-
thermore differ dramatically in behaviour in different individuals [2]. This may partly explain
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why the tissue engineering approach currently lacks the reproducibility essential for successful
clinical translation. In line with the recently introduced paradigm of `developmental engineer-
ing', a more fundamental understanding of the biological processes involved in bone formation
and repair can therefore be of great use in improving the efficacy of these constructs [3]. Given
that the bone defect healing process is in effect a reiteration of developmental bone formation,
albeit in a different context and microenvironment, we can use the wealth of studies on devel-
opmental biology that is available to provide biological data [4,5].

Chondrocyte hypertrophy
Specifically, we model the activity and interaction of the set of genes that is thought to be cru-
cial for the late differentiation of chondrocytes in the growth plate, nature’s engine for bone
growth [6]. This process is called hypertrophy, a crucial step in endochondral ossification, the
most common bone forming process responsible for the formation of the appendicular and
axial skeleton [7]. During hypertrophic differentiation, the growth plate chondrocytes undergo
a differentiation cascade that takes them from round resting zone chondrocytes through prolif-
erating chondrocytes in columnar organisation to enlarged hypertrophic chondrocytes. Hyper-
trophic chondrocytes secrete catabolic factors to degrade the cartilage matrix and they attract
blood vessels and accompanying osteoblast precursors to invade and form the bone primordia.
These characteristics make hypertrophic chondrocytes well suited for incorporation into bone
TE constructs [8,9]. These same characteristics also separate them distinctively from perma-
nent cartilage, such as articular cartilage, which—under healthy conditions—is not susceptible
to hypertrophic differentiation [10–12]. Yet, ectopic hypertrophy will occur under pathophysi-
ological conditions such as in osteoarthritis (OA). This phenotypic switch to hypertrophy can
furthermore drive other pathophysiological processes such as heterotopic ossification and
intervertebral disc calcification [13–15]. Genetic studies imply that faults in structural proteins
do not appear to be decisive in developing OA, leading to the interpretation that the aetiology
is regulatory rather than structural [16]. Given that RUNX2 heterozygote knockout mice show
resistance to OA development in conjunction with decreasedMMP13 expression, it is indeed
likely that chondrocyte hypertrophy will play at the least a contributory role in OA pathophysi-
ology [17,18].

Mathematical modelling of regulatory network overseeing hypertrophy
A curse in cartilage TE and a boon for bone TE, understanding the cellular machinery underly-
ing hypertrophy is equally essential to both endeavours. For this reason, along with its occur-
rence in several pathophysiological processes, this study focuses on the hypertrophic fate
decision in chondrogenic differentiation. We hence aim to increase insight into the molecular
networks underpinning the prevention, induction or propagation of chondrocyte hypertrophy
by incorporating biological information into a qualitative mathematical model. Depending on
the quantity and the form of information that is available, many modelling formalisms have
been introduced suited to perform dynamical studies of networks [19–21]. Many formalisms
can be categorized as discrete or continuous, deterministic or stochastic, qualitative or quanti-
tative, numerical or analytical, but hybrids falling into neither category are abound [22–27].
Due to the difficulty in establishing a suitable in vitromodel and the technological obstacles in
obtaining in vivo data in cartilage biology, detailed kinetic data are scarce, necessitating a quali-
tative approach. Here we employ a qualitative approach with a limited time resolution [28]. In
short, this framework allows an investigation of the qualitative response to different doses of
growth factors taking into account a simplified dynamics where biological interactions occur
on two disparate time scales.
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Objectives
Specifically, in this work we attempt to deduce the contributions of individual factors to the sta-
bility of the chondrocyte phenotype and to hypertrophic differentiation. To this end, we con-
structed an elaborate network incorporating many factors deemed vital to this process. The
gene network centres on the primordial transcription factors SOX9 and RUNX2 whose pres-
ence or absence is decisive for cell fate decisions. Indeed, persistent SOX9 expression is required
for permanent cartilage while overexpression of RUNX2 induces hypertrophy and is an impor-
tant earmark of hypertrophy in transient cartilage [29,30]. In combining several signalling
pathways we are able to establish a more holistic view of cartilage biology, and the extent to
which different factors impact on fate decisions as their effects ripple through this regulatory
network.

Materials & Methods
The network analysed here is intended to simulate the phenotypic switch from proliferation to
hypertrophy in growth plate chondrocytes. The model is based on an extensive literature study
and is an expansion of a previously published model [31]. Uniquely, this novel model is
focused on the control of crucial genes, SOX9 and RUNX2. In particular, Insulin-like growth
factor (IGF) signalling and the phosphatidylinositol-3-kinase (PI3K)–AKT pathway are among
the pathways that were added in light of their importance in chondrogenesis and association
with SOX9 and RUNX2 control [32]. Moreover, transcription factors that contribute to the
transition from proliferation to hypertrophy have been included. Of note, we incorporated
hypoxia-inducible factor-2α (HIF-2α), which is hypothesized to be a causative factor in ectopic
hypertrophy in the onset of osteoarthritis [33,34]; activating transcription factor 4 (ATF4), the
absence of which accelerates hypertrophy in mouse models [35], and δ-EF1, an inhibitor of
IHH expression [36]. Additionally, we attempted to improve our prediction of parathyroid
hormone-related protein (PTHRP) and Indian hedgehog (IHH) expression, two major deter-
minants of growth plate biology, by adding more upstream interactions [6]. Jointly these
changes allow an improved simulation of the factors that play a role in the hypertrophic switch.
It is of note that the network is an abridged version in the sense that only biological factors that
receive multiple inputs are included whereas factors that simply act as a relay are omitted. For
example in the linear pathway sequence WNT to Frizzled (FZ) to Dishevelled (DSH), FZ is not
included in the model since no interactions of other pathways impede on these receptors in our
model. Fig 1 shows the network. Sources for novel and old interactions are given in S1 File.

As seen in Fig 1, both SOX9 and RUNX2 are extensively regulated. Here we briefly discuss
the mechanisms that were included in this work. Several transcription factors were found to
act upstream of RUNX2 in chondrogenic differentiation. The canonical Wnt effector, β-CATE-
NIN, was shown to induce Runx2 expression in association with LEF/TCF [37]. DLX5, down-
stream of BMP signaling, HIF-2α and MEF2C also positively regulate Runx2 promoter activity
[33,38–40]. Once induced, RUNX2 can increase its own expression through autoregulation.
These stimuli are kept in check through transcriptional repression by MSX2 and an
NKX3.2-SMAD complex [41,42]. The activity of the translated RUNX2 protein is additionally
modified by a collection of pathways. Several factors have been shown to increase RUNX2
activity. A first implicated pathway is PI3K-AKT signaling, which increases the DNA binding
ability of RUNX2 [43]. Another stimulus is provided by phosphorylation of RUNX2 by ERK
signaling, resulting in higher activity [44]. PKA signaling can likewise phosphorylate RUNX2
and increase expression of target genes [45]. RUNX2 activity can furthermore be increased
through an interaction with DLX5 [46]. Other factors decrease RUNX2 activity. SOX9 can
bind directly to RUNX2 and thereby impairs its function [47]. Similarly, MSX2 binds to
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RUNX2 to the detriment of its transcriptional ability [48]. SMAD3 and HDAC4 associate to
prevent transcription by RUNX2[49]. In a last inhibitory mechanism, CCND1 can phosphory-
late RUNX2 resulting in proteasome-dependent degradation [50].

Sox9 expression is promoted by CREB (downstream of PKA) and through a P38-dependent
mechanism [51,52]. A positive feedback loop through NKX3.2 and autoregulation can then
help sustain expression [53–55]. Posttranslational mechanisms additionally modify SOX9
activity. In particular, SOX9 activity is greatly increased after phosphorylation by PKA [56]. In
response to TGFβ signalling, SMAD3 helps recruit transcriptional co-activators to the SOX9
transcriptional complex [57] Finally, binding of SOX9 with RUNX2 and β-CATENIN results
in mutual inhibition [58,59].

To study the dynamical behaviour of this network we use a qualitative framework, which is
described in detail in Kerkhofs et al. [28]. In this framework, each node is associated with a
continuous value between 0, indicating no activity, and 1, the maximal activity. This value is
determined dynamically by additive combination of the activities of upstream nodes. To tune
the activities of the network, a saturation factor (which is the same for all nodes) is included
which determines how much of the positive signals must be present for a node to be fully
active. The influence of this factor is discussed in S2 File. The system is updated in a discrete
fashion by general asynchronous updating with two priority classes, as introduced by Fauré

Fig 1. Themodel’s chondrocyte gene network. Every box represents a gene, its protein or in some cases a complex of them. The interactions
are represented by red and black lines if they are inhibitory and stimulatory, respectively. Blue boxes denote growth factors, green boxes are
transcription factors, yellow boxes do not belong to either category. Reproduced from [28].

doi:10.1371/journal.pone.0162052.g001
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et al [60]. The priority classes divide the interactions into a fast and a slow class, each control-
ling one variable per node. Activity is determined by multiplying a slow variable, which incor-
porates interactions that involve transcription or mRNA degradation etc, and a fast variable,
modelling the influence of interactions involving post-translational modifications or inhibition
through binding etc. Both variables are limited to the interval [0,1]. For example, the PTH/
PTHrP receptor (PPR) activity is a result of both the slow variable, indicating transcription by
SOX9, GLI or SMAD complex, and the fast variable, indicating the presence of PTHRP to acti-
vate the transcribed receptor. Slow variables are only updated when all fast variables are in
equilibrium, meaning that the fast variable of PPR will always be updated before the slow one
(or any other slow variable). The equations used can be found in S3 File. When all variables are
in equilibrium, the system has reached a steady state. We are primarily interested in these
steady states or attractors since they dominate the long term behaviour of the network.

The attractors of this network will be linked with biologically meaningful states by interpret-
ing the expression of selected genes in much the same way as marker genes are used in biologi-
cal models to define cell state. In practice, any attractor is categorized as either a proliferating
(stable) chondrocyte with SOX9 activity or as hypertrophic in the event of RUNX2 activity. In
case neither shows activity we categorize the state as ‘None’. We cannot necessarily connect a
biological fate to this outcome, as depending on the circumstances this might plausibly result
for example in apoptosis or the adoption of an adipogenic phenotype. In any case, the ‘None’
state indicates that neither a chondrogenic nor a hypertrophic fate is predicted.

We use two measures to assess the phenotypical stability of certain biologically relevant sta-
ble states. A first measure is the size of the attractor basin [61]. Due to the exponential growth
of the state space with the size of the network, it is not feasible to investigate a significant frac-
tion of the state space in larger networks. Moreover, the inherent stochasticity of the updating
method precludes a definitive assignment of any one point in state space to one specific
attractor. As a proxy, we use a Monte Carlo method to assess the likelihood of reaching certain
attractors from random initial conditions. In particular, we initialise the system in a random
initial state and determine to which stable state it converges. By repeating this process numer-
ous times we can estimate the likelihood of an initial state ending up in a particular attractor.
This likelihood then constitutes a measure of the phenotypical stability of the attractor, similar
to Waddington’s concept of canalisation. This is a way to gauge the size of the attractor basins,
the region of state space that can flow to a certain attractor, and by extension the stability (to
perturbation in initial conditions) of the respective stable states.

To examine the importance of a certain node in influencing the outcome of the simulation,
we have performed an in silico screening where all nodes in the network were individually per-
turbed. We simulate two cases: the first case simulates the event of a knockout (loss of func-
tion), where the node is effectively removed from the network by holding its activity to zero at
all times. The second case is the opposite of the first one, i.e. the overactivation (gain of func-
tion) of the node. Here the activity is kept at a maximum throughout the simulation. For each
node these simulations were done three times for 10.000 instances providing an estimate of the
attractor basin size for each of the cases. Since we are interested in the relative contribution of
each node to the attractor basin size, as a proxy for the phenotypical stability, we compare the
results to the baseline value of the wild type network.

This first measure tallies the attractors that random initial states end up in to assert how
likely it is to reach certain states. However, one can argue that many of these states would have
a negligible prevalence in the relatively stable and tightly orchestrated processes of embryonic
development and mature tissue homeostasis. In consequence, the majority of initial states
might not have a biological counterpart, but could dominate the final outcome and obscure
results for more relevant states.
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The second measure remedies this potential bias by examining the states with the highest
biological relevance, the stable states. We chose to investigate the effect of a large perturbation
on these states, which are the computational equivalents of both transgenic and knockout ani-
mals and cellular in vitro knockdown and overexpression models. For each of the attractors we
maximised and/or minimised the activity of each node in turn. For nodes that were already at a
maximal or minimal value only one perturbation was possible. The perturbation was applied
for a certain amount of time (updates) after which the system was allowed to settle. We set the
perturbation time up to the point that a further increase had no effect on the result. We per-
formed 100 simulations for each perturbation and tracked the outcome to estimate the proba-
bility of transiting to each of the individual states. By evaluating different perturbation sizes
one can also employ this method to find out which nodes require the smallest perturbation to
leave a particular steady state. This was done for the transitions of the SOX9 to ‘None’ states as
well as the SOX9 to RUNX2 state.

By averaging the transition probabilities for all nodes of a particular stable state we can
determine the transition probabilities for that stable state as a whole to a random perturbation.
Where both overactivation and inactivation of a node were possible, the result of this node was
taken as the average of these two cases. These transition possibilities between the stable states
of the network determine the transition matrix. We can regard this system and consequently
the process of differentiation as a Markov chain consisting of the three stable states [62,63]. In
the sense of a Markov chain, this system has one stationary distribution regardless of its initial
condition which follows from the transition matrix. From the viewpoint of a single cell, the
probability of a state in the stationary distribution is proportional to the time a cell will spend
in this state when continuously affected by discrete random perturbations. Equivalently, from
a population view the probability of a state is the fraction of cells in a continuously perturbed
population that show the phenotype attributed to this specific state.

To empirically validate our predictions, we activated distinct signalling pathways and ana-
lysed the gene expression levels of the stimulated cells. The ethical committee for Human Med-
ical Research (KU Leuven, ML7861) approved all procedures. Periost was obtained from the
patient after signing an informed consent. All patients underwent a surgical intervention for a
lengthening or correction of the tibia and at that time point the biopsies were taken, and only
used for scientific research. In specific, we seeded human periosteal derived stem cells at 10.000
cells per cm2. To minimize unpredictable serum effects, we starved the cells in culture medium
containing 0.1% BSA for 16 hours post-attachment and subsequently exposed the cells to the
signalling pathway activating growth factors using a serum free chemically defined medium as
previously described [64] with the removal of 3,3',5-triiodo-L-thyronine. To map the cellular
effects WNT and BMP signaling activation, cells were stimulated with vehicle, 100 ng/ml of
BMP2 (Medtronic, Minnesota, U.S) and/or 100 ng/ml of WNT3A (R&D Systems, Oxon, U.K).
To also mimic the different cellular ground states that we explore in our model, we included
the following experiment. These cells were then washed and received both BMP2 and WNT3A.
After 24 hours of stimulation, cells were lysed. The mRNA was isolated using an RNeasy mini
kit (Qiagen, Venlo, NL) and measured using a Nanodrop ND2000 (Thermo Scientific, Erem-
bodegem, BE). Complementary DNA (cDNA) was synthesized using the RevertAid HMinus
First Strand cDNA Synthesis Kit (Thermo Scientific, Erembodegem, BE) and 500 ng of nonam-
plified total RNA. For each condition a total of 20 ng of cDNA was amplified using a Fast Sybr
green master mix (Applied Biosciences) and a Corbett rotor gene QPCR (Qiagen, Venlo, NL).
All steps were performed according their respective manufacturer’s instructions. Gene expres-
sion was normalized on beta-actin (ACTB) expression levels, which was found to be stable ref-
erence gene. Primer sequences can be found in S1 Table. Gene expression results were
analyzed by t-tests using R 3.1.1. [65].
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Results
The attractors, or stable states, of the network were identified numerically. They are given in
Table 1. We found that the wild type network has 3 individual attractors, one SOX9 positive

Table 1. The stable states of the network. The activity of each node is given for each of the three attractors
(SOX9, RUNX2 and None).

Node SOX9 RUNX2 None

WNT 0 1 0

DSH 0 0,67 0

IGF-I 1 0 0

R-SMAD 0,19 0,67 0

IHH 0,4 0,61 0

GLI2 0,4 0,61 0

β-CATENIN 0 0,67 0

LEF/TCF 0 0,67 0

RUNX2 0 1 0

SOX9 1 0 0

PTHRP 0,77 0,09 0

PPR 0,77 0 0

PKA 1 0 0

MEF2C 0,04 0,49 0

FGF 0 1 0

FGFR3 0 0 0

STAT1 0,09 0,7 0

SMAD complex 0,19 0 0

NKX3.2 1 0 0

ERK1/2 0 1 0

TGFβ 0,4 0,61 0

SMAD7 0,19 0,66 0

SMAD3 0,26 0,19 0

FGFR1 0 1 0

ATF2 0,03 0,03 0

NFκB 0 1 0

HDAC4 0 0 0

CCND1 0,41 0,12 0

DLX5 0 0,27 0

BMP 0,28 1 0

P38 0,41 0,89 0

GSK3β 1 1 1

DC 1 0,33 1

PP2A 1 0 0

AKT 0 0,7 0

PI3K 0 0,7 0

ETS1 0,18 0,19 0

RAS 0,1 1 0

IGF-1R 0,31 0 0

MSX2 0,45 0 0

δ-EF1 0,13 0,83 0

ATF4 0,7 0,7 0

HIF-2α 0 1 0

doi:10.1371/journal.pone.0162052.t001
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state, one RUNX2 positive state and a state where all the nodes are inactive, with the exception
of some constitutively active nodes (the ‘None’ state). It is possible that some attractors with a
very small attractor basin and that consequently have a very small likelihood of being reached
were not detected in this analysis. However, any attractors with such a small basin of attraction
would likely be biologically irrelevant.

We then determined the probability that a random initial state will end up in each attractor
as an estimation of the size of the attractor basin. We performed three runs of 10000 initial
states and found that the ‘None’ basin of attraction was the largest one, absorbing about 64% of
the initial states. The second largest attractor was found to be the SOX9 attractor with approxi-
mately one third of the states settling there. The RUNX2 attractor proved to be the smallest, at
about 6% of states. Thus the robustness in canalisation of the RUNX2 stable state for the case
of random initial conditions appears to be higher than that of SOX9. The results of this Monte
Carlo analysis are given in Fig 2.

The results of the Monte Carlo analysis to estimate the influence of node perturbations on
canalisation are shown in Fig 3. This analysis assesses the robustness of the stable states under
perturbation by initializing at random states, with one node fixed, to estimate the size of their
respective attractor basins. Fig 3 is divided in two main parts, the first one shows the effect of
the node when it is overexpressed, whereas the second part shows the results of a knockout.
The changes in the attractor basin size are shown for each of the network’s nodes. For an easier
interpretation, the results are colour-coded with increasingly deep shades of green or red to
indicate stronger increases or decreases, respectively. A basin with no change is depicted as
being white.

Several factors were capable of maximizing the canalisation of the SOX9 attractor. Con-
versely, the knockout of many factors removed the RUNX2 basin entirely, indicating that the
SOX9 attractor generally has a better canalisation than the RUNX2 attractor in this model. The
primary factors that amplified the SOX9 attractor basin are IHH, GLI2, TGFβ, SMAD3, ATF4,
IGF-I, PPR, PKA and PTHRP in order of descending magnitude. The factors that were
required for RUNX2 canalisation, as in their absence no RUNX2 attractor basin is found, are
IHH, GLI2, MEF2C, SMAD7, DLX5, P38 and δ-EF1. We did not detect any attractors where
SOX9 and RUNX2 were both active, with the exception of the gain of function of R-SMAD
and to a small extent that of BMP. Particularly, in the dominating RUNX2 (100%) attractor of
the perturbed network, a small amount (20%) of SOX9 activity is present.

Fig 2. The estimated size of the attractor basins for the wild type network.

doi:10.1371/journal.pone.0162052.g002
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Next, we investigated the stability of the attractors to perturbations in single nodes (in
model 1). This is achieved by perturbing a node to maximal/minimal value in the steady state
itself. The duration of the perturbation was taken so that a further increase had no effect on the
results. The outcome for individual states is summarised in Fig 4. In this analysis the ‘None’
attractor emerges as the most stable with 89% of perturbations returning. The ‘None’ state has
a higher resistance to perturbation than the SOX9 steady state. The most likely transition
between states is that between RUNX2 and ‘None’ at 45%, followed by the transition of SOX9
to ‘None’ at 23%. The transition between SOX9 and RUNX2, i.e. the hypertrophic switch,
occurs in 4% of perturbations. These transitions allow for the calculation of the distribution of
attractors that remains constant in time, i.e. the stationary distribution. In this steady state
‘None’ holds about 75% of states, SOX9 19% and RUNX2 6%. Hence we expect the ‘None’
attractor to be adopted in the majority of cells under this (large) perturbation regime. In this
analysis, the transition from SOX9 to ‘None’ or RUNX2 are intuitively most relevant for carti-
lage biology. The former might model dedifferentiation and the latter represents the natural
developmental process or spurious hypertrophy. For these transitions, the effect of individual
factors can be found in Fig 5.

Of the perturbations that induce hypertrophy, all but one are overactivations. Many of the
knockouts lead to a loss of SOX9 phenotype without inducing RUNX2. For instance, loss of
growth factors like IHH, IGF-I and PTHrP is predicted to lead to a loss of phenotype. Overacti-
vations, such as those of R-SMAD and Smad complex, tend to have a more ambiguous effect.
The perturbation can lead to a transition to all attractors, depending on the dynamics (i.e.
which nodes are updated first). Several nodes from the BMP, WNT and FGF pathways can
induce a hypertrophic switch at maximal perturbation. However, a majority of transitions end
up in the more stable ‘None’ attractor. The magnitude (or duration) of the perturbation of
course affects the outcome. For smaller perturbations (up to 4%) all attractors are stable.

Fig 3. Predicted effect on the overexpression and knockout of the network’s genes using Monte Carlo
analysis.Overview of changes in the size of attractor basins upon perturbation of the nodes. Both
overexpression (first three columns) and knockout (last three columns) are shown. Each column is colour-
coded, up regulation effects are green and down regulation effects are red. For instance, the first row for the
first column indicates that WNT overexpression results in an increase (green) of the attractor basin of the
RUNX2 attractor. Different shades of the colours indicate the intensity of the change. No change is indicated
by white.

doi:10.1371/journal.pone.0162052.g003

Fig 4. Markov Chain representation of the network. Circles represent steady states and the edges transitions
between them. The corresponding transition probability is given for each edge.

doi:10.1371/journal.pone.0162052.g004
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The node that can perturb an attractor with the smallest increment is SMAD3, whose per-
turbation results in a transition from the RUNX2 to the ‘None’ attractor. SMAD3 directly
inhibits RUNX2 activity and furthermore activates CCND1, another inhibitor of RUNX2. The
next most effective nodes are IHH and GLI2, that similarly cause a transition from RUNX2 to
‘None’. These nodes play a vital role in the network as they act upstream of many of the net-
work’s growth factors (in particular WNT, BMP, PTHRP and TGFβ). Hence, with their dimin-
ished activity, the ‘None’ attractor is reached, as can also be seen in the canalisation analysis
(Fig 3). In fact, these nodes are also the most efficient in inducing a transition from the SOX9
to ‘None’ attractor. Nodes associated with the BMP pathway (BMP and R-SMAD) are the most
efficient effector of the hypertrophic transition. As seen in S2 File, the results of this analysis,
particularly the attractor that is reached after perturbation, are more sensitive to parameter val-
ues than those of the canalisation analysis.

The growth factors that most effectively increased RUNX2’s attractor basin were WNT and
BMP. For these pathways, we assessed the response of SOX9 and RUNX2, the model’s output,
to simulation with the relevant ligands as well as the combination of the two. In addition,
mRNA expression of other relevant transcription factors were assessed, i.e. DLX5 andMEF2C.
We selected these factors because their expression level is directly relevant for the network’s
dynamics. Downstream signals of WNT were not measured, as phosphorylated β-CATENIN
not its mRNA, are indicative of WNT activity. As a control, the mRNA expression of ID1 (for
BMP) and AXIN2 (for WNT) was examined.

The results of WNT and/or BMP stimulation of human periosteal cells are shown in Fig 6.
The cells were stimulated with BMP2, Wnt3a or a combination, and at specific time points
mRNA was extracted for analysis by qPCR. These time-points were chosen to differentiate
between direct and indirect effects of WNT and/or BMP stimulation. These experimental
results can be compared to in silico experiments. The results of individual activations of WNT
and BMP can be found in Fig 3. The double overactivation can be found in Table 2. In Table 2,
we selected the 48h time point for the comparison since maximal expression was attained at
this time in most of the conditions.

The results of this experiment support the activation of RUNX2 by BMP and WNT, but
show that the response of SOX9 to these growth factors is not reflected well in the current
model. In the standard model, both RUNX2 and the SMAD complex regulate MEF2C tran-
scription. However, addition of BMP to the cells shows that MEF2C is upregulated 20 hours
after BMP treatment, at the same time as its upstream regulator, RUNX2. From this we assume
thatMEF2C expression is unlikely to be directly regulated by BMP, but rather is regulated indi-
rectly by another factor than SMAD complex and/or RUNX2. In addition, we observe an
increase inMEF2C expression already at 6 hours after addition of WNT3a, indicating that
WNT signalling plays a role in the regulation ofMEF2C expression. Interestingly, combined
treatment with WNT and BMP did not result in higherMEF2C expression. We therefore opted
to explore the dynamical behaviour of a set of plausible networks by varying the topology
upstream ofMEF2C. In one alternative model (Table 2, Model 2), we selected a topology where
MEF2CmRNA is downstream of WNT (LEF/TCF) signalling, rather than SMAD complex
[66]. As the upregulation ofMEF2C in response to WNT signalling is small (1.5 fold after 6H)
and limitedMEF2C upregulation is seen before RUNX2 is upregulated, a second alternative
topology is selected (Table 2, Model 3) where only RUNX2 is retained upstream ofMEF2C

Fig 5. The effect of perturbations in the SOX9 attractor. For each node, the average outcomes for three times a hundred
perturbations are shown in this Fig The colour code indicates the attractor the system settled in after perturbation. Nodes at maximal
value are excluded for overactivation and nodes with zero activity are excluded for knockout.

doi:10.1371/journal.pone.0162052.g005
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mRNA. For comparison, results for in silico simulations of WNT and/or BMP overactivations
can be found in Table 2. Compared to the original network, both Model 2 and Model 3 capture
the effect of overactivations on SOX9 stability more accurately. Since the response ofMEF2C
to WNT stimulation is weak, Model 3 would be the preferable topology for this particular cell
type.

An increased understanding of the regulatory mechanisms operating in hypertrophy can
pinpoint therapeutic targets in cartilage-related diseases and instruct approaches in bone and
cartilage tissue engineering. For example, the results pertaining to the stability of the RUNX2
attractor basin can be used to suggest therapeutic targets for preventing hypertrophy. We have
surveyed available literature on these suggested therapeutic targets. Table 3 assesses the poten-
tial of the nodes whose perturbation decreases the size of the RUNX2 attractor basin, and does

Fig 6. Gene expression for DLX5, MEF2C, RUNX2, SOX9 and control genes. A. Fold changes in expression of RUNX2, SOX9, DLX5, MEF2C,
AXIN2 and ID1 are shown for different time points in theWNT, BMP andWNT/BMP conditions. Error bars indicate the standard deviation. The
results were analysed by paired t-tests (corrected for multiple testing using the Benjamini-Hochberg procedure). *: p < 0,05. **: p < 0,01.

doi:10.1371/journal.pone.0162052.g006

Qualitative Model of Differentiation in Chondrocyte Maturation

PLOS ONE | DOI:10.1371/journal.pone.0162052 August 31, 2016 13 / 27



not decrease the SOX9 attractor basin size, as therapeutic targets in osteoarthritis. To assess
this potential, we searched literature to check if the effect of a knockout could confer protection
to OA. The expected phenotype was observed for 5 factors, a reverse effect was found in 2 cases
and no knockout was found for 8 factors. In the case of FGF we found conflicting effects on
hypertrophy depending on the type. For one the reverse cases (GSK3β), a double in silico KO
would be more appropriate since GSK3β is also a part of the destruction complex (DC). This
double KO did match literature results.

Discussion
Great strides in our understanding of cartilage biology have been made in the past 2 decades,
supported by tried techniques like immunohistochemistry, ever more specific mouse models

Table 2. Influence of overactivation of WNT and/or BMP on attractor canalisation. Model 1 is the network as shown in Fig 1. Model 2 is the network
where the interaction BMP!MEF2C (slow) was replaced by the interactionWNT!MEF2C (slow). In model 3, the interaction BMP!MEF2C (slow) was
removed, leaving only RUNX2 to regulate expression of MEF2CmRNA. For each model, the relative size of the attractors basins of RUNX2 and SOX9, and
‘None’ attractors is shown for the overactivation of WNT and/or BMP.

Model 1 Model 2 (WNT!MEF2C) Model 3 (RUNX2!MEF2C)

RUNX2 SOX9 None RUNX2 SOX9 None RUNX2 SOX9 None

Wild type 6% 30% 64% 6% 29% 65% 5% 30% 65%

ΔWNT+ +93% -30% -63% +94% -29% -65% +95% -30% -65%

ΔBMP+ +80% -16% -64% +24% +35% -60% +33% +28% -61%

ΔWNT+/BMP+ +94% -30% -64% +74% -9% -65% +57% -7% -50%

doi:10.1371/journal.pone.0162052.t002

Table 3. Effect of knockout on OA diseasemodel. The first and second column contain the effect of a
knockout in the attractor basin.We check whether a knockout (either through the use of a small molecule
inhibitor or by a genetic KO) indeed confers protection to OA, indicated as ‘protective’. Sometimes a knock-
out is seen to aggravate symptoms, indicated as ‘reverse’. Finally, cases where no knockout was found, are
marked by ‘absent’. Sometimes indirect support, namely that the protein’s constitutive activation entails
hypertrophy, is found. Papers indicating this are referenced after the ‘absent’ tag. For SMAD7, one study
found increased Smad7 expression was accompanied by a reduction in osteophyte formation [67]. *In the
network model, an insulation of GSK in the destruction complex from cytosolic GSK is assumed. In the case
of a knockout this would not hold. Hence a double mutant,with a knockout of both destruction complex (DC)
and GSK, constitutes a more appropriate simulation.

Knockout of Effect on RUNX2 Effect on SOX9 OA effect?

WNT - + protective[68]

DSH - + absent

GSK3β (double KO*) + - reverse*[69]

β-CATENIN - + protective[70–75]

LEF/TCF - / absent[76,77]

DLX5 - / to + absent[78,79]

FGF - / to + reverse [80,81], protective[82,83]

FGFR1 - / to + protective[84]

NFκB - / reverse[85,86]

SMAD7 - + absent[67,87,88]

RAS - / absent[89]

P38 - / protective[90]

PI3K - / absent[91]

AKT - / protective[92]

ETS1 - + absent

δ-EF1 - + absent

doi:10.1371/journal.pone.0162052.t003

Qualitative Model of Differentiation in Chondrocyte Maturation

PLOS ONE | DOI:10.1371/journal.pone.0162052 August 31, 2016 14 / 27



such as cre-lox systems and high-throughput in vitro assays alike [93,94]. As this data accumu-
lates in the wake of the field’s progress, it becomes increasingly harder to glean insight by
human intuition alone, making computational approaches that can smartly reuse this data all
the more indispensable [95]. Therefore we applied a qualitative approach that employs this
readily available data, allowing for a first cursory exploration of the regulatory network in
chondrocyte differentiation as a whole. This regulatory network and accompanying insights in
cartilage differentiation can be used to inform cartilage and bone tissue engineering approaches
and suggest treatments in differentiation-related cartilage pathologies. For the specific case of
osteoarthritis, several suggested therapeutic targets could be corroborated and novel targets
could be suggested.

In this work, we have employed two dynamical measures to gauge phenotypic robustness,
i.e. the robustness of canalisation and the robustness to perturbation. Other structural mea-
sures, such as the simple path measure [96], or topological features, such as betweenness [61],
could also be employed [97]. However, we focused on robustness of canalisation and to pertur-
bation as they take into account the dynamical behaviour of the network, such as the effect of
changes on stable states.

In our analysis we equate stable states in the model to cell types. In fact, most cellular net-
works are in a state of equilibrium, especially in adult tissues. We therefore assumed that stable
cell types are defined by a stable mix of transcription factors that correspond with a stable state
(or an ergodic set of attractors [98]) of the network. The view that an attractor of the network
equates to a cell type already surfaces in Waddington’s vision of an epigenetic landscape and
was brought to fruition in the early genetic nets introduced by Kauffman [63,99,100]. Indeed,
distinct genome-wide expression patterns corresponding to known cell types provide empirical
support to the concept of attractors, though the attractor itself may be defined by a much
smaller set of transcription factors and their respective interactions [101–103]. This idea of a
stable cellular phenotype being determined by a fixed set of transcription factors is exemplified
by the induction of pluripotency from a range of highly differing starting populations through
the effect of only four transcription factors (Yamanaka factors) in the formation of iPS cells
[104]. The idea is vindicated to a greater extent as more examples of transdifferentiation due to
reprogramming are brought to light, indicating that other cell types also rely on a limited core
of transcription factors.

Reprogramming occurs in the presence of strong and prolonged stimuli. Indeed, in order to
have an effect on cell behaviour a stimulus should be sustained in time and significant in ampli-
tude. To ascertain that this premise holds true for the chondrocyte gene network we applied
smaller stimuli to the network in the form of small perturbations. Our results show that for a
small perturbation all states are robust and no transition between states is observed. In essence,
the state is kept in the attractor basin by the positive feedback loops that reinforce and conserve
the cellular phenotype and thus serve as an irreversible switch that is insensitive to noise. After
the stimulus is removed the cell quickly falls back to the attractor. This indicates that the attrac-
tors of the network model can indeed remain established in the face of noise, which is unavoid-
able in an in vivo setting.

Canalisation analysis
The dominant state in the canalisation analysis is the ‘None’ state. Three factors however limit
the relevance of this result. Firstly, we have analysed the chondrocyte network in isolation, in
the absence of a source of external growth factors. As seen readily in Fig 3 the fixing of growth
factors at a certain value mostly abolishes this basin, with the exception of FGF. The regulatory
network, modelled at the single cell level, is limited to autocrine growth factors. In contrast,
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cells from the growth plate rely on paracrine growth factors that are made available by their
neighbours (e.g. the periost) or stored in the matrix. From this perspective, the behaviour of a
population of cells, each driven by the regulatory network, would be interesting to investigate
and would come closer to biological reality by adding an additional layer of cellular communi-
cation through diffusion of signals. Secondly, neither in development nor in adult tissue one
would expect to start from a blank slate, meaning that starting positions closer to the ‘None’
attractor have less biological relevance. Lastly, the dominance of the ‘None’ state is also affected
by the saturation factor. This factor determines how easy it is for a node to be activated if it has
multiple inputs. A higher saturation factor increases the activity of many nodes and conse-
quently decreases the size of the ‘None’ basin. In this sense, the dominance of the ‘None’ basin
is not robust. In our analysis of the unperturbed network we did not detect any states where
both SOX9 and RUNX2 are active, though transcripts and proteins of these transcription fac-
tors have been detected together in a single cell [105]. However, it is unsure whether the tran-
scription factors are truly active and whether the state is truly stable or merely transient. For
some perturbations (e.g. R-SMAD activation), it is indeed possible for both transcription fac-
tors to be active.

The results of the Monte Carlo analysis (Fig 3) are sometimes asymmetric in the sense that
the effects of a knockout do not necessarily mirror the effects of overactivation. One example is
the node IGF-I, whose activation is detrimental to the size of the RUNX2 attractor basin, but
its absence does not negatively impact the size of the basin. Another example is PP2A, whose
knockout is effective in destabilizing the SOX9 state, whereas its overactivation does not have a
significant effect on SOX9 state’s stability. Conversely, the overactivation of HDAC4 increases
SOX9’s basin, but its knockout has no effect. This seems to indicate that at least in some cases
factors (such as ERK1/2 and HDAC4) that are important or required for the induction of a
phenotype, i.e. whose overactivation increases the basin of attraction of a certain state, might
not be important in maintaining it, i.e. their knockout does not decrease the basin of attraction
to a same relative extent. Conversely, factors (such as PP2A) that are shown to be crucial for
maintenance of a stable state may not be efficient in the induction of it.

Discrepancies with the obtained results can be found in literature. For instance, Qiao et al.
[106] show that IGF-I has a positive effect on RUNX2 DNA binding, whereas the effect on
canalisation in our results is very limited. Several potential explanations may be offered to
interpret the difference. Firstly, the network combines data from a large amount of studies.
Hence, while the interactions of described in Qiao et al. [106] were included in the model, a
larger amount of positive interactions with SOX9 dominate the effect of IGF-I. Secondly, the
canalisation analysis incorporates a wide (random) variety of situations, and the positive effect
of IGF-I activity may depend on particular circumstances (e.g. proximity to the RUNX2
attractor) that represent a relatively small part of the state space. Lastly, the model only takes
into account topology, and varying the strengths of interactions may change the results of the
analysis. This last effect is limited however, as can be seen in S2 File.

Perturbation analysis
The SOX9 attractor seems to be more proximate to the ‘None’ attractor and consequently has
the highest chance to transition there in the face of perturbation. In keeping with Waddington’s
metaphor of an epigenetic landscape the smaller SOX9 basin is only separated from the larger
one corresponding to the ‘None’ attractor by a small crest whereas more impulse from external
signals is needed to traverse the larger distance to the small RUNX2 attractor. One should also
note the directionality between the SOX9 and RUNX2 attractor, it is much harder to go from
SOX9 to RUNX2 than vice versa, which does not correspond to the sequence of events in
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development. Several observations correspond with a limited stability of the SOX9 attractor.
First, the chondrocytic phenotype is notoriously difficult to keep intact in vitro as the cells rap-
idly dedifferentiate and lose expression of vital cartilage components [107–109]. Secondly, for
many cell types (such as ATDC5s, mesenchymal stem cells and growth plate chondrocytes)
and tissue engineering applications, it has proven challenging to maintain a purely chondrocy-
tic phenotype, instead the developmental chain is continued by the process of hypertrophy.
Thirdly, it was shown that the maintenance of the cartilage phenotype is dependent on secreted
antagonists [110,111]. For this reasons the lower stability of the RUNX2 attractor compared to
the SOX9 attractor in both the perturbation and canalisation analysis may be unrealistic.
Hence, the network might be improved by imposing constraints on the attractor basin sizes (or
transitions) to ensure a correct developmental path, as was done by Zhou et al [112].

Note that the perturbation analysis is affected by changes in the saturation factor (see S2
File). Particularly, the dominance of the SOX9 attractor ensures that less transitions take place.
Many of the nodes that achieved a transition to the ‘None’ attractor are no longer effective,
with the exception of the PTHRP pathway. This includes IHH and GLI2, as the higher value of
the saturation ensures the sufficient growth factor activity is present. The transition from
SOX9 to RUNX2 is less affected. Indeed, this transition is still most efficiently induced by acti-
vation of the BMP pathway. As the conclusions from the canalisation analysis proved to be
more resilient to changes in the saturation factor, these have been used to interpret the in vitro
experiment and suggest therapeutic targets in ectopic hypertrophy.

Adaptation of network topology
To illustrate the application of mechanistic models and their use in substantiating hypotheses,
the model’s output was compared to experimental data for the specific cases of WNT/BMP
stimulation. We used a heuristic approach to adapt the topology of our network to better cap-
ture the result of a series of experiments. Besides the network’s output of SOX9 and RUNX2
some relevant downstream effectors such asMEF2C and DLX5 were measured. These could be
used as an indication of where network topology may be wanting. Specifically, we focused on
the upstream control ofMEF2C, as the experimentally observed response of DLX5 did not con-
tradict network topology. In literature,MEF2C is described as an indirect target for BMP sig-
nalling in cardiomyocyte precursors through GATA transcription factors [113]. In the absence
of NKX3.2, BMP signals can likewise induce these factors in the developing limb [114]. How-
ever, the activation ofMef2c by BMP signalling was not yet demonstrated for the osteochondral
lineage. Indeed, our data shows thatMef2c was not transcribed downstream of BMP signalling,
prompting us to propose two alternative topologies more commensurate with MEF2C data. As
Mef2c is regarded as a target of WNT signalling [66] and given the (weak) earlyMef2c expres-
sion in the WNT condition, an alternative topology with WNT upstream ofMef2c was evalu-
ated. A second more parsimonious topology retained RUNX2 upstream ofMef2c [115].

As seen in Table 2, these topologies resulted in a better match to SOX9/RUNX2 dynamics.
In contrast with the original model, where combinations of WNT/BMP only increase RUNX2
stability, the adjusted models showed a distinction in SOX9 dynamics. In accordance with the
trend of the in vitro experiment, the in silico results showed no SOX9 activation in the case of
WNT signalling, a high activation upon BMP stimulation and the WNT/BMP combination
resulted in an intermediate expression level. Note that due to the high number of included
interactions, the change in one particular interaction did not greatly affect the overall behav-
iour of the included nodes in canalisation, as seen in S2 File.

Through comparison with the model, changes in expression levels of fate determining tran-
scription factors such as SOX9 and RUNX2 are framed in the larger context of the regulatory
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network. Hence, the network's topology and predictions of dynamics ultimately constitute a
useful tool to develop mechanistically supported hypotheses and help in providing dynamically
plausible and coherent explanations for in vitro observations. The context (and summary of lit-
erature knowledge included) provided by the model allows for the formulation of rigorous
hypotheses on the effect of particular perturbations a priori, and can vet alternatives to resolve
discrepancies a posteriori. In this light, the model represents a synthesis of information
abstracted from developmental biology studies that can be adapted, through comparison with
experimental results, to a related and more clinically relevant application in hPDCs.

Next to adapting the topology itself, an alternative way for adjusting the model is to change
interaction weights to better match the experiment’s outcome. Ideally, discrepancies with
experiments (or growth plate expression profiles) should be resolved by an automated proce-
dure, avoiding the somewhat arbitrary selection of changes in topology (or interaction weights)
associated with manual curation. In this way, a more systematic approach to refine predictions
with experimental data could be incorporated in our model framework.

Since the experiment was limited to a single dosage of growth factors, it was not possible to
match the relative strength of the growth factors to the normalised variables of the model. For
instance, the induction of RUNX2 (and other measured factors) was much stronger for BMP
than for WNT. However, a higher dose of WNT growth factors may alleviate or reverse this
trend. Hence, the analysis was limited to a qualitative assessment of the growth factor’s influ-
ence, and no attempt was made to capture their relative strengths, for example by varying inter-
action weights. As such, for the overactivations of Table 2, we have fixed the node’s activity at
100%. As this results in the disappearance of the ‘None’ basin, the SOX9 basin was slightly
smaller than the wild type baseline for the BMP andWNT/BMP overactivations (Table 2,
Model 2 and 3). For lower levels of activity, the SOX9 attractor basin does exceed that of the
wild type situation (and is larger for BMP than for BMP/WNT), more in line with the in vitro
observations.

Limitations
The current study uses SOX9 and RUNX2 as biomarkers for proliferation and hypertrophic
differentiation, respectively. While the use of these genes as biomarkers is in accordance to con-
ventional wet-ware approaches, we have only used them as examples. In fact, any gene node
present in the network can be analysed in a similar fashion, allowing fast and straightforward
predictions of envisioned stimuli on e.g. anabolism, catabolism, (indirect) crosstalk between
signalling pathways and production of trophic mediators. The equation of SOX9 with a prolif-
erative chondrocyte and RUNX2 with a hypertrophic one is easily falsified by a few examples
to the contrary. For example, limb bud cells are all SOX9 positive, while only a fraction of them
will ultimately form stable cartilage. On the other hand, mouse studies show that RUNX2 is
not the sole proprietor and guarantee for robust hypertrophy [116,117]. Moreover, osteoblasts
also rely on RUNX2 as a master gene and given the high similarity in expression profile with
hypertrophic chondrocytes, it is likely that their ‘gene programs’ are one and the same [59]. In
fact, an argument could be made that the first measure, i.e. canalisation starting from random
initial conditions, is more reflective of the earlier developmental choice between an osteoblastic
and a chondrocytic differentiation route [118]. Hence we used hPDCs in our in vitro experi-
ments, since they are a multipotent cell type where SOX9 and RUNX2, as in growth plate chon-
drocytes, take up a role in fate determination [119,120]. Furthermore, their differentiation is
governed largely by the same pathways seen in development [121,122]. Arguably, limb bud
cells would constitute a more suited cell type to corroborate the model’s results, as most of the
interactions were derived from studies on the fetal growth plate. However, this cell type is not
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readily available and, as they are already positive for SOX9, may not reflect the canalisation
analysis.

The main difference between the osteoblastic and chondrocytic phenotype may not actually
be the core transcription network as modelled here but rather the developmental path that was
followed to get there. In the case of an osteoblast, a direct route to RUNX2 expression is taken,
whereas in the hypertrophic chondrocyte, SOX9 and a set of related transcription factors are
activated first. Due to slow degradation, lingering proteins then are responsible for the differ-
ence between the two [59]. As such, the resistance to perturbation of the SOX9 attractor is
probably the superior measure to assess the stability of the chondrocyte. This is not a moot
point, as results based on robustness in canalisation can significantly differ from those of the
perturbation analysis (detailed in S2 File).

Though our model is of relatively large size, many pathways are yet omitted from the net-
work model. We have focused mainly on paracrine signalling and information from develop-
mental biology, leaving out for example hormonal regulation and mechanoregulation which
may have profound influence on the phenotypic stability of the chondrocyte [123–125]. Simi-
larly, we may also underestimate the stability of the cartilage since we have not included meta-
bolic effects such as hypoxic conditions, cartilage being an entirely avascular tissue. Indeed,
hypoxia was shown to effectively inhibit hypertrophy indicating its importance [126]. Addi-
tionally, our model has focused on regulatory events in the growth plate, and hence the applica-
tion to the biology of permanent cartilage or fracture repair is indirect. A previous integrative
modelling approach focused on short term signalling events and included many inflammatory
pathways [127]. They also suggested mechanisms in their model which could induce hypertro-
phy, of which MEK1/2 (upstream of ERK1/2) and FGF2 overlap with our model. These factors
were indeed shown to induce hypertrophy. Nevertheless, the presented model still includes a
significant amount of determinative factors in chondrogenesis, and, we believe, captures a
more comprehensive view of hypertrophic differentiation than any other model to date.

Relevance to tissue engineering and osteoarthritis
The results of our in silico screening can be regarded as a guidance for bone tissue engineering
strategies. Indeed, any factor that enlarges the RUNX2 basin can be considered as an inducer of
hypertrophy. Likewise, all factors that increase the SOX9 basin can be considered inducers of
the cartilage fate. Factors that are required to maintain a SOX9 basin are a necessary condition
for the formation of cartilage and their presence could be monitored as indicative of ‘healthy’
cartilage. In the case of ectopic hypertrophy, factors that maintain the RUNX2 basin represent
putative therapeutic drug targets. Even if knockout of these maintenance factors may not suc-
ceed in reversing hypertrophy, reducing the activity of RUNX2 alone may be sufficient to pro-
vide a therapeutic benefit. For example, in OA RUNX2 is upstream of MMP13 whose
downregulation can help in normalizing cartilage turnover [128]. Preferably, this same factor
would increase the SOX9 attractor basin or at least not diminish it.

The model and the results of the in silico screening also provide many novel opportunities
for the understanding and the development of new treatments for OA. Indeed, as a compli-
cated multifactorial disease it is difficult to understand or predict how all the separately
reported studies on OA interlace. To date, no disease modifying osteoarthritis drugs
(DMOADs), including MMP inhibitors, showed significant impact on OA pathophysiology, in
part due to this complexity. As such, our genetic network is ideally suited to untangle this com-
plexity as it is sufficiently advanced to make such connections and interactions. For instance, it
was recently suggested that HIF-2α is an important etiological factor in OA as it is a transcrip-
tional activator of many genes crucial in endochondral ossification and thus should prove
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efficient in inducing ectopic hypertrophy [33]. However, our results show that HIF-2α is a very
modest contributor to the onset of hypertrophy. This result is corroborated by the observation
that hypertrophy is only modestly and transiently delayed in mice with a limb bud-specific
knockout ofHIF-2α [129]. Of course, the lack of importance in the induction of hypertrophy
could be offset by the direct link between HIF-2α and catabolism through MMP13 and other
catabolic factors [34]. Our model hence does not directly contradict the proposed etiological
importance of HIF-2α, but suggests its effect is modest. Nevertheless, direct importance of
HIF-2α in the downstream events of endochondral ossification ensures that any mutations
increasing the activity of this gene, while not causative of the hypertrophic phenotype, can
have a detrimental effect on cartilage homeostasis, thus exacerbating OA pathophysiology.

Additionally, the factors that diminish the hypertrophic basin of attraction were checked for
their effectiveness in preventing OA in relevant literature. In other pathophysiological pro-
cesses such as heterotopic ossification this list is equally valid, but the large body of literature
documenting OA makes it the most practical choice. The wide range of biological processes
reflected in a node’s activity, make a direct validation challenging. For example, many key
nodes in our network reflect the active form of transcription factors, which is hard to measure
in practice [20]. Furthermore, a permanent perturbation, as used in the canalisation analysis, is
only possible by genetic manipulation. Any pharmaceutical agent, such as a small molecule
inhibitor, would only engender a temporary perturbation [96]. However, the dynamics of short
perturbations mostly follow the same trends as those of longer perturbations. Of 16 factors sug-
gested to confer increased resistance against hypertrophy and consequently OA, 5 could be cor-
roborated, 2 falsified, 1 was ambiguous (FGF18 does not have the predicted effect whereas
FGF2 does) and 8 were not tested to our knowledge.

In conclusion, our network is a summary of information gleaned from a host of studies on
chondrocyte differentiation. Moreover, it provides a qualitative framework in which advances
in the field from ongoing and future experiments can be incorporated to further enhance its
predictive power. This compendium allows for an in silico screening that can provide input for
tissue engineering strategies and suggest candidates for intervention in disease. As such, this
network complements experimental approaches and helps pave the way to a system-level
understanding of chondrocyte differentiation.
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