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Visual search is facilitated by knowledge of
the relationship between the target and the distractors,
including both where the target is likely to be among
the distractors and how it differs from the distractors.
Whether the statistical structure among distractors
themselves, unrelated to target properties, facilitates
search is less well understood. Here, we assessed the
benefit of distractor structure using novel shapes whose
relationship to each other was learned implicitly during
visual search. Participants searched for target items in
arrays of shapes that comprised either four pairs of co-
occurring distractor shapes (structured scenes) or eight
distractor shapes randomly partitioned into four pairs
on each trial (unstructured scenes). Across five online
experiments (N = 1,140), we found that after a period
of search training, participants were more efficient when
searching for targets in structured than unstructured
scenes. This structure benefit emerged independently
of whether the position of the shapes within
each pair was fixed or variable and despite participants
having no explicit knowledge of the structured
pairs they had seen. These results show that implicitly
learned co-occurrence statistics between distractor
shapes increases search efficiency. Increased efficiency
in the rejection of regularly co-occurring distractors
may contribute to the efficiency of visual search
in natural scenes, where such regularities are abundant.

Introduction

Visual search is the task of finding a target object
(e.g., a computer mouse on a desk) among distractor
objects (e.g., other objects on the desk). It is well
established that search difficulty (as measured by

reaction time and/or accuracy) increases linearly with
the number of distractors (Wolfe, 1998). Interestingly,
this relationship is much weaker for search in natural
scenes than for search in artificial arrays comprising
randomly arranged objects (Wolfe, Alvarez, et al.,
2011). What makes naturalistic visual search so efficient?

An important contribution comes from the
information scene context provides about spatial
(“where”) and featural (“what”) target properties
(Castelhano & Krzyś, 2020; Oliva & Torralba, 2007;
Peelen & Kastner, 2014; Võ et al., 2019; Wolfe, Võ,
et al., 2011). For example, the likely location of the
target in a scene can be learned and used to facilitate
search, both based on recent experience in controlled
laboratory experiments (“contextual cueing”; Chun,
2000) and based on long-term daily-life experience
(Castelhano & Krzyś, 2020; Võ et al., 2019): When
searching for a computer mouse, we start searching to
the right of the keyboard and below the monitor. Scene
context also provides information about the features
that characterize the target (Peelen & Kastner, 2014)
or distinguish the target from the distractors (Geng
& Witkowski, 2019): We look for a small target far
away and a large target nearby (Gayet & Peelen, 2022).
Finally, targets are recognized more quickly when
embedded in context, reflecting the facilitatory influence
of contextual expectations on object recognition (Bar,
2004; de Lange et al., 2018). Thus, our long- and
short-term experience with regularities in where
and how targets appear in scenes contributes to the
efficiency of visual search.

Importantly, real-world scenes are additionally
characterized by regularities among distractors
themselves. For example, when searching for the
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television in a living room, the co-occurrence statistics
and spatial arrangements of many distractor objects
(e.g., chairs, tables, lamps) are relatively stable. Some
of these regularities are consistent across environments
and learned across a lifetime (e.g., a typical living room
layout), while others are specific to a particular context
and learned more rapidly (e.g., the unique arrangement
of objects in my friend’s living room). Previous research
found that visual search is easier when distractor objects
are arranged in configurations that follow real-world
regularities (e.g., lamp above table) than when they are
arranged in unfamiliar configurations (e.g., lamp below
table; Kaiser et al., 2014). These results may reflect more
efficient encoding of familiar object pairs based on long-
term experience (Bar & Ullman, 1996; Quek & Peelen,
2020; Stein et al., 2015), facilitating visual search when
these objects appear as distractors. Alternatively, visual
search may be disrupted when distractor configurations
violate higher-level functional and semantic associations
(Spaak et al., 2022; Võ & Wolfe, 2013).

Together, the findings reviewed above raise the
question of whether statistical regularities among
distractors contribute to the efficiency of search,
independently of target-distractor regularities and
independently of long-term semantic knowledge.
Interestingly, previous research has shown that
statistical regularities between shapes can be learned
rapidly (Fiser & Aslin, 2001; Fiser & Lengyel, 2019;
Schapiro & Turk-Browne, 2015). For example, when
participants passively view displays in which one
shape frequently appears together with another shape
(always in the same configuration), participants later
report higher familiarity for these pairs relative to
control pairs (Fiser & Aslin, 2001). Furthermore, such
newly learned shape pairs show object-like behavioral
signatures, with attention spreading from one shape
to the other (Lengyel et al., 2021), akin to effects of
perceptual grouping (Egly et al., 1994; Scholl, 2001).
We reasoned that if such regularity-based object
grouping occurs among distractor objects during
visual search, this compression could effectively
reduce the distractor numerosity (Zhao & Yu, 2016),
thereby enhancing search performance, similar to how
perceptual grouping facilitates visual search (Donnelly
et al., 1991; Humphreys et al., 1989; Rauschenberger &
Yantis, 2006).

To test whether newly learned statistical regularities
among distractors contribute to the efficiency of search,
here we combined a statistical learning paradigm
with a visual search task using novel shapes. The
use of novel shapes allowed for full control over
co-occurrence probabilities and low-level stimulus
properties. Participants searched for precued target
shapes in arrays that consisted of either four pairs
of co-occurring distractor shapes (structured scenes)
or eight distractor shapes randomly partitioned into
four pairs (unstructured scenes). Participants were
not informed about the co-occurrences, such that all

co-occurrence statistics were learned during the search
task itself. To assess if the specific spatial arrangement
of co-occurring shapes within the pairs was essential
for distractor complexity reduction, the co-occurring
shapes either had fixed arrangements (e.g., Shape A
always appeared above Shape B) or their locations
within the pairs could be swapped (e.g., Shape A could
appear above or below Shape B).

Across multiple experiments, we found that
participants were more efficient in searching for targets
in the structured scenes than the unstructured scenes.
Interestingly, this pattern was independent of whether
the arrangement of co-occurring shapes within the
pairs was fixed or not. Finally, unlike previous statistical
learning studies where the co-occurring objects were
attended (Fiser & Aslin, 2001), here participants were
not able to indicate which shapes co-occurred during
the visual search experiment, indicating that statistical
regularities in the environment facilitate search even
when these regularities are not explicitly noticed.

Materials and methods

Participants

Participants were recruited online using Prolific,
received monetary compensation for their participation,
and provided informed consent before starting the
experiment. The study was approved by the Radboud
University Faculty of Social Sciences Ethics Committee
(ECSW2017–2306-517) and was carried out in
accordance with the provisions of the World Medical
Association Declaration of Helsinki. Participants
from whom we obtained partial data were excluded
from the analysis (∼10% dropout rate). For any
given experiment requiring a particular number of
participants (see below), we first tested around that
number of participants, balancing the blocking order
of scene structure. Then, participants whose overall
accuracy and reaction times were above or below
3 standard deviations (SDs) from the means were
removed. This was done iteratively until no exclusions
happened. Then, more participants were added to get
to the desired number, and this exclusion process was
repeated. In the end, we obtained the desired number of
participants for each experiment whose accuracies and
reaction times (for correct responses) were within 3 SDs
from the means, and the blocking order was balanced.

The desired number of participants for the two
initial experiments was 40: Experiment 1A (mean age:
25.3 years, SD = 4.4) and Experiment 1B (mean age:
27.1 years, SD = 4.7). The number of participants
for the two large-scale replication experiments was
400: Experiment 2A (mean age: 24.1 years, SD
= 4.3) and Experiment 2B (mean age: 25.6 years,
SD = 6.4). Finally, the number of participants for
Experiment 3 was 260 (N = 260; mean age: 23.9 years,



Journal of Vision (2022) 22(10):2, 1–11 Thorat, Quek, & Peelen 3

SD = 4.5). This experiment was preregistered
(https://aspredicted.org/blind.php?x=5ne7qa).

Stimuli

The stimulus set consisted of 20 novel shapes
(see Figure 1 for examples), a subset of which
overlapped with those from seminal statistical
learning studies (Fiser & Aslin, 2001, 2005). For each
participant, we randomly assigned the 20 shapes to
three different sets that were maintained throughout the
experiment: 4 shapes were used as search targets (target
set), 8 shapes were allocated into four co-occurring
distractor pairs (structured distractor set), and 8 shapes
were used to create four random distractor pairs on
each new trial (unstructured distractor set). Critically, a
shape assigned to the structured set only ever appeared
in a vertical pairing with its nominated partner shape.
In fixed arrangements (Experiments 1A, 2A, and 3),
the shapes in the structured set appeared in specific
vertical arrangements throughout the experiment (e.g.,
Shape A always appeared above Shape B). In free
arrangements (Experiments 1B and 2B), the shapes in
the structured set randomly appeared in one of two
vertical arrangements across trials (e.g., Shape A could
appear either above or below Shape B). In contrast
to these structured conditions, shapes assigned to
the unstructured set could be paired with any other
shape from the unstructured set and could occupy
either the top or bottom position within this random
pairing.

The search display was 16 × 28 em, where em is
the font size on the participant’s display. This size was
chosen such that the display would approximately
extend around 6 degrees of visual angle during typical
viewing conditions. We reasoned that those participants
who used smaller screens also had smaller font sizes and
were positioned closer to the screen, such that the visual
angle subtended by the relevant stimuli was roughly
equated across screen sizes. Note, however, that because
the study was conducted online, we could not fully
control the visual angle subtended by the search display.
The experiment was programmed in JavaScript with
jsPsych and hosted online on Pavlovia (Open Science
Tools Limited, Nottingham, UK).

Procedure and design

Each trial of the visual search task started with a
letter cue (1,400 ms) indicating the target shape for that
trial (Figure 1B). After a brief (700 ms) delay, a search
display with 10 shapes appeared. Participants used the
keyboard to indicate whether the target was present
on the left (“F” key) or the right (“J” key) side of the
display.

Each search display consisted of four distractor
shape pairs, the target shape, and a foil shape (one
of the other three target shapes not currently being
searched for) arrayed symmetrically on a 4 × 4 grid
(Figure 1C). The distractor pairs could comprise
either the four distractor pairs from the structured
set or four randomly generated distractor pairs from
the unstructured set. Thus, on each trial, participants
searched for the target in either a structured or an
unstructured scene. One distractor pair appeared
in each of the four columns of the grid, in random
horizontal order. The vertical position of the pairs
was random but with the constraint that the locations
were mirrored horizontally. The target appeared in
one of the remaining locations vertically adjacent to
a pair, with the foil (one of the other three targets)
in the horizontally mirrored location. The location
randomization process ensured that the probability
of the target’s location was uniform across the entire
grid.

Participants completed a total of 12 runs of the
visual search task (Figure 1A). Each run consisted
of 32 trials (16 trials with structured distractor pairs
and 16 trials with unstructured distractor pairs), for a
total of 384 trials. Structured and unstructured trials
were blocked in the first nine runs (training runs)
but randomly interleaved in the last three runs (test
runs; Figure 1A). The order of blocking (structured
trials first or unstructured trials first) was maintained
for a participant throughout the experiment and
balanced across participants. We elected to block the
structure conditions during training based on evidence
that humans appear to learn statistical associations
faster when these are presented in a blocked rather than
an interleaved order (Flesch et al., 2018). All analyses
focused on responses in the interleaved test runs to
avoid possible block-based differences in arousal or
strategy.

The experiment started with three training runs to
familiarize participants with the target letter-shape
association and to practice the visual search task (Phase
1 training; Figure 1A). We used letter cues (rather
than target picture cues) to increase the difficulty of
the task: Target picture cues would perceptually prime
the target, reducing the influence of distractors on
search performance (Schmidt & Zelinsky, 2009; Wolfe
et al., 2004). These runs started with a familiarization
block where the letters and their associated target
shapes were shown sequentially four times. Next,
participants completed six runs of the visual search
task to (implicitly) learn the statistical regularities of
the structured distractor pairs (Phase 2 training; Figure
1A). These runs started with instructions and a
reminder of the target letter-shape associations to
refresh participants’ memory. Finally, participants
completed three test runs where the structured and
unstructured conditions were interleaved.

https://aspredicted.org/blind.php?x5ne7qa
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Figure 1. Experimental procedure and design. (A) Schematic outline of the experiment. S = structured scenes; uS = unstructured
scenes. Structured and unstructured scenes were blocked during the first nine training runs of the visual search experiment but
interleaved during the final three test runs. The visual search experiment was followed by a familiarity judgment task. (B) The trial
structure of the visual search experiment. Participants had to search for a target shape cued by its corresponding letter in the
subsequent search display and indicate if the target was present on the left or the right part of the display within 2 s. (C) Example
layouts for the structured and unstructured visual search displays for one participant. Ten shapes appeared on each trial: eight
distractors, one target (highlighted in yellow, color not shown during the experiment), and one foil (which could be a target on other
trials). The distractors were presented as four pairs (indicated by the dashed outlines in the first example; one pair is outlined across
displays to illustrate the respective manipulation [fixed, free] across trials). In the structured scenes, the distractors co-occurred in
pairs of two (with either fixed arrangements within the pairs or not, in separate experiments). In the unstructured scenes, the
distractors were randomly partitioned into four pairs on each trial. Search performance was compared between structured and
unstructured scenes. (D) An example trial of the familiarity judgment task. Participants had to judge which of the two vertical pairs
(one taken from the structured scenes and the other from the unstructured scenes) had been seen more frequently during the visual
search experiment.
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Familiarity judgment task

After completing the 12 runs of the visual search
task, participants additionally completed two runs of
a two-alternative forced-choice (2AFC) familiarity
judgment task (Fiser & Aslin, 2001). This component
of the experiment aimed to assess participants’ explicit
knowledge of the shape pairs that had appeared as
distractors during the main visual search experiment.
On each trial, participants were asked to indicate
(or guess) within 3 s which of two shape pairs had
appeared more frequently during the visual search
experiment (Figure 1D). One of the pairs was a
structured pair, taken directly from the preceding visual
search component, while the other was an unstructured
pair. We compared the four structured pairs with four
randomly selected unstructured pairs, which were held
constant throughout the familiarity judgment task,
such that within the familiarity judgment task, all
pairs were presented equally often. The position of the
shapes within the pairs was also held constant during
the familiarity judgment task. Importantly, in the visual
search task, the structured pairs had been presented
14 times more often than the unstructured pairs; if
participants noticed these regularities, they should show
above-chance performance on the familiarity judgment
task (Fiser & Aslin, 2001).

Each run contained trials showing the 16 possible
combinations between the four original structured pairs
and the four selected unstructured pairs. The main
analyses focused on these trials, as they provide the
most sensitive test of familiarity and were included in
all familiarity judgment experiments. The familiarity
judgment experiments for the fixed arrangement
condition (Experiments 2A and 3) additionally included
trials in which either the position or the partner
was swapped across the set of structured pairs (and,
separately, the set of selected unstructured pairs). Four
partner-swapped pairs were constructed, separately for
the structured and the unstructured scenes, by swapping
the partners of the shapes while maintaining their
relative positions in the pairs. Four position-swapped
pairs were constructed, separately for the structured and
the unstructured scenes, by swapping the positions of
the shapes within their pairs. These two manipulations
led to 32 additional comparisons between the shapes
from the structured and unstructured scenes, for a total
of 48 trials per run.

For the first 200 participants in Experiment 2A,
these trials were presented in random order, and
feedback was provided at the end of each run. For
the last 200 participants of Experiment 2A and
for all participants in Experiment 3, the original 16
comparisons were presented at the beginning of the
run, with the other conditions presented interleaved
in the remainder of the run. For these participants,
feedback was provided only at the end of the second

run. Only participants were included who responded
at least once to each condition in each run, leaving
368 of the 400 participants in Experiment 2A for the
familiarity judgment analysis. Participants not meeting
this requirement in Experiment 3 were replaced,
such that all 260 participants were included in the
familiarity judgment analysis. In Experiment 2B (free
arrangement), the first half of the participants (n =
200) did not complete the familiarity judgment task.
For the second half of the participants (n = 200), in
each run, only the 16 original comparisons between the
four forced pairs from the structured scenes and four
forced pairs from the unstructured scenes were shown.
All participants responded at least once in each run.

Data availability

The analysis code and data accompanying
these experiments can be found on OSF at
https://doi.org/10.17605/OSF.IO/EM2XF.

Results

Search performance as a function of learned
distractor structure

To test whether the presence of co-occurring
distractors facilitated visual search, we evaluated the
difference between search performance in structured
scenes and unstructured scenes in terms of both
accuracy and reaction time in the test runs (i.e., after a
period of exposure during training). Reaction time was
computed for correct trials only. Trials with reaction
times below 300 ms or above 2,000 ms were not included
in the analyses. The difference in performance between
structured and unstructured scenes was termed the
structure benefit (indicated by a higher search accuracy
or faster reaction times in the structured scenes). In
addition to accuracy and reaction time, we used the
inverse efficiency score (IES = average reaction time
/ average accuracy) as a combined measure for the
structure benefit. IES is a useful measure when accuracy
is high (> 90%) and effects in accuracy and reaction
time go in the same direction (Bruyer & Brysbaert,
2011), as was the case here (Figure 2).

Figure 2 shows the results for Experiments 1A (fixed
arrangement) and 1B (free arrangement). The structure
benefit did not differ across the arrangements within
pairs in IES (two-sample t test: t78 = 1.38, p = 0.17, d =
0.21, BF01 = 1.7), accuracy (t78 = 0.71, p = 0.48, d =
0.11, BF01 = 3.3), or reaction time (t78 = 1.36, p = 0.18,
d = 0.22, BF01 = 1.8). Pooling across the arrangement
types (denoted as “Comb.” in Figure 2), there was a
highly reliable structure benefit in IES (one-sample t

https://doi.org/10.17605/OSF.IO/EM2XF
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Figure 2. Search efficiency as a function of scene condition: Experiments 1A (fixed) and 1B (free). Structure benefit (increased
accuracy or decreased reaction time or decreased inverse efficiency in the structured scenes) was observed in both experiments with
fixed or free arrangements of the co-occurring shapes within their pairs. As no differences were observed between the experiments
in either of the measures, the data from the two experiments were combined (“Comb.”) to accumulate the evidence for the structure
benefit. Error bars indicate 95% confidence intervals (CIs) for the structure benefit on each measure, for each experiment. Because
the error bars indicate the 95% CI of the difference (structured vs. unstructured), it is only shown for one of the two conditions. The
asterisks indicate p values for the t tests for the corresponding comparisons (*p < 0.05, **p < 0.01, ***p < 0.001, ∼p > 0.05).

test: t79 = 3.7, p < 0.001, d = 0.41), which was also
reflected in accuracy (t79 = 3.6, p < 0.001, d = 0.4) and
reaction time (t79 = 2.3, p = 0.03, d = 0.26). Thus, these
experiments provided initial evidence that participants
searched for targets more efficiently in the context
of structured distractor arrays than unstructured
distractor arrays, irrespective of the arrangement of
pairs in the structured scenes.

Next, we conducted a large-sample experiment (N =
400) for each of the two arrangement types with two

goals in mind: first, to ensure that the structure benefit
observed in Experiment 1 was robust (i.e., replicable in
a large sample) and, second, to measure participants’
familiarity for which shapes had co-occurred during
the search task. Here we used one-sided t tests to
test for the existence of structure benefits, based
on the direction of the effect in Experiments 1A
and 1B.

Figure 3 shows the results for Experiments 2A (fixed
arrangement) and 2B (free arrangement). Similar to

Figure 3. Search efficiency as a function of scene condition: large-sample Experiments 2A (fixed) and 2B (free). A structure benefit
(increased accuracy or decreased reaction time or decreased inverse efficiency in the structured scenes) was present for both the fixed
and free pair arrangements of co-occurring shapes, replicating the effects of Experiment 1. As no differences were observed between
the experiments in any measure, data from the two experiments were combined (“Comb.”) to accumulate the evidence for the
structure benefit. Error bars indicate 95% CIs for the structure benefit on each measure (corresponding to a one-sided t test), for each
experiment. Because the error bars indicate the 95% CI of the difference (structured vs. unstructured), it is only shown for one of the
two conditions. The asterisks indicate p values for the t tests for the corresponding comparisons (*p < 0.05, **p < 0.01, ∼p > 0.05).
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Experiment 1, the structure benefit did not differ across
arrangement type within pairs in the IES (two-sample
t test: t798 = 0.26, p = 0.8, d = 0.01, BF01 = 12.2),
accuracy (t798 = 1.42, p = 0.16, d = 0.07, BF01 = 4.7),
or reaction time (t798 = 1.18, p = 0.24, d = 0.06, BF01
= 6.4). Pooling across arrangement type, there was
evidence for structure benefit in the IES (one-sample,
one-sided t test: t799 = 2.8, p = 0.003, d = 0.1), which
was reflected in both accuracy (t799 = 2.5, p = 0.006, d =
0.09) and reaction time (t799 = 1.8, p = 0.04, d = 0.06).
Thus, we found additional confirmatory evidence that
after a period of exposure to distractor co-occurrence
in the search displays, participants performed a more
efficient search in the structured scenes than the
unstructured scenes. Notably, the benefit of distractor
co-occurrence was evident irrespective of whether
the co-occurring shapes in the structured scenes
occurred in fixed or free arrangements within their
pairs.

Familiarity of distractor structure and its
relationship with structure benefits in search

Could participants reliably guess which pairs
co-occurred during the visual search task, as has
previously been reported in experiments where the
pairs were passively viewed (Fiser & Aslin, 2001)? To
assess whether this was the case, Experiments 2A and
2B included a 2AFC pair familiarity judgment task
immediately after the main visual search task (Figure
1D). We defined familiarity score as the proportion
of responses where the pairs corresponding to the
shapes from the structured scenes were selected as more
familiar than the pairs corresponding to the shapes
from the unstructured scenes.

Familiarity scores for the main comparisons did not
differ between Experiments 2A and 2B (two-sample
t test: t566 = 0.9, p = 0.4, d = 0.08, BF01 = 7.2). The
familiarity scores did not differ significantly from 0.5
in either experiment (Experiment 2A: t367 = 0.85, p =
0.4, d = 0.04, BF01 = 11.9; Experiment 2B: t199 = 1.7,
p = 0.08, d = 0.12, BF01 = 2.9) or when we pooled the
data across the two experiments for maximal power
(one-sample t test: t567 = 1.7, p = 0.09, d = 0.07,
BF01 = 5.0). Finally, the two additional familiarity
scores included in Experiment 2A (see Materials
and Methods) also did not differ from 0.5 (position
swapped: t367 = 1.2, p = 0.23, d = 0.06, BF01 = 8.4;
partner swapped: t367 = 0.86, p = 0.39, d = 0.04, BF01
= 11.8). These results indicate that observers could
not guess which shapes co-occurred during the search
task.

Although the familiarity score was at chance level at
the group level, it could be the case that participants
who exhibited a higher structure benefit in the visual

search task were more familiar with the distractor
co-occurrences, for example, because they had paid
more attention to these regularities during the visual
search task. To test this, we assessed the correlation
between the participants’ structure benefit reflected
in IES and their familiarity score. We observed a
significant negative correlation when pooling the data
of Experiments 2A and 2B (r = −0.10, p = 0.01). This
negative correlation was significant in Experiment 2A
(N = 368; r = −0.16, p = 0.001, BF10 = 7.3; Figure
4A) but not in Experiment 2B (N = 200; r = 0.02, p
= 0.7, BF01 = 10.9; Figure 4B). Thus, if anything,
participants who had a stronger structure benefit in the
visual search task indicated that the structured pairs
were less familiar than the unstructured pairs in the
familiarity judgment task.

To replicate the negative correlation of Experiment
2A, we ran a preregistered replication of Experiment
2A (Experiment 3;N = 260). For preregistered analyses,
the familiarity scores did not differ across comparisons
(main, position swapped, partner swapped; F2, 518 =
0.3, p = 0.77, BF01 = 34.4). Next, we created two
groups of participants based on the average familiarity
score: those who indicated, on average, that the pairs of
objects from the structured scenes were more familiar
(i.e., familiarity score > 0.5) and those who indicated
the opposite (familiarity score < 0.5). Based on the
results of Experiment 2A, we had preregistered the
hypothesis that the IES structure benefit would be
greater for the group of participants who reported that
the pairs of objects from the structured scenes were
less familiar. This hypothesis was not supported by the
data (one-sided t test; t250 = 0.45, p = 0.65, d = 0.06;
BF10 = 0.15).

For additional analyses, as in previous experiments,
the test runs of Experiment 3 demonstrated a structure
benefit in IES (one-sample, one-sided t test: t259 =
1.7, p = 0.04, d = 0.11). Mirroring the findings of
Experiment 2, the familiarity scores did not differ from
0.5 (one-sample t test, main familiarity score: t259 =
0.3, p = 0.79, d = 0.02, BF01 = 13.9; position swapped:
t259 = 0.59, p = 0.56, d = 0.04, BF01 = 12.2; partner
swapped: t259 = 0.14, p = 0.89, d = 0.009, BF01 =
14.3). However, unlike Experiment 2A, the negative
correlation between the main familiarity scores and the
structure benefit was not significant in this sample (r =
−0.04, p = 0.44, BF01 = 10.5; Figure 4C).

We wondered if some difference between the
responses in Experiments 2A and 3 could explain the
nonreplication of the negative correlation. However,
there was no difference between the two experiments
in either the magnitude of the structure benefit in IES
or the familiarity scores (two-sample t tests, structure
benefit: t626 = 0.2, p = 0.8, d = 0.02, BF01 = 10.9;
familiarity score: t626 = 0.7, p = 0.5, d = 0.06, BF01 =
8.4). When pooling the data across Experiments 2A
and 3, the negative correlation between the structure
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Figure 4. The relationship between the structure benefit and 2AFC familiarity judgments about the co-occurring distractors. (A) In
Experiment 2A, with the fixed arrangement of co-occurring distractors within their pairs, the structure benefit (in the IES) was
negatively correlated with the familiarity scores. (B) In Experiment 2B, with the free arrangement of co-occurring distractors within
their pairs, no such correlation was observed. (C) Experiment 3 did not replicate the significant negative correlation found in
Experiment 2A. (D) Pooling across the two experiments, the structure benefit was negatively correlated with the familiarity scores.
The asterisks indicate p values (**p < 0.01, ***p < 0.001, ∼p > 0.05).

benefit and the familiarity scores remained significant
(N = 628; r = −0.12, p = 0.003). Finally, the correlation
between the structure benefit and the familiarity scores
across all available data (N = 828; Experiments 2A,
2B, and 3) was also significantly negative (r = −0.09,
p = 0.012).

Discussion

Across five experiments, we found that co-
occurrences between distractor shapes facilitated search
performance. The benefit of scene structure arose
irrespective of whether the spatial arrangement of
co-occurring shapes in the pairs was fixed or variable.
Surprisingly, the increase in search efficiency was not
accompanied by an increase in participants’ reported
familiarity with the underlying statistical regularities
(if anything, these effects were inversely related).
These findings indicate that statistical regularities in
the environment facilitate search even when these
regularities are not explicitly noticed. The more efficient
rejection of regularly positioned distractors may
contribute to the efficiency of visual search in natural
scenes, where such regularities are abundant (Kaiser et
al., 2019).

How might reliable co-occurrences between
distractor items give rise to a visual search benefit?
Object grouping has been proposed as a complexity
reduction mechanism supporting efficient search
(Kaiser et al., 2014, 2019). Under this framework,
shapes that consistently co-occur may be represented
as a single object, similar to shapes that are grouped
based on Gestalt cues (Wagemans et al., 2012). Support
for this hypothesis comes from studies showing that
fixed arrangements of co-occurring objects produce
object-based attention effects (Lengyel et al., 2021).
In our study, co-occurring distractor shapes in fixed
arrangements produced more efficient search than
randomly paired distractor shapes. However, a search
benefit was also present (and not statistically different
in magnitude) when the co-occurring shapes had
no fixed arrangement (i.e., could vary freely in their
spatial arrangement within the pair). The latter
finding does not fit easily with an object grouping
account, unless we assume that observers learned two
objects, corresponding to the two configurations of the
co-occurring shapes.

A possible alternative is that the search benefit
reflected bidirectional associations between the shapes.
Upon seeing one of the shapes, the representation of
the associated shape may be primed, facilitating its
recognition and subsequent rejection as a distractor
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when presented nearby. Such interobject priming
effects could operate weakly but in parallel across
multiple distractor locations. The learning of arbitrary
associations has been linked to the hippocampus
(Davachi, 2006; Eichenbaum et al., 2007), which
can modulate processing in visual cortex regions
(Eichenbaum et al., 2007). Accordingly, the effects
revealed here may reflect facilitated visual processing
of co-occurring shapes due to hippocampus-mediated
predictions (Kok & Turk-Browne, 2018). This appears
to be a separate mechanism from that observed in
previous studies investigating the effects of real-world
positional regularities, based on long-term functional
and semantic associations between objects (e.g., lamp
above table). There, effects of object co-occurrences
were specific to familiar spatial configurations (Kaiser
et al., 2014; Quek & Peelen, 2020) and may be mediated
by representational changes in visual cortex (Kaiser
& Peelen, 2018) rather than hippocampus-mediated
associations.

The current findings contribute to the statistical
learning literature (Fiser et al., 2010) by showing that
statistical regularities can be learned when these occur
between shapes that have to be ignored. Unlike studies
where participants passively viewed shape combinations
(Fiser & Aslin, 2001, 2005), here participants could
not discriminate between familiar and unfamiliar pairs
postexperiment, even though the familiar pairs had
been viewed 14 times more often than the unfamiliar
pairs for nine runs. This is in line with prior work
that showed that such co-occurrences between items
are not indicated as familiar postexperiment when
the co-occurrences are task irrelevant (Turk-Browne
et al., 2005). Interestingly, if anything, the structure
benefit observed in visual search performance in our
study was inversely related to participants’ familiarity
of the shapes. A similar negative relationship between
awareness of statistical regularities and the behavioral
benefit of these regularities was recently observed
in a contextual cueing study, where the regularities
concerned target–distractor relations (Spaak & de
Lange, 2020). This suggests that statistical regularities
can be learned implicitly (Turk-Browne et al., 2010).
However, it is possible that familiarity would increase
if the shapes were presented in the context of the
original search displays. More generally, it is hard to
exclude the possibility that the absence of a familiarity
effect reflected the relative insensitivity of this measure
(Meyen et al., 2022). We therefore interpret the
dissociation between implicit and explicit measures of
statistical learning with caution.

The negative correlation between structure benefit
and familiarity score suggests that participants who
more effectively ignored the regular distractor pairs
(thereby showing a greater structure benefit) later judged
these pairs to be relatively unfamiliar. This finding may
reflect the effect of inhibitory attention mechanisms,

which have previously been found to suppress the visual
representation of ignored objects (Seidl et al., 2012) and
impair subsequent judgments on these objects (Tipper,
2001). Similarly, here, inhibiting the representations
of regular distractor pairs during visual search may
have resulted in these object pairs looking relatively
unfamiliar during the explicit familiarity task. It should
be noted, however, that the negative correlation between
structure benefit and familiarity score was not reliably
observed in the preregistered replication experiment,
such that future studies are needed to confirm this
account.

In summary, we find that regularities among
distractors in the environment can be used to reduce
the complexity of a scene, facilitating search for
an unrelated target. Together with the encoding of
regularities between distractors and targets (e.g.,
contextual cueing), this may help to explain the
efficiency of naturalistic visual search.

Keywords: visual search, statistical learning, distractor
suppression, implicit learning
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space: A review of perception, attention,

https://doi.org/10.1038/nrn1476
https://doi.org/10.1068/p250343
http://doi.org/10.5334/pb-51-1-5


Journal of Vision (2022) 22(10):2, 1–11 Thorat, Quek, & Peelen 10

and memory in scene processing. Annual
Review of Vision Science, 6(1), 563–586,
https://doi.org/10.1146/annurev-vision-121219-
081745.

Chun, M. M. (2000). Contextual cueing of visual
attention. Trends in Cognitive Sciences, 4(5),
170–178, https://doi.org/10.1016/S1364-6613(00)
01476-5.

Davachi, L. (2006). Item, context and relational
episodic encoding in humans. Current
Opinion in Neurobiology, 16(6), 693–700,
https://doi.org/10.1016/j.conb.2006.10.012.

de Lange, F. P., Heilbron, M., & Kok, P. (2018).
How do expectations shape perception?
Trends in Cognitive Sciences, 22(9), 764–779,
https://doi.org/10.1016/j.tics.2018.06.002.

Donnelly, N., Humphreys, G. W., & Riddoch, M. J.
(1991). Parallel computation of primitive shape
descriptions. Journal of Experimental Psychology:
Human Perception and Performance, 17(2), 561–570.

Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual
attention between objects and locations: Evidence
from normal and parietal lesion subjects. Journal of
Experimental Psychology: General, 123(2), 161–177,
https://doi.org/10.1037/0096-3445.123.2.161.

Eichenbaum, H., Yonelinas, A. P., & Ranganath, C.
(2007). The medial temporal lobe and recognition
memory. Annual Review of Neuroscience, 30(1),
123–152, https://doi.org/10.1146/annurev.neuro.30.
051606.094328.

Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical
learning of higher-order spatial structures from
visual scenes. Psychological Science, 12(6), 499–504,
https://doi.org/10.1111/1467-9280.00392.

Fiser, J., & Aslin, R. N. (2005). Encoding
multielement scenes: Statistical learning
of visual feature hierarchies. Journal of
Experimental Psychology: General, 134(4), 521–537,
https://doi.org/10.1037/0096-3445.134.4.521.

Fiser, J., Berkes, P., Orbán, G., & Lengyel, M.
(2010). Statistically optimal perception and
learning: From behavior to neural representations.
Trends in Cognitive Sciences, 14(3), 119–130,
https://doi.org/10.1016/j.tics.2010.01.003.

Fiser, J., & Lengyel, G. (2019). A common probabilistic
framework for perceptual and statistical learning.
Current Opinion in Neurobiology, 58, 218–228,
https://doi.org/10.1016/j.conb.2019.09.007.

Flesch, T., Balaguer, J., Dekker, R., Nili, H., &
Summerfield, C. (2018). Comparing continual task
learning in minds and machines. Proceedings of the
National Academy of Sciences, 115(44), E10313–
E10322, https://doi.org/10.1073/pnas.1800755115.

Gayet, S., & Peelen, M. V. (2022). Preparatory
attention incorporates contextual expectations.
Current Biology, 32(3), 687–692.e6, https:
//doi.org/10.1016/j.cub.2021.11.062.

Geng, J. J., & Witkowski, P. (2019). Template-to-
distractor distinctiveness regulates visual search
efficiency. Current Opinion in Psychology, 29,
119–125, https://doi.org/10.1016/j.copsyc.2019.01.
003.

Humphreys, G. W., Quinlan, P. T., & Riddoch, M. J.
(1989). Grouping processes in visual search: Effects
with single- and combined-feature targets. Journal
of Experimental Psychology: General, 118(3),
258–279.

Kaiser, D., & Peelen, M. V. (2018). Transformation
from independent to integrative coding
of multi-object arrangements in human
visual cortex. NeuroImage, 169, 334–341,
https://doi.org/10.1016/j.neuroimage.2017.12.065.

Kaiser, D., Quek, G. L., Cichy, R. M., & Peelen, M.
V. (2019). Object vision in a structured world.
Trends in Cognitive Sciences, 23(8), 672–685,
https://doi.org/10.1016/j.tics.2019.04.013.

Kaiser, D., Stein, T., & Peelen, M. V. (2014). Object
grouping based on real-world regularities facilitates
perception by reducing competitive interactions
in visual cortex. Proceedings of the National
Academy of Sciences, 111(30), 11217–11222,
https://doi.org/10.1073/pnas.1400559111.

Kok, P., & Turk-Browne, N. B. (2018). Associative
prediction of visual shape in the hippocampus. The
Journal of Neuroscience, 38(31), 6888–6899, https:
//doi.org/10.1523/JNEUROSCI.0163-18.2018.

Lengyel, G., Nagy, M., & Fiser, J. (2021). Statistically
defined visual chunks engage object-based
attention. Nature Communications, 12(1), 272,
https://doi.org/10.1038/s41467-020-20589-z.

Meyen, S., Zerweck, I. A., Amado, C., von Luxburg,
U., & Franz, V. H. (2022). Advancing research
on unconscious priming: When can scientists
claim an indirect task advantage? Journal of
Experimental Psychology: General, 151(1), 65–81,
http://dx.doi.org/10.1037/xge0001065.

Oliva, A., & Torralba, A. (2007). The role
of context in object recognition. Trends
in Cognitive Sciences, 11(12), 520–527,
https://doi.org/10.1016/j.tics.2007.09.009.

Peelen, M. V., & Kastner, S. (2014). Attention in
the real world: Toward understanding its neural
basis. Trends in Cognitive Sciences, 18(5), 242–250,
https://doi.org/10.1016/j.tics.2014.02.004.

Quek, G. L., & Peelen, M. V. (2020). Contextual and
spatial associations between objects interactively

https://doi.org/10.1146/annurev-vision-121219-081745
https://doi.org/10.1016/S1364-6613(00)01476-5
https://doi.org/10.1016/j.conb.2006.10.012
https://doi.org/10.1016/j.tics.2018.06.002
https://doi.org/10.1037/0096-3445.123.2.161
https://doi.org/10.1146/annurev.neuro.30.051606.094328
https://doi.org/10.1111/1467-9280.00392
https://doi.org/10.1037/0096-3445.134.4.521
https://doi.org/10.1016/j.tics.2010.01.003
https://doi.org/10.1016/j.conb.2019.09.007
https://doi.org/10.1073/pnas.1800755115
https://doi.org/10.1016/j.cub.2021.11.062
https://doi.org/10.1016/j.copsyc.2019.01.003
https://doi.org/10.1016/j.neuroimage.2017.12.065
https://doi.org/10.1016/j.tics.2019.04.013
https://doi.org/10.1073/pnas.1400559111
https://doi.org/10.1523/JNEUROSCI.0163-18.2018
https://doi.org/10.1038/s41467-020-20589-z
http://dx.doi.org/10.1037/xge0001065
https://doi.org/10.1016/j.tics.2007.09.009
https://doi.org/10.1016/j.tics.2014.02.004


Journal of Vision (2022) 22(10):2, 1–11 Thorat, Quek, & Peelen 11

modulate visual processing.Cerebral Cortex, 30(12),
6391–6404, https://doi.org/10.1093/cercor/bhaa197.

Rauschenberger, R., & Yantis, S. (2006). Perceptual
encoding efficiency in visual search. Journal of
Experimental Psychology: General, 135(1), 116–131,
https://doi.org/10.1037/0096-3445.135.1.116.

Schapiro, A., & Turk-Browne, N. (2015). Statistical
learning. In: A. W. Toga (Ed.), Brain mapping (pp.
501–506). New York, NY: Academic Press, https:
//doi.org/10.1016/B978-0-12-397025-1.00276-1.

Schmidt, J., & Zelinsky, G. J. (2009). Search guidance
is proportional to the categorical specificity
of a target cue. The Quarterly Journal of
Experimental Psychology, 62(10), 1904–1914,
doi:10.1080/17470210902853530.

Scholl, B. J. (2001). Objects and attention: The
state of the art. Cognition, 80(1–2), 1–46,
https://doi.org/10.1016/S0010-0277(00)00152-9.

Seidl, K. N., Peelen, M. V., & Kastner, S. (2012).
Neural evidence for distracter suppression
during visual search in real-world scenes. Journal
of Neuroscience, 32(34), 11812–11819, https:
//doi.org/10.1523/JNEUROSCI.1693-12.2012.

Spaak, E., & de Lange, F. P. (2020). Hippocampal
and prefrontal theta-band mechanisms
underpin implicit spatial context learning. The
Journal of Neuroscience, 40(1), 191–202, https:
//doi.org/10.1523/JNEUROSCI.1660-19.2019.

Spaak, E., Peelen, M. V., & de Lange, F. P. (2022).
Scene context impairs perception of semantically
congruent objects. Psychological Science, 33(2),
299–313.

Stein, T., Kaiser, D., & Peelen, M. V. (2015). Interobject
grouping facilitates visual awareness. Journal of
Vision, 15(8), 10, https://doi.org/10.1167/15.8.10.

Tipper, S. P. (2001). Does negative priming reflect
inhibitory mechanisms? A review and integration
of conflicting views. The Quarterly Journal of
Experimental Psychology Section A, 54(2), 321–343,
https://doi.org/10.1080/713755969.

Turk-Browne, N. B., Jungé, J. A., & Scholl,
B. J. (2005). The automaticity of visual
statistical learning. Journal of Experimental
Psychology: General, 134(4), 552–564, https:
//doi.org/10.1037/0096-3445.134.4.552.

Turk-Browne, N. B., Scholl, B. J., Johnson, M. K.,
& Chun, M. M. (2010). Implicit perceptual
anticipation triggered by statistical learning. The
Journal of Neuroscience, 30, 11177–11187, https:
//doi.org/10.1523/JNEUROSCI.0858-10.2010.

Võ, M. L.-H., Boettcher, S. E., & Draschkow, D.
(2019). Reading scenes: How scene grammar
guides attention and aids perception in real-world
environments. Current Opinion in Psychology, 29,
205–210, https://doi.org/10.1016/j.copsyc.2019.03.
009.

Võ, M. L.-H., & Wolfe, J. M. (2013). Differential
electrophysiological signatures of semantic
and syntactic scene processing. Psychological
Science, 24(9), 1816–1823, https://doi.org/10.1177/
0956797613476955.

Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E.,
Peterson, M. A., Singh, M., . . . von der Heydt, R.
(2012). A century of Gestalt psychology in visual
perception: I. Perceptual grouping and figure–
ground organization. Psychological Bulletin, 138(6),
1172–1217, https://doi.org/10.1037/a0029333.

Wolfe, J. M. (1998). What can 1 million trials tell us
about visual search? Psychological Science, 9(1),
33–39, https://doi.org/10.1111/1467-9280.00006.

Wolfe, J. M., Alvarez, G. A., Rosenholtz, R., Kuzmova,
Y. I., & Sherman, A. M. (2011). Visual search
for arbitrary objects in real scenes. Attention,
Perception, & Psychophysics, 73(6), 1650–1671,
https://doi.org/10.3758/s13414-011-0153-3.

Wolfe, J. M., Horowitz, T. S., Kenner, N., Hyle, M.,
& Vasan, N. (2004). How fast can you change
your mind? The speed of top-down guidance in
visual search. Vision Research, 44(12), 1411–1426,
doi:10.1016/j.visres.2003.11.024.

Wolfe, J. M., Võ, M. L.-H., Evans, K. K., &
Greene, M. R. (2011). Visual search in scenes
involves selective and nonselective pathways.
Trends in Cognitive Sciences, 15(2), 77–84,
https://doi.org/10.1016/j.tics.2010.12.001.

Zhao, J., & Yu, R. Q. (2016). Statistical regularities
reduce perceived numerosity. Cognition, 146,
217–222, https://doi.org/10.1016/j.cognition.2015.
09.018.

https://doi.org/10.1093/cercor/bhaa197
https://doi.org/10.1037/0096-3445.135.1.116
https://doi.org/10.1016/B978-0-12-397025-1.00276-1
http://doi.org/10.1080/17470210902853530
https://doi.org/10.1016/S0010-0277(00)00152-9
https://doi.org/10.1523/JNEUROSCI.1693-12.2012
https://doi.org/10.1523/JNEUROSCI.1660-19.2019
https://doi.org/10.1167/15.8.10
https://doi.org/10.1080/713755969
https://doi.org/10.1037/0096-3445.134.4.552
https://doi.org/10.1523/JNEUROSCI.0858-10.2010
https://doi.org/10.1016/j.copsyc.2019.03.009
https://doi.org/10.1177/0956797613476955
https://doi.org/10.1037/a0029333
https://doi.org/10.1111/1467-9280.00006
https://doi.org/10.3758/s13414-011-0153-3
http://doi.org/10.1016/j.visres.2003.11.024
https://doi.org/10.1016/j.tics.2010.12.001
https://doi.org/10.1016/j.cognition.2015.09.018

