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Scedosporium species rank second among the filamentous fungi colonizing the lungs of patients with cys-
tic fibrosis (CF). Apart from the context of immunodeficiency (lung transplantation), the colonization of
the CF airways by these fungi usually remains asymptomatic. Why the colonization of the lower airways
by Scedosporium species is fairly tolerated by CF patients while these fungi are able to induce a marked
inflammatory reaction in other clinical contexts remains questionable. In this regards, we were interested
here in exploring the transcriptional reprogramming that accompanies the adaptation of these fungi to
the particular microenvironment encountered in the airways of CF patients. Cultivation of
Scedosporium apiospermum in conditions mimicking the microenvironment in the CF lungs was shown
to induce marked transcriptional changes. This includes notably the down-regulation of enzymes
involved in the synthesis of some major components of the plasma membrane which may reflect the abil-
ity of the fungus to evade the host immune response by lowering the biosynthesis of some major anti-
genic determinants or inhibiting their targeting to the cell surface through alterations of the
membrane fluidity. In addition, this analysis revealed that some genes encoding enzymes involved in
the biosynthesis of some mycotoxins were down-regulated suggesting that, during the colonization pro-
cess, S. apiospermum reduces the production of some toxic secondary metabolites to prevent exacerbation
of the immune system response. Finally, a strong up-regulation of many genes encoding enzymes
involved in the degradation of aromatic compounds was observed, suggesting that these catabolic prop-
erties would predispose the fungus to particular patterns of human pathogenicity. Together these data
provide new insights into the adaptative mechanisms developed by S. apiospermum in the CF lungs,
which should be considered for identification of potential targets for drug development, but also for
the experimental conditions to be used in in vitro susceptibility testing of clinical isolates to current

antifungals.
© 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Scedosporium species are worldwide distributed filamentous
fungi usually living as saprophytes in polluted soils and water
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[1]. Nevertheless, these fungi may also cause in Human a large
variety of infections, ranging from localized infections such as sub-
cutaneous mycetoma and bone or joint infections resulting from
traumatic inoculation of some fungal elements, to disseminated
infections in immunocompromised hosts, particularly in solid
organ transplant recipients [2]. Moreover, these fungi have gained
attention since the past two decades, mainly because of their
worldwide recognition as significant pathogens in patients with
cystic fibrosis [3].
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Cystic fibrosis (CF) which is the most common genetic inherited
disease in Caucasian populations, is caused by mutations in the
gene CFIR (for cystic fibrosis transmembrane conductance regula-
tor). The encoded protein is located at the apical membrane of
numerous epithelial cell types where it is involved in the efflux
of chloride and bicarbonate anions. Nevertheless, prognosis in CF
essentially depends on the lesions of the lungs, which are the main
target organs of the disease. Indeed, the respiratory tract of
patients with CF is often colonized by microorganisms, mainly bac-
teria, but also yeasts and filamentous fungi, sometimes causing
respiratory infections which are the major cause of morbidity
and mortality in these patients. With a frequency ranging between
4.5 and 15.9%, species of the Scedosporium genus rank second
among the filamentous fungi colonizing the CF airways, after
Aspergillus fumigatus, and among Scedosporium species, the most
common is Scedosporium apiospermum or Scedosporium boydii,
depending on the country [4-12].

In the CF context, colonization of the respiratory tract by Sce-
dosporium species is usually asymptomatic, although some cases
of bronchitis or allergic broncho-pulmonary mycoses have been
reported [13,14]. Nevertheless, as described for Aspergillus fumiga-
tus [15], all epidemiological studies that have been conducted so
far demonstrated the usual chronicity of the colonization of the air-
ways by Scedosporium species, each patient being colonized by a
single genotype conserved over time despite the antifungal treat-
ment [9,16,17]. Therefore, considering the propensity of these
fungi to cause severe and often fatal disseminated infections in
case of immunodeficiency [2,3], all efforts should be made to
detect this fungal colonization as early as possible, since lung or
heart-lung transplantation still remains the ultimate treatment
of patients with CF. Likewise, studies should be conducted to elu-
cidate why these fungi are so difficult to eradicate.

Failure to eradicate bacteria in the CF lungs has been attributed
to impairment of the local immune response, more precisely to a
reduced synthesis of the major isoform of nitric oxide synthase
(NOS-2) in the CF airway epithelium [18] because of the marked
upregulation of the protein inhibitor of activated STAT-1 which is
required for NOS-2 transcription [19]. In addition, persistence of
bacteria in the CF mucus progressively leads to an acute inflamma-
tion with an influx of neutrophils and the release of elastase in the
airways, leading to structural damage of the lungs which con-
tribute to maintaining bacterial persistence. Finally, the sharp oxy-
gen concentration gradient between the airway lumen and the
depth of the CF bronchial mucus may provide advantage to the
microorganisms. Bacteria respond to this hypoxic environment
by an increased production of extracellular matrix components
which contribute to bacterial persistence by limiting access of
antibiotics and of the host antimicrobial components to bacterial
cells [20].

However, beside hypoxia, the defect in efflux of chloride and
bicarbonate anions resulting from mutations in the gene CFTR lead
to many other changes in the physico-chemical properties of the
bronchial mucus: decreased osmotic pressure, acid pH, increased
carbon dioxide pressure, and increased concentration of lactates
resulting from the fermentative activity of the cells. All these envi-
ronmental conditions are known to affect physiology and morpho-
genesis in various fungal species as well as their virulence, for
example production of capsule polysaccharides in Cryptococcus
neoformans [21-23], or synthesis of structural polysaccharides
and width of the cell wall, adhesin synthesis, and biofilm formation
in the yeast Candida albicans [24-26] (for reviews see references
[27,28,29,30,31]). Taking advantage of the recent availability of S.
apiospermum genome [32], this study therefore was designed to
investigate the transcriptional changes in response to the particu-
lar environmental conditions encountered by the fungus in the CF
sticky mucus.
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2. Materials and methods
2.1. Microorganism and culture conditions

This study was conducted using the reference strain S. apiosper-
mum IHEM (Institute of Hygiene and Epidemiology-Mycology sec-
tion) 14462, originally isolated from sputum sample from a French
CF patient, which is publicly available at Sciensano (Brussels, Bel-
gium) and was previously used for genome sequencing [32]. The
strain, preserved as freeze-dried, was first grown on yeast
extract-peptone-dextrose-agar plates containing chloramphenicol
0.5 g/L.

Then the fungus was cultivated into the synthetic medium
Yeast Nitrogen Base (YNB) with 2% glucose, buffered at pH 7 with
phosphate, with incubation under normal atmospheric conditions
(80% Ny — 20% 0, - 0.039% CO,) as the reference culture condition

Table 1
Primers used in this study.

Primer name Sequence (5’ to 3')

4161-1F CCAAGACCTTGACCACCGATC
4161-1R GAGTGAGGGAGCGGGTGACAA
4161-2F CCAAACGCAACGATTCAGGCGG
4161-2R GTCGGCGTCTTCGTGTGTAATC
4161-3F CAGGCCTTTCGAGGTCACATGC
4161-3R CCATGTCACTGTGGTTGGCAG
4161-4F GTCCGTTCTAGGTGCAGGAC
4161-4R CCTAGCATTCTCTGGAGCCCT
4161-5F GTTGATTGGTGGTGCGTTGGTT
4161-5R CATCACCACCACCAAAGTCATC
6569-1F CTGGGACAGTATGGCCACTC
6569-1R TTCTCCTCGAGCGTGAGCTC
6569-2F GTTTGGCACCCTCGCAATTG
6569-2R CAGCGATGAGGGTATTGCTC
6569-3F GTCCGAGCAGTCTGATCTCC
6569-3R CGCGAAGTTGCCGTATCGGTG
6569-4F CCATTTCGCGTATCGCAGGGC
6569-4R CTAGGCGACCTTCGAAAGCTC
6569-5F GGACGTATCGCTACCGTTCG
6569-5R GCCAGGCCAACAGCATCAGT
Table 2
RNA-seq run description.
Condition RNA-seq Number of % overall
accession reads mapping
A (control) 1 11,454,114 96.54
A (control) 2 8,960,682 96.78
A (control) 3 3,860,262 96.85
B (low 4 18,365,999 95.96
osmolarity)
B (low 5 29,215,410 93.92
osmolarity)
B (low 6 13,621,825 95.49
osmolarity)
C (elevated 16 13,240,120 96.02
lactate)
C (elevated 17 6,153,612 96.14
lactate)
C (elevated 18 29,138,378 96.87
lactate)
D (low pH) 7 19,233,452 96.38
D (low pH) 8 4,701,204 97.28
D (low pH) 9 2,120,142 96.81
E (hypoxia) 19 16,933,269 96.15
E (hypoxia) 20 10,095,065 96.35
E (hypoxia) 21 14,768,183 95.84
F (hypercapnia) 10 10,759,382 97.04
F (hypercapnia) 11 6,941,592 95.75
F (hypercapnia) 12 8,569,169 96.74
G (CSFM) 13 1,092,941 96.25
G (CSFM) 14 16,313,276 96.49
G (CSFM) 15 3,640,226 95.17
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(A condition). Six other culture conditions were investigated in
parallel: (i) to mimic a decreased osmolarity, sucrose was changed
to glucose as the carbon source (B condition); (ii) increased lactate
concentration was investigated by mixing an equal amount of glu-
cose and lactate, 1% each (C condition); (iii) lowering the pH was
done by buffering YNB-glucose broth at 6.4 with phosphate (D con-
dition); (iv and v) YNB-glucose pH 7 was also incubated under 95%
N, - 5% 0, — 0.039% CO, or under 75% N, — 20% O, — 5% CO, to

Table 3
Comparison between predicted and RNA-seq inferred transfrag predictions.
Transfrag type Number of
transfrags
Complete match of intron chain 8375
A transfrag overlapping a reference exon (pre-mRNA) 137
A transfrag falling entirely within a reference intron 5
Potentially novel isoform: at least one splice junction is 2674
shared with a reference transcript
Generic exonic overlap with a reference transcript 110
(transfrags in exons)
Possible polymerase run-on fragment 360

An intron of the transfrag matches a reference intron on the 146
opposite strand
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reproduce hypoxia (E condition) and hypercapnia (F condition);
and (vi) the fungus also was cultivated in CF Synthetic Medium
(G condition) described by Palmer et al. [33] which mimics the
nutritional conditions found in the CF mucus, and which takes into
account several parameters studied independently in the above-
mentioned conditions, particularly low osmolarity, presence of lac-
tate, and decreased pH.

Triplicate cultures were incubated for 5 days at 37 °C with con-
stant shaking. Then the mycelia were harvested and ground in lig-
uid nitrogen.

2.2. Sample preparation and sequencing

Total RNAs were extracted from the homogenates with a RNA
Plant kit (Macherey-Nagel). Total RNA in these extracts were quan-
tified by fluorometry and their integrity was evaluated by micro-
electrophoresis. Libraries were prepared in the paired-end strand
specific mode with the HiSeq SBS Kit v4. 125-bp long reads were
sequenced by Eurofins using the Illumina HiSeq 2500 platform.

2.3. RNA-seq analysis

Unknown, intergenic transcript . 1998 Transcript assembly and quantification was performed using
Exonic overlap with reference on the opposite strand 522 . K . .. .
the Hisat2/StringTie/Ballgown pipeline as described by Pertea
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15 LJ °
P v . e ° ' Py Opposite exonic overlaps
10 o ! +
T Opposite intronic matchs
5 Ll 5.7
!!!!!!;iaééﬁans LA MandhimACLy
s Transfrags In exon Opposite intronic matchs
S 25
o
X 201
-‘E’ 154 1500 -
S 104 L]
& ;.E e’ o]
g 5 -
£ T (5]
% o4 5 - é¢é¢— T 5 1000
i Intergenic transcripts Opposite exonic overlaps é
25 5
20 z 5004
15 4
10 4
5 ° = ° =
04!!;ééu T ;;ﬂq 04
12345678 91011121314151617181920 1 2 3 4 5 6 7 8 91011121314151617181920 2 4 6
Number of exons Number of transfrags
© .+ + + Opposite intronic match + Intergenic transcripts
transcript: KEZ46734 Opposite I . .
B AR i scapio_ss a1 B| A R §| _mmmpp sowpossri72 Bl soapio_ss iz
& l—l_—I == =] & B scapio_ss_rf.21 & P ﬁ scaplo_ss_rf.7.1 =
1 11 1 11 11 1 1 1 1 11 1
V o e HE
_6 _6 o noner onn _6 o n "o _6
2| Shared junctns g2 BEHEHHE iy 2 i e
s 5 transcript: KEZ46730 5 IHeH s
@ @ @ transcript:KEZ46737 @
I T T T 1 I T T T 1 T T T T 1 T T T T 1
40665 43480 46296 27210 28642 30073 52615 54143 55671 62852 63476 64101

Fig. 1. RNA-seq guided gene prediction. Transcribed fragments (transfrags) assembled with the Hisat2/Stringtie pipeline were compared to predicted genes in the reference
annotation of S. apiospermum. In (A), transfrag length is plotted againt exon number for the different transfrag classes. Transfrags were detected within already identified
coding sequences (CDS) or in intergenic sequences. In (B), transfrag number per CDS is represented according to transfrag nature (potential isoform containing at least one
matching intron, opposite intronic match or opposite exonic overlap). Specific examples of 4 transfrags (isoform, opposite exonic overlap, opposite intronic match and new
intergenic) are depicted on scaffold SEQ_SAPIO_0011 in (C). Each box represents an exon. X-axis indicates genomic locations on the positive strand. Reference transcripts are

indicated with “transcript:” and RNA-seq assembled transcripts with “scapio_ss_rf”.
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et al. [34]. Reads were first trimmed with Trimmomatic using the
default parameters for paired-end reads [35] and subsequently
mapped onto S. apiospermum genome sequence with Hisat2 in
the strand specific mode RF [36]. Maximum intron length was
set at 4000 and both discordant and mixed alignments were dis-
carded. Each sample was first analyzed separately. Aligned reads
were grouped into transcribed fragments (transfrags) with String-
Tie [37] to generate 21 individual assemblies. The published refer-
ence annotation of S. apiospermum was used as a guide to assemble
reads into larger sequences. Individual assemblies were next
merged with StringTie to generate a global assembly with the fol-
lowing parameters: minimum input transcript of 25 transcripts per
million (TPM) (-T), minimum isoform fraction at 0.2 (-f), minimum
input transcript length of 200 nt (-m) and a minimum input tran-
script coverage of 10 (-c).

Transcript annotation was performed by blasting sequences
against Uniprot database with Blast+ [38] and by scanning
domains from the PfamA database with Hmmerscan [39]. Searches
were performed in parallel using the perl scripts made by Brian
Haas (http://hpcgridrunner.github.io/).

Merged transcribed fragments were finally quantified in each
sample using original alignments. Quantification files were pro-
cessed with Ballgown [40] in R [41]. We also quantify transcript
abundance by pseudo-aligning reads on the resulting transcrip-
tome in the SMEM-based lightweight alignment mode of Salmon
v0.7.2 [42]. We used the R package DESeq2 [43] to detect signifi-
cantly and differentially expressed genes in all pairwise compar-
ison with the A culture condition using negative binomial based
linear models and raw counts. Transcripts with an absolute log,
fold change above 2 and a FDR-adjusted p-value <0.001 were
retained as differentially expressed in the given comparison. Sig-
nificantly enriched functions were detected with an hypergeomet-
ric distribution test in R.

2.4. Quantitative PCR

Quantitative PCR (qPCR) experiments were carried out as
described by Le Govic et al. [44]. Primers used in this study are pre-
sented in Table 1.

2.5. Co-expression analysis

A global co-expression network was inferred from the Tran-
script Per Million expression matrix obtained with Salmon (see
above) containing the abundance of the 14,327 predicted trans-
frags. Distance between all pairwise gene combinations was calcu-
lated with Pearson Correlation Coefficient together with the
Highest Reciprocal Ranking (HRR) procedure as described in Lie-
secke et al. [45]. The global co-expression network contained
14,086 genes and 61,829 connections with an HRR value below
20. This large graph was further cut into smaller subgraphs with
a fast greedy algorithm to detect communities of more densely
connected genes [46]. Communities with more than 10 transcripts
were further analyzed.

3. Results
3.1. Transcriptome assembly from RNA-seq reads

A total of 21 samples representing 7 experimental conditions
(Table 2) were sequenced from paired-end strand specific libraries
using Illumina short reads. Each RNA-seq run was used to
assemble transcripts with StringTie after mapping them on the
S. apiospermum genome sequence with Hisat2. Reads mapped on
the genome sequence at a very good rate (> 95%) (Table 3).
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Individual assemblies were merged into a global one using the
draft genome annotation as a support for transcript reconstruction.
According to previous annotation, S. apiospermum genome com-
prises 10,920 genes, 8375 being validated or predicted protein-
coding genes and the remaining being considered as pseudogenes
[32]. Using the reference annotation, we found new isoforms, i.e.
new transcripts differing in structure from the predicted ones. A
total of 14,327 transcribed sequences (=transfrags) (Supplemental
Table S1) were assembled using this procedure which corre-
sponded to 10,873 different genomic loci. Among the 14,327 trans-
frags, 8375 predicted transcripts were found (representing 8063
loci with complete match), as well as 2674 potentially new iso-
forms and 1998 new transcripts (Table 3).

In silico gene prediction may sometimes fail to correctly predict
transcription start sites as well as exon-intron junctions. We
therefore looked at the length and exonic structure of newly pre-
dicted transfrags. On average, new isoforms were longer than pre-
viously predicted transcripts (3143 vs. 1641 nt) while new
intergenic transcripts were similar in size (1590 nt) (Fig. 1A). They
also had more exons (4.5 in average vs. 3.6 for reference tran-
scripts) suggesting that many genes display alternatively spliced
transcripts. Exon number was only slightly but significantly corre-
lated with transfrag length (Spearman’s rho > 0.28, p-value < 2e-
16) revealing that longer transcripts do not contain longer 3’ UTR
regions only.

We found that the new 2674 isoforms concerned 2233 coding
sequences (CDS) out of 8375 indicating that some CDS corre-
sponded to at least two isoforms (Fig. 1B). Most of these CDS
(1875) had only one isoform in addition to the reference transcript
and the highest number of isoforms was 6. A potential isoform
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sharing two spliced junctions is depicted on the left part of Fig. 1C.
In this case, the isoform scapio_ss_rf.4.1 was longer than the refer-
ence transcript KEZ46734 (SAPIO_CDS0010) on scaffold SEQ_SA-
PIO_0011. Antisense transcripts were also detected by transfrags
overlapping exons or matching introns on the opposite strand
(Table 3, Fig. 1). The most frequent antisense transfrags corre-
sponded to overlaps with exons on the opposite strand, although
both types (exon overlap or intron matching) were longer in aver-
age than the reference transcripts (2501 nt and 2226 nt,
respectively).

Among the 10,873 loci inferred from the RNA-seq analysis, 2541
had several transcripts including reference and newly predicted
transcripts. As indicated above, predicted transcripts from our
assembly were generally longer than reference transcripts
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(Fig. 2A). We summed TPM over the 21 samples to estimate a glo-
bal abundance for each transcript revealing a small but significant
positive relationship between abundances of predicted and of ref-
erence transcripts (Spearman’s rho 0.18, p-value < 2e-16)
(Fig. 2B). This could reveal that isoforms and reference transcripts
had different expression patterns. Abundance of 79 reference tran-
scripts was very low (TPM < 1.5) while their isoforms had higher
abundance (TPM > 32). This suggests that many reference tran-
scripts are not necessarily the main gene expression products. This
was typically illustrated on the scapio_ss_rf.6569 locus (Fig. 3A).
This locus corresponded to several transcripts with both sense
and antisense orientations. The predicted global expression of
KEZ40873 was very low, while that of scapio_ss_rf.6569.1 which
was much longer appeared to be higher. The existence of such a



P. Vandeputte, T. Dugé de Bernonville, Y. Le Govic et al.

Pathway

Carbohydrate metabolism 4

Carbohydrate biosynthesis 4 [ ]

Mycotoxin biosynthesis

Lipid metabolism 4

Amino-acid biosynthesis -

Mycotoxin biosynthesis. {EC0:0000305|PubMed:15387811}. - [ ]
Sulfur metabolism

Polyketide biosynthesis <

Energy metabolism o

Amino-acid degradation <

OU’I(?ODA;—N

n)
ay
[ Iy
‘:,’
NS
Qm
B —eo
o
'ng
gy

PF00
PF13424.3 TPR
85.8

T
dqu

i)
ST
2o
o
%
oS
PO
w
<
m
(IJ

4 Mito_cai

[ J
@
@
(]
[
@
[ J
PF0Q car4{ @
PF136493Meth ltranst 25 1 @
PF00400.29 WD40 1 ®
[
[

@
°
PF13450.3 NAD bmdmg(F? 1®

1@

PF08241 9 Meth ltransf 11 1@
.11 GFA 4@

01535 17 PPR :

(]
L

PFQ0155.18 Aminotran_1_2 A
PF00149.25 Metallophos -

5 10

15 20 25 30

Computational and Structural Biotechnology Journal 18 (2020) 3468-3483

Keyword
ATP-binding 4 ([ ]
Allergen - [
Cellular component 4 [ ]
Cell membrane - [}
ANK repeat [ ]
Amino-acid biosynthesis1 @
Antiport{ @
Aminotransferase 1 ®
Acyltransferase 1 @
Heme 1@
Activator {®
Actin-binding 1@
o
[ ]

Acetylation 4
2Fe-2S A

IPS

Insulin-like growth factor binding protein, | °

N-terminal, Cys-rlch conserved site
Integrin beta subunit -

Agouti domain 4

Cystine knot, C-terminal 4

Expansin/pollen allergen, DPBB domain A
Janus-atracotoxin -

Thaumatin 4

Insulin-like growth factor-binding protein, IGFBP -
Conotoxin-1, conserved site -
Anaphylatoxin/fibulin 4

4Fe-4S ferredoxin, iron-sulphur binding, conserved site
Metallothionein, family 4, echinoidea

Disintegrin domain 4

Alpha-defensin

Cytochrome c, class Il

EGF-like, conserved site 4

o4
©0c000c0000,

60

N
o
E 3
o

Number of transfrags

Fig. 4. Functional annotation of predicted intergenic sequences. Pathway and keywords were retrieved from Uniprot annotations for transcripts having homologs in this
database. Pfam domains were detected with Hmmscan against PfamA. For proteins with neither homolog in Uniprot nor Pfam domain, Interproscan (IPS) signatures were

searched.

long transcript was confirmed by qPCR experiments on cDNA using
the primer pairs 6569-2, 6569-3, 6569-4 and 6569-5, and with the
primer pair 6569-1F and 6569-4R. Although we were unable to
amplify a long sequence with primers 6569-4F and 6569-5R, the
amplicon obtained with the primer pair 6569-5 confirmed the
existence of this transcribed fragment.

A detailed inspection of the 2541 multi-transcript loci revealed
that 291 corresponded to two and sometimes three reference tran-
scripts. As an example, locus scapio_ss_rf.4161 corresponded to
two reference transcripts KEZ43085 and KEZ43086 (Fig. 3B). In this
locus, a transfrag (scapio_ss_rf.4161.1) simultaneously contained
these two transcripts suggesting the existence of a polycistron.
Successful amplifications on cDNAs with the 5 primer pairs
4161-1, 4161-2, 4161-3, 4161-4 and 4161-5 confirmed the exis-
tence of this long transcript, particularly the amplification with
primers 4161-3 and the cross-amplification using 4161-3F and
4161-2R. Although we were unable to amplify a fragment using
the 4161-5F/4161-4R primer pair, the positive qPCR amplification
with primers 4161-5 indicated a log,FCqpcr (condition G vs.
A) = 1.97 (in agreement with the use of primers 4161-3 showing
a log,FCqpck = 3.74). The amplicon generated with primers
4161-5 was unlikely to result only from the amplification of
scapio_ss_rf.4161.3 because this transcript was shown to be
down-regulated by RNA-seq (10g,FCrna-seq(G vs. A) = —0.5). As a
consequence, such polycistronic transcripts are likely to occur in
S. apiospermum, although their biological meaning still remains
to be determined.

Transfrags annotated as intergenic transcripts could be poten-
tially considered as new genes. Among the 1998 predicted inter-
genic, 310 had homologies with one Uniprot accession by Blastx
(Fig. 4). These transcripts encoded proteins related to primary
metabolism (carbohydrates and lipids), but also to mycotoxin
biosynthesis. Many of these proteins were also associated with
ATP-binding and allergen motifs. To a larger extent, 547 out of
the 1998 transcripts had protein sequence matching with at least
one Pfam domain in PfamA as found by Hmmscan. Many (109) of
these domains were related to ankyrin repeat domains but enzy-
matic activities such as alcohol dehydrogenases and methyltrans-
ferases were also detected. For the remaining 1073 sequences
with neither homolog in Uniprot nor evident Pfam domains, speci-
fic signatures were searched with Interproscan. Only 144 out of
these 1073 intergenic transcripts had such signatures with a
marked presence of cysteine-rich domains. As an example, we
were able to amplify scapio_ss_rf.7481.1 from cDNA. We verified
by both RNA-seq and qPCR that this transcript was significantly
more expressed in culture condition E. As observed by Blastx
against NCBI nr database, the resulting protein is predicted to con-
tain an adenosylmethionine-8-amino-7-oxononanoate amino-
transferase domain suggesting an amino-acid transferase activity.

We next used transfrag expression levels to perform a differen-
tial expression analysis and to highlight transcripts that character-
ized the best each experimental condition. Finally, we determined
whether or not newly assembled transfrags improved current ref-
erence transcript annotation.
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3.2. Cellular processes affected by the different culture conditions

The full RNA-seq assembled transcriptome was first filtered to
remove transfrags with very low variance (< 1) and summed raw
counts (< 10) across the 21 samples. A total of 13,810 transcripts
(96%) were retained for further analysis. Differentially expressed
transcripts were detected in 6 conditions compared to the refer-
ence culture condition A using a general linear model following a
negative binomial to estimate true transcript abundance. This anal-
ysis revealed 4207 transfrags that were differentially expressed in
at least one of the 6 comparisons (Fig. 5A). Expression of several
genes was monitored by qPCR to confirm the validity of the differ-
ential approach analysis (Fig. 6). A very good correlation between
the two technologies was observed, confirming the reliability of
transcript abundance estimated from RNA-seq data. Transcripts

detected as weakly expressed in RNA-seq data also displayed very
weak expression levels as measured by qPCR for scapio_ss_rf.608.1
and scapio_ss_rf.4436.1 for example. Down-regulated transcripts
such as scapio_ss_rf.1927.1 and up-regulated transcripts such as
KEZ46561 also had very comparable induction folds measured by
RNA-seq and qPCR.

Surprisingly, our analysis first revealed that cultivation of S.
apiospermum under hypercapnia or in the presence of an elevated
lactate concentration did not induce as much changes as expected.
Indeed, only 41 and 117 transcripts were up- and down-regulated
under hypercapnic conditions while 71 and 69 transcripts were
up- and down-regulated when the fungus was cultivated in the
presence of 1% lactate (Fig. 5B, supplemental Table S2).

Likewise, low osmolarity triggered a moderate transcriptional
reprogramming since we detected 146 and 467 transfrags up-
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and down-regulated, respectively, under this culture condition
(Fig. 5B, supplemental Table S2). Among the down-regulated tran-
scripts, several encoded proteins were related to lipid metabolism
or mycotoxin biosynthesis (Fig. 5A, Fig. 5B, supplemental Table S3),
suggesting that, as reported in other fungal models, low osmolarity
induces change in the plasma membrane composition, but also
regulates some secondary metabolic pathways in S. apiospermum
[47].

By contrast, a large series of genes was predicted to be involved
in the adaptation of the fungus to growth at acid pH. Indeed at pH
6.4, 774 transcripts were found to be up-regulated and 596 were
down-regulated (Fig. 5B, supplemental Table S2). As illustrated in
Fig. 5A, the main pathways affected in this culture condition were
associated to the biogenesis of the cell membrane (metabolism of
lipids, phospholipids, and steroids) and to both primary (purines,
nucleotide-sugars, amino-acids, proteins, carbohydrates) and sec-
ondary (mycotoxins) metabolisms (Fig. 5A, Fig. 5B, supplemental
Table S3). This indicated that the sole lowering the pH of a single
unit is sufficient to induce strong transcriptional changes in
S. apiospermum.

Our data also revealed marked changes in gene expression
when the mold was cultivated in hypoxic conditions. We also
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identified 695 and 946 S. apiospermum transcripts up- and down-
regulated, respectively, under hypoxia (Fig. 5B, supplemental
Table S2). These transfrags corresponded to genes mainly involved
in general processes and metabolisms (fermentation, protein mod-
ification, carbohydrate metabolism and degradation, amine and
polyamine biosynthesis, nitrogenous base metabolisms), mem-
brane composition (lipid, phospholipid, and glycolipid metabo-
lism), and mycotoxin biosynthesis (Fig. 5A, Fig. 5B, supplemental
Table S3). Likewise, hypoxic conditions triggered a coordinate
over-expression of a series of more than 20 genes involved in
amino-acid biosynthesis (Fig. 5A, Fig. 5B, supplemental Table S3).
Although a positive effect of hypoxia on global amino-acid biosyn-
thesis was recently observed in Saccharomyces cerevisiae [48], the
significance of this regulation is still unclear since molecular oxy-
gen does not appear to be required for this process.

Above all, the strongest transcriptional reprogramming in S.
apiospermum was obtained by comparing the control culture con-
dition with the CFSM culture condition. Indeed, 1277 transcripts
were enriched in CFSM compared to the control condition, and
1616 were down-regulated (Fig. 5B, supplemental Table S2).
Beside the numerous general processes influenced by acid pH, ele-
vated lactate concentration or hypoxia (Fig. 5A, Fig. 5B, supplemen-
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tal Table S3), several additional pathways were found to be specif-
ically regulated when S. apiospermum was cultivated in this med-
ium which mimics the CF bronchial mucus. First, the amino-acid
metabolism appeared strongly impacted in this culture condition
since 20 transcripts encoding enzymes involved in amino-acid
biosynthesis were down-regulated and 15 transcripts encoding
enzymes involved in amino-acid degradation were up-regulated
(Fig. 5A, Fig. 5B, supplemental Table S3). This could indicate that
the fungus uses amino-acids from the synthetic medium as pri-
mary source of carbon, nitrogen, and sulfur for some biosynthesis.
We also observed a dramatic shift in the composition of the cell
envelop. This is attested by the down-regulation of a series of 4
transcripts encoding enzymes involved in early steps of the
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sphingolipid biosynthetic pathway [the serine palmitoyltrans-
ferase (rf.1720.1), the phosphatidylserine decarboxylase
(rf.8946.2), the ethanolamine kinase (rf.5506.2), and the phos-
phatidylethanolamine N-methyltransferase (rf.5756.1) (Fig. 7)], of
two transcripts encoding key enzymes of the glycosylphos-
phatidylinositol (GPI)-anchor protein biosynthetic pathway [the
GPI ethanolamine phosphate transferase 1 (KEZ46495) and the
GPI-anchor biosynthesis protein Pig-f (KEZ38800)] (Fig. 8), and of
transcripts corresponding to 5 of the ERG gene series involved in
the conversion of squalene to ergosterol (the C-14-alpha sterol
demethylase Erg11p (rf.2559.1), C-4 methyl sterol oxidase Erg25p
(rf.5846.1), sterol C24-methyltransferase Erg6p (KEZ41980), delta
5,6-sterol desaturase Erg3p (rf.2424.1), cytochrome P450 sterol
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C-22 desaturase Erg5p (rf.5660.1)] (Fig. 9). Our data also revealed
the down-regulation of some transcripts encoding enzymes
involved in the biosynthesis of aflatoxin-like mycotoxins including
notably the polyketide synthase noranthrone synthase
(KEZ43375), the norsolorinic acid reductase B (KEZ43243), the
averantin hydroxylase (rf.3886.1), and the demethylsterigmato-
cystin 6-O-methyltransferase (rf.6059.1) (Fig. 10). Also interesting,
this analysis revealed the up-regulation of a list of transcripts
encoding enzymes involved in the degradation pathways of aro-
matic compounds. This includes in particular three enzymes
required for the conversion of both phenol and
2,3-dihydroxybenzoate to cis,cis muconic acid [the phenol
2-monooxygenase (KEZ40260), the 2,3-dihydroxybenzoate
decarboxylase (KEZ39492), and the catechol 1,2 dioxygenase
(KEZ40261)] (Fig. 11A), but also 4 enzymes implicated in the
conversion of phenylacetate and 4-hydroxyphenylpyruvate to
4-fumarylacetoacetate  [the  phenylacetate  2-hydroxylase
(KEZ41883), the homogentisate 1,2-dioxygenase (KEZ41882),
the maleylacetoacetate isomerase (rf.5336.1), and the
4-hydroxyphenylpyruvate dioxygenase (rf.4139.2) (Fig. 11B). This
could indicate an active recycling of the aromatic compounds
towards the citrate cycle when the fungus is cultivated in CFSM.

3.3. Global gene co-expression network

To further investigate how metabolic activities of S. apiosper-
mum are coordinated to face specific culture conditions, we con-
structed a gene co-expression network from our dataset.
Expression profiles were compared for all pairwise combinations
of the 14,327 transcripts. Relationships displaying an HRR below
10 were considered as significant. The global network was split
into specific communities, of which the 13 largest are represented
in Fig. 12. Each subgraph contained both non-differentially and dif-
ferentially expressed genes. Firstly, two specific topologies were
observed. Subgraphs 1, 2, 3, 5 and 7 had very dense structures of
highly connected genes and were therefore more likely to contain
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genes encoding enzymes from the primary metabolism or for basal
cell activities. Many steps related to amino-acid biosynthesis and
lipid metabolism indeed were found in these subgraphs as
revealed by the significant enrichment of this process (Fig. 12). This
observation highlights how strongly different culture conditions
are accompanied with large transcriptional changes. In other
subgraphs, many genes had a node degree below < 3 showing their
low connectivity. Specific functions dedicated to aromatic
compound metabolism or mycotoxin biosynthesis were signifi-
cantly enriched in these subgraphs, which may reveal fine-tuned
adaptations to each growth conditions sensed by S. apiospermum
as environmental cues. Secondly, differentially expressed genes
mainly clustered into subgraphs 2, 3, 5, 7 and 9. This suggests that
transcriptional responses observed in the present work involve
only few transcriptional modules containing thousands of genes.

All 13 subgraphs combined, a total of 243 transcripts displaying
a PFAM “Fungal specific transcription factor” domain (PF04082.15
and PF11951.5) were identified in the networks among which 98
were differentially expressed in at least one comparison. Unfortu-
nately, many of these transcription factors had no or weak similar-
ities to Uniprot Fungi accessions. However, they are likely to be
good candidates for further characterization of metabolic regula-
tion in S. apiospermum. Some of them could potentially be master
coordinators of metabolic pathways, playing essential roles in
adaptation to environmental growth conditions.

4. Discussion

Contaminating spores (conidia) of S. apiospermum are rarely
found in the air compared to other environmental molds. However,
this species ranks second among the filamentous fungi that are
able to colonize the respiratory tract of patients with CF. Neverthe-
less, beside the context of lung transplantation, the colonization of
the airways by S. apiospermum remains rather well tolerated by the
patients. Although some cases of respiratory infections or allergic
bronchopulmonary mycosis due to S. apiospermum were previously
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reported, clinical expression inherent to the colonization of the CF
airways is usually from low to absent. This raises the question of
why the colonization process of the respiratory tract by S. apiosper-
mum is fairly tolerated by CF patients while it is known that in
other clinical contexts, the fungus is able to cause marked symp-

toms. In this context, we investigated the transcriptional repro-
gramming that accompanies the exposure of the fungus to the
particular microenvironment encountered in the CF bronchial
mucus. In this aim, the transcriptome of the S. apiospermum refer-
ence strain (IHEM 14462) was analyzed after cultivation of the fun-
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gus in a synthetic medium corresponding to the nutritional com-
position of CF sputum (CFSM) [33], but also in different growth
conditions that independently mimic the various physico-
chemical constraints encountered in the bronchial mucus of CF
patients including hypercapnia, hypoxia, acid pH, low osmolarity,
and increased lactate concentration.

Although our analysis first revealed that growth under hyper-
capnia or in the presence of an elevated lactate concentration did
not induce marked transcriptional changes, low osmolarity,
hypoxic or acid pH conditions of culture were shown to trigger a
moderate to marked transcriptional reprogramming in the fungus.
In these last conditions, most of the transfrags regulated were
associated to changes in general cell processes (fermentation, pro-
tein modification), membrane composition modification (lipid,
phospholipid, and glycolipid metabolism), and regulation of pri-
mary (nitrogenous bases, nucleotide-sugars, amino-acids, proteins,
carbohydrates, amines, and polyamines) and secondary (mycotox-
ins) metabolisms.

Above all, the most important transcriptional reprogramming
was induced by cultivation of the fungus in CFSM. We first
observed a shift in the global cell envelop composition (down-
regulation of sphingolipid, GPI-anchored protein, and ergosterol
biosynthesis) when the fungus was grown in this medium. This
adaptative process may reflect the fungal capacity of evading the
host immune system by lowering the biosynthesis of antigenic
determinants (sphingolipids and GPI-anchored proteins) or limit-
ing their targeting at the cell surface through down-regulation of
the ergosterol biosynthetic pathway and an altered membrane flu-
idity. It is also important to highlight that the apparent reduction
in the ergosterol content in condition mimicking the CF sputum
could also underlie the discrepancy between in vitro susceptibility
of the fungus towards antifungals and in vivo inefficiency of the
therapeutic molecules. In this regards, it should be considered in
the future the use of CFSM instead of the classical RPMI culture
medium to determine the in vitro susceptibility to antifungals for
Scedosporium isolates from sputum samples from patients with CF.

In addition, this analysis revealed that some genes encoding
enzymes involved in the biosynthesis of aflatoxin-like mycotoxins
are down-regulated when the fungus was cultured in CFSM and, to
a lesser extent, under low osmolarity and hypoxic conditions.
Although true aflatoxins have never been described in the genus
Scedosporium, some precursor metabolites occurring in these sec-
ondary metabolic pathways such as 8-O-methylsterigmatocystin
were previously isolated in the closely related species S. boydii
[49]. Given the fact that it has been reported that sterigmatocystin
induces apoptosis in human pulmonary cells in vitro and displays
pro-inflammatory properties on mouse alveolar macrophages
[50,51], it is thus possible to hypothesize that during the lung col-
onization process, S. apiospermum reduces the production of toxic
secondary metabolites related to sterigmatocystin to prevent exac-
erbation of the host immune response, notably the macrophage-
mediated oxidative burst.

Finally, we observed a strong up-regulation of many genes
encoding enzymes involved in the degradation of aromatic com-
pounds, especially when S. apiospermum was grown in CFSM.
These include notably genes that are partially clustered in the
genome of the fungus for phenol or tyrosine catabolism. The
capacity of S. apiospermum to degrade aromatic hydrocarbons
is already well documented [1,52-57] and it has been hypothe-
sized that this metabolic trait would predispose this fungus to
particular patterns of human pathogenicity [58,59]. We thus
here provide first experimental data that support this
assumption.

In conclusion, this study allowed us to define for the first time
the whole transcriptome of S. apiospermum. These data which rep-
resent a breakthrough for elucidation of the pathogenic mecha-

3481

Computational and Structural Biotechnology Journal 18 (2020) 3468-3483

nisms of the fungus, largely confirmed the draft genome
annotation since transcripts were found for almost all the
protein-encoding CDS. They also revealed that most of the CDS
considered as pseudogenes actually were misidentified, because
of the lack of introns, and demonstrated the possibility of isoforms
and polycistronic mRNA. More importantly, comparison of the
transcriptional response of the fungus to the particular abiotic
environment found in the CF bronchial mucus revealed the adapta-
tive mechanisms developed by the fungus to dissimulate itself
towards the host immune defenses, particularly a reduced produc-
tion of some toxic secondary metabolites and a dramatic shift in
the global composition of the cell envelop. Biochemical studies
should be conducted to confirm these data which may have impor-
tant clinical significance, since these may explain the lack of effi-
ciency of antifungal treatment despite in vitro data suggestive of
efficacy.
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