
viruses

Review

The Immune Response to Astrovirus Infection

Shauna A. Marvin

Biology Department, Drake University, Des Moines, IA 50311, USA; shauna.marvin@drake.edu;
Tel.: +1-515-271-2811

Academic Editor: Stacey Schultz-Cherry
Received: 30 November 2016; Accepted: 28 December 2016; Published: 30 December 2016

Abstract: Astroviruses are one of the leading causes of pediatric gastroenteritis worldwide and are
clinically importantly pathogens in the elderly and immunocompromised populations. Although the
use of cell culture systems and small animal models have enhanced our understanding of astrovirus
infection and pathogenesis, little is known about the immune response to astrovirus infection. Studies
from humans and animals suggest that adaptive immunity is important in restricting classic and
novel astrovirus infections, while studies from animal models and cell culture systems suggest that
an innate immune system plays a role in limiting astrovirus replication. The relative contribution of
each arm of the immune system in restricting astrovirus infection remains unknown. This review
summarizes our current understanding of the immune response to astrovirus infection and highlights
some of the key questions that stem from these studies. A full understanding of the immune response
to astrovirus infection is required to be able to treat and control astrovirus-induced gastroenteritis.

Keywords: astrovirus infection; astrovirus replication; immune response; innate immunity; adaptive
immunity; type I interferon

1. Introduction

Astroviruses (AstV) are small, nonenveloped, RNA viruses that are a major cause of gastroenteritis
in infants, immunocompromised people, and the elderly, and they also cause disease in mammals
and birds [1–9]. Despite the disease burden, little is known about the immune response to astrovirus
infection. Human clinical studies have demonstrated that an antibody-mediated response may be
responsible for limiting astrovirus infection and clinical disease. Recent work using small animal
models and cell culture systems have revealed an important role in the innate immune response in
restricting astrovirus replication and pathogenesis. This review will summarize the current knowledge
of the innate and adaptive immune responses to astrovirus infection using studies of humans, small
animal models, and cell culture systems and will discuss how astroviruses evade the immune system.
This review will also highlight the increasing reports of astroviruses as possible causes of central
nervous system disease, especially in immunocompromised individuals. Finally, we will conclude
with unanswered questions, future studies, and how the use of a newly developed mouse model can
enhance our understanding of the immune response to astrovirus infection, and how these responses
play a role in astrovirus-induced disease.

2. Astrovirus Infection

Astrovirus infection begins by binding to an unidentified receptor(s) on epithelial cells in the
intestine after fecal-oral transmission [10,11] and enters cells via clathrin-mediated endocytosis [12].
After acidification of the endosome, endosome rupture, [12] and viral uncoating, two nonstructural
proteins are translated from the single stranded, positive-sense genomic RNA from open reading
frames (ORFs) 1a and 1b [13,14]. These polyproteins are cleaved into the non-structural proteins
required for transcription and viral replication. Negative-strand RNA is produced from the genomic
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strand, and transcription of the negative-strand yields the genomic and subgenomic RNA [15].
The structural proteins encoded in the third ORF (ORF2) are expressed from the subgenomic
RNA [13,14]. New astrovirus particles have been observed on double membranes likely serving
as the site for replication and assembly [16–20]. After assembly, the progeny virions exit the cell
through a non-lytic mechanism promoted by caspase activation [21,22].

Although astroviruses are considered gastrointestinal pathogens, viral RNA and infectious viral
particles have been recovered from extraintestinal organs in both animals and humans (Table 1).
In the current small animal model, turkey poults, turkey astrovirus type 2 (TAstV2) was found in bursa,
thymus, spleen, kidney, liver, skeletal muscle, marrow, pancreas and plasma by reverse transcription
polymerase chain reaction (RT-PCR), immunofluorescence, and virus isolation [6]. However, these
tissues were negative by in situ hybridization using a riboprobe to the capsid gene, suggesting that the
virus only replicates in the intestines [6,23]. Whether astrovirus localization to these extra-intestinal
tissues leads to pathogenesis remains to be directly determined, and astroviruses have been implicated
as a cause of neurological and other diseases. Examples in animals implicate astroviruses as the cause
of hepatitis in ducks, causing encephalomyelitis in minks [24–26] and encephalitis in cattle [27–29].
Identification of astroviruses found in extra-intestinal tissues in humans will be discussed later in
this review.

Table 1. Astrovirus localization in extra-intestinal tissue.

Animal/Human Tissue(s) Method(s) of Detection Reference

Turkey

Bursa, Thymus, Spleen,
Kidney, Liver, Skeletal Muscle,

Bone Marrow, Pancreas,
Plasma

RT-PCR,
immunofluorescence,

infectious virus isolation
[6,23]

Duck Liver RT-PCR [30]
Cow Brain RT-PCR, Sequencing [27–29]
Mink Brain Sequencing [26]
Pig Blood RT-PCR, Sequencing [31]

Human Blood RT-PCR, Sequencing [32–34]
Human Cerebrospinal Fluid Sequencing [34]
Human Urine Sequencing [34]

Human Brain Sequencing,
Immunohistochemistry [35–37]

Human Nasopharyngeal swab RT-PCR, Sequencing [32]
Human Pharyngeal swab RT-PCR, Sequencing [32,38]

3. Adaptive Immunity

The innate immune response provides signals to recruit the adaptive immune response, which
controls viral infection at later times during an infection. This response is pathogen specific and has a
memory component that induces a more rapid and robust response following a second infection
with the same pathogen. The adaptive immune response contains two arms: the humoral, or
antibody-mediated/B cell response, and the cell-mediated response, which involves antigen-specific
cytotoxic T cells. Although the findings between the current turkey model and the newly emerging
mouse model yielded conflicting results, the reports showing the biphasic age distribution as well as
immunocompromised individuals have formed a general conclusion that the adaptive immune system
is a major component in controlling astrovirus disease (reviewed in [39]).

Early studies in the turkey poult model found little adaptive immune responses after TAstV-2
infection [40]. Koci et al. found very low levels of IgG in the serum and IgA in the bile 21 dpi [40].
Additionally, the CD4 to CD8 T cell ratios did not change at 5, 9, and 16 dpi when comparing TAstV-2
infected poults to uninfected poults [40], demonstrating that TAstV-2 infection is a poor inducer of
adaptive immune responses.
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Studies using the newly emerging mouse model and clinical studies in humans demonstrate that
the adaptive immune response is key in controlling astrovirus infection and disease. Experimental
infection of recombination activating gene 1 (rag1) gene knockout mice (Rag1−/−), which lack mature
B cells or T cells [41], had higher (2 logs) levels of murine astrovirus (MuAstV) RNA shed in their
feces compared to wild type mice at 14 dpi [42]. The kidneys, liver, and mesenteric lymph nodes
were positive for astrovirus RNA, whereas infected wild type mice were negative for astrovirus RNA
in these organs [42]. Rag1−/− mice also contained 3–4 logs higher astrovirus RNA levels in the
intestines compared to wild type controls [42]. These data indicate that the adaptive immune response
is important in controlling astrovirus infection. Similar to the studies with interferon (IFN)-α receptor
knockout (IFNaR−/−) mice by Marvin et al., the Rag1−/− mice were positive for astrovirus prior to
experimental inoculation [42]. Therefore, a complete understanding in the adaptive immune response,
and how it limits astrovirus replication, cannot be determined until MuAstV-negative Rag1−/− mice
are generated.

Studies in immunocompetent humans also show that 70% of healthy adults have antibodies
against astroviruses [43], indicating that an adaptive immune response is mounted in humans.
In earlier clinical studies using human volunteers, the majority of subjects that had no or only mild
clinical signs had developed anti-astrovirus antibodies [5,44]. Conversely, subjects that exhibited
more severe disease did not develop anti-astrovirus antibodies [44]. Other recent studies have found
astrovirus antibodies against astroviruses of other animal species in the absence of disease [45,46].
For example, humans that work closely with turkeys develop antibodies to TAstV [45].

Antibodies that recognize the spike domains on the human astrovirus spike, the domain of the
capsid involved in astrovirus binding [47], and neutralized virus activity have been identified [48,49].
However, the development of anti-HAstV therapies has been hampered by the gap in knowledge of
neutralizing antibodies epitopes on HAstV surfaces. Bogdanoff et al. mapped the neutralizing epitopes
on the HAstV-2 with a neutralizing monoclonal antibody to the spike domain, which prevented spike
binding to Caco2 cells [47]. The solving of the crystal structures of HAstV-1 and HAstV-8 capsids
and spike domains, and the HAstV-2 and TAstV-2 spike domains can advance our understanding of
anti-astrovirus antibody binding [47,50–53]. These structures are crucial for future studies to develop
vaccines and antibody therapy prevention and treatment of astrovirus disease.

Increasing reports of astrovirus infection in extra-intestinal tissues in immunocompromised
patients highlight the role of the adaptive immune response during astrovirus infection. Several
astrovirus isolates have been identified as potential causes of encephalitis in immunocompromised
human patients (Table 1). For example, astrovirus RNA was found in the central nervous system of
a child with X-linked agammaglobulinemia who died of encephalitis [35], and have been thought
to be the cause of encephalopathy after bone marrow or hematopoietic stem cell transplantation
(HSCT) [36,37]. Astrovirus has also been detected in nasopharyngeal secretions and serum and plasma
of severe immunodeficiency (SCID) patients after HSCT [32], and detection of astrovirus in the blood
has been associated with fever [33]. As the number of reports of astrovirus detection in extra-intestinal
tissues increase, how the immune systems limits spread of astrovirus to extra-intestinal tissue will be
an important question for future studies.

Few studies have demonstrated a role for T cell-mediated control of astrovirus infection.
Molberg et al. recovered astrovirus-specific CD4+ and CD8+ T cells from astrovirus-stimulated
biopsies taken from the duodena of patients that had histologically normal intestines [54]. Wood et al.
found chronic rotavirus and astrovirus infection in two children with T cell immunodeficiency [55].
Considering the fact that CD4+ T cells are essential in B cell maturation and antibody specificity; it is
reasonable to suspect that T cells play a role in the immune response to astrovirus infection.

4. Innate Immune Responses

The innate immune system is the first line of defense against an invading pathogen. In vitro
studies in cell culture models and in vivo animal models implicate that innate immune responses may
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be important in controlling astrovirus infection and replication. Although knowledge of the innate
immune response to astrovirus infection is still in its infancy, we will discuss the known responses, or
lack of, including histological changes, nitric oxide production, and type I IFN production in astrovirus
replication and pathogenesis (summarized in Figure 1).
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Figure 1. A summary of the innate immune response to astrovirus infection. After binding and
entry into the cell, viral uncoating of the astrovirus genome occurs. Replication induces IFN-β
production, which suppresses viral replication and translation of the structural protein, and decreases
astrovirus-induced barrier permeability. Synthesis of inducible nitric oxide synthase (iNOS) protein
also occurs during astrovirus infection of epithelial cells. Although replication is not needed to induce
iNOS in macrophages, whether or not iNOS induction occurs during astrovirus infection of epithelial
cells is unknown. Active transforming growth factor beta (TGF-β) levels are increased after astrovirus
infection, but the role of TGF-β after astrovirus infection is not known. The presence of signal transducer
and activator of transcription 1 (STAT1) decreases astrovirus replication, but the mechanism(s) remain
to be determined.

4.1. Histological Changes

Unlike other enteric pathogens, such as rotavirus and enteropathogenic Escherichia coli, which
cause inflammation and cell death [56,57], astrovirus infection causes only mild histological changes.
Although turkey poults infected with TAstV2 had watery diarrhea by 24 h post infection (hpi), this
diarrhea was not associated with inflammation and pathology, as few lesions and little cell death were
observed in the intestinal villi [4,6]. In gnotobiotic lambs and calves infected with ovine astrovirus
or bovine astrovirus, only mild destruction of the villi was observed with few observations of dying
enterocytes [19,58]. These animal results are similar to what is seen in humans, with little destruction
of the intestinal villi after astrovirus infection [59].

4.2. Nitric Oxide Production

Nitric oxide is a key mediator of the innate immune system and is involved in pathogenesis and
the control of infectious pathogens. Studies by Koci et al. demonstrate that TAstV-2 infection stimulates
nitrite production, which limits viral replication [40]. Splenocytes from infected turkey poults made
more nitrite after lipopolysaccharide (LPS) stimulation after splenocytes from uninfected poults [40].
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TAstV infection increased nitrite levels after in vivo infection [40] in isolated avian macrophages and a
chicken macrophage cell line (HD11) [40,60]. Treatment with nitric oxide synthase (NOS) inhibitors
increased TAstV-2 replication in vitro and in vivo, demonstrating for the first time a role in the innate
immune system in controlling astrovirus infection [40]. Importantly, turkey inducible nitric oxide
synthase (iNOS) was shown to be turned on in intestinal epithelial cells where astrovirus replication
was occurring, suggesting that these cells are capable of mounting their own defense against astrovirus
infection [61].

4.3. Type I IFN

Two recent, independent studies explored the type I IFN response during human astrovirus
infection, providing the most comprehensive knowledge about an innate immune response to
astrovirus infection to date [62,63]. Although each study used different astrovirus serotypes, both
Marvin et al. (using HAstV-1) and Guix et al. (using HAstV-4) found that infection induced a
small, but significant increase in IFN-β mRNA and protein levels at 24 hpi [62,63]. This increase in
IFN-β mRNA levels was not seen after infection with either UV inactivation of the virus or HAstV1
recombinant capsid, indicating that this type I IFN response is dependent on viral replication [62,63].
The transcription factor IFN regulatory factor (IRF)-3, which, when phosphorylated, translocates
into the nucleus to promote transcription of the IFN-β promoter, was located in the cytoplasm in
infected cells at 12 hpi but was localized in the nucleus at 24–48 hpi [63]. Many RNA viruses, such
as coronaviruses and rotaviruses, encode IFN antagonists [64–67]. However, Guix et al. found that
HAstV-4 infection did not block polyinosinic:polycytidylic acid (polyI:C)-induced type I IFN levels,
suggesting that HAstV-4 does not encode a protein that exhibits interferon–antagonist activity [63].

To determine if type I IFN limited astrovirus infection and replication, both groups pretreated
the human intestinal adenocarcinoma cell line Caco2 with recombinant type I IFN prior to astrovirus
infection. Guix et al. pretreated with a single dose of IFN alpha (IFN-α) and saw a signification
reduction in new capsid protein synthesis and mRNA levels at all HAstV-4 multiplicity of infection
(MOIs) used [63]. They also saw a 2-fold increase in viral RNA and infectious virion levels when
inhibiting TANK-binding kinase 1 (TBK1), which lies upstream of IRF-3 [63]. Marvin et al. pretreated
Caco2 cells with increasing amounts of IFN-β and saw a dose-dependent reduction in new capsid
protein synthesis, and, importantly, found that the amount of IFN-β produced during astrovirus
infection is sufficient to decrease infectious progeny virion levels, as treatment with an IFN-β
neutralizing antibody during infection increased HAstV-1 titers by 2.5 log-units [62]. Marvin et
al. also saw decreased levels of positive-strand RNA levels at 8 and 16 hpi in Caco2 cells pretreated
with IFN-β [62]. This decrease was not observed at early time points (1 and 4 hpi), suggesting that
IFN-β pretreatment does not decrease HAstV-1 entry [62].

In addition to limiting viral replication, both studies asked if type I IFN influences
astrovirus-induced barrier permeability. Astrovirus infection has been shown to increase
epithelial permeability, which correlated with the disruption of tight junction proteins and sodium
malabsorption [3,4,68]. Guix et al. concluded a positive correlation between IFN-β RNA production
and barrier permeability during HAstV-4 infection [63]. Marvin et al. demonstrated that type I IFN
may be important in protecting the epithelial barrier during HAstV-1 infection. Pretreatment of Caco2
cells with IFN-β reduced the HAstV-1-induced decrease in transepithelial electrical resistance (TER)
and decreased the transmigration of an inert dye (flux) from the apical side of the cell monolayer to the
basolateral side [62]. Additionally, HAstV-1 infection in the presence of an IFN-β neutralizing antibody
saw increased levels of flux compared to isotype control [62]. Although the permeability studies were
performed in the absence of trypsin, and therefore only one round of replication occurred, it is possible
that the varying levels of unprocessed viral particles (lower levels with IFN-β pretreatment and higher
levels in the presence of an IFN-β neutralizing antibody compared to control cells) could contribute to
the differences in barrier permeability since astrovirus-induced barrier permeability is independent of
viral replication [68].
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The effects of type I IFN signaling in astrovirus replication, clearance, and barrier permeability
have been examined in vivo using IFNaR-/- knockout mice. Oral gavage of wild-type C57BL/6 mice
with MuAstV-positive fecal filtrates results in productive infection, viral shedding, and increased
intestinal permeability [62]. However, the IFNaR−/− mice used in the study were found to already
be MuAstV-positive in their colony. The viral titers shed in the stool of wild-type mice peaked
at 6 to 11 dpi, shedding similar levels as the IFNaR−/− mice. However, wild-type mice titers rapidly
decreased after 11 dpi and cleared the infection by 53 dpi, compared to IFNaR−/− mice that shed virus
at high levels (>106 copies/µg RNA) at 53 dpi. These data suggest that type I IFN signaling is important
for viral clearance in vivo [62]. IFNaR−/− mice also had increased intestinal permeability compared to
MuAstV-infected wild-type mice, which correlated with their in vitro observations, suggesting a role
for type I IFN in protecting the epithelial barrier during infection, although MuAstV-free IFNaR−/−

mice would need to be generated to definitively determine the role of type I IFN signaling in intestinal
permeability [62].

Overall, the studies of Guix et al. and Marvin et al. demonstrate that the type I IFN system
can limit astrovirus replication in vitro and in vivo and protects against astrovirus-induced barrier
permeability. How astrovirus replication induces type I IFN production, and why induction is only
seen late in infection and at low levels remains unknown. Additionally, how type I IFN protects against
astrovirus-induced barrier permeability remains to be resolved.

4.4. Additional Innate Immune Responses

Several observations in animals have described other innate immune responses during astrovirus
infection. Astroviruses have been found in macrophages of lambs and described in calves with cells
around Peyer’s patches [58,69]. However, whether these cells are activated in response to astrovirus
infection have yet to be determined. TAstV-2 infection induces active TGF-β, an immunosuppressive
cytokine that may explain why there are limited histological changes after infection [70], in the serum
of infected turkey poults [6]. Whether TGF-β levels play a role in astrovirus replication and/or
suppression of the immune response has yet to be determined.

Finally, a study in mice found a role for the signal transducer and activator of transcription 1
(STAT1) transcription factor, a factor known for controlling viral infection [71], in limiting MuAstV
replication [42]. STAT1 knockout mice (STAT1−/−) shed 10-fold more viral copies in the feces 14 dpi
compared to wild-type mice and had viral RNA in the spleen and the mesenteric lymph nodes, while
viral RNA was not detected in those organs of wild-type mice [42]. Like type I IFN signaling, STAT1
has a role in limiting mouse astrovirus infection, but the mechanism(s) remains unknown. It is possible
that type I IFN signaling leads to STAT1-mediated transcription of antiviral proteins that can inhibit
astrovirus replication.

5. Astrovirus Evasion and Suppression of the Immune Response

Multiple studies have concluded that astrovirus may evade the immune system by preventing
complement activation [72–75]. The complement system is a fundamental component of the immune
response that detects pathogens through one of three pathways, the classical, the mannose-binding
lectin (MBL) and the alternative pathways. Once activated, it can eliminate pathogens, regulate
the inflammatory response, and help shape the adaptive immune response. The HAstV-1 capsid
protein inhibits the classical and lectin pathways by binding to key initiator molecules C1q and MBL,
preventing subsequent downstream activation [73–75]. Considering a critical role of complement is
initiating an inflammatory response and the observations that astroviruses do not cause inflammation
highly suggests that astrovirus inhibition of complement activation is a key player in evading the
immune system and suppressing the inflammatory response. Indeed, Tam et al. found only low levels
of complement-mediated NF-κB activation upon infection with HAstV compared to adenovirus and
human papillomavirus virus-like particles, suggesting that HAstV has strategies to evade detection
by complement factor C3 [72]. Tam et al. also determined that intracellular sensing of C3 activated
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the interferon regulatory factor 3 transcription pathways, resulting in a robust secretion of IFN-β [72].
HAstV ability to evade detection by C3, which is involved in triggering an interferon response, may be
why Guix et al. and Marvin et al. detected low levels of type I IFN at later times post infection. Future
studies involving HAstV mutants that do not bind complement molecules will delineate the role(s) of
suppression of complement activation during astrovirus infection.

Studies in turkey poults suggest that astrovirus infection suppresses the immune system, making
the host more susceptible to subsequent infections [60,76]. Turkey macrophage infection in vitro
reduced macrophage viability and intracellular killing of a subsequent Escherichia coli (E. coli) challenge
compared to uninfected macrophages [60]. In vivo experiments showed that macrophages isolated
from TAstV-infected poults had a percentage of phagocytic macrophages compared to macrophages
isolated from uninfected poults [60]. These macrophages had less interleukin (IL)-1 and IL-6 activity
and had fewer E. coli per macrophage compared to macrophages isolated from uninfected poults [60].
TAstV-infected poults also recruited almost half the number of Sephadex-elicited inflammatory cells to
the abdominal cavity compared to uninfected poults [60]. These results correlate with an increased
number of E. coli in the spleens of TAstV-infected poults [60], suggesting that TAstV infection decreases
macrophage viability and function, rendering the host more susceptible to secondary bacterial, and
possibly viral, infections.

6. Conclusions

In summary, although our understanding of the immune responses to astrovirus infection has
progressed over the years, further studies are required to fully characterize the cellular and molecular
factors that mediate the immune response to astrovirus infection, including identifying the correlates
of protection that inhibit viral replication and pathogenesis. Future areas of inquiry include the
absence of a potent inflammatory response following the rupture of endosomal membranes [12],
as seen with other viral-induced membrane ruptures [77,78] and determination of how astrovirus
particles exit cells through a non-lytic mechanism [21]. Additionally, an improved understanding
of the mechanisms underlying viral inhibition of the inflammatory response and how type I IFN
limits astrovirus-induced barrier permeability are critical for the development of therapeutics and
treatment protocols. The development of a mouse model will be invaluable in understanding the viral
replication kinetics and innate and adaptive immune responses to astrovirus infection in mammals.
A full understanding of the immune response to astrovirus infection is necessary if we are to control
and prevent astrovirus diseases.
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