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The methylotrophic yeast Hansenula polymorpha, known as a non-conventional yeast,

is used for the last 30 years for the production of recombinant proteins, including

enzymes, vaccines, and biopharmaceuticals. Although a large number of reviews have

been published elucidating the applications of this yeast as a cell factory, the latest

was released about 10 years ago. Therefore, this review aimed at summarizing available

information on the use of H. polymorpha as a host for recombinant protein production

in the last decade. Examples of chemicals and virus-like particles produced using

this yeast also are discussed. Firstly, the aspects that feature this yeast as a host

for recombinant protein production are highlighted including the techniques available

for its genetic manipulation as well as strategies for cultivation in bioreactors. Special

attention is given to the novel genomic editing tools, mainly CRISPR/Cas9 that was

recently established in this yeast. Finally, recent examples of using H. polymorpha as an

expression platform are presented and discussed. The production of human Parathyroid

Hormone (PTH) and Staphylokinase (SAK) in H. polymorpha are described as case

studies for process establishment in this yeast. Altogether, this review is a guideline for

this yeast utilization as an expression platform bringing a thorough analysis of the genetic

aspects and fermentation protocols used up to date, thus encouraging the production

of novel biomolecules in H. polymorpha.

Keywords: Hansenula polymorpha, recombinant protein, methylotrophic yeast, genomic editing, bioprocess

INTRODUCTION

Over the years, the use of unicellular microorganisms as cell factories to obtain recombinant
proteins became consolidated (Kim et al., 2015a). Recombinant DNA techniques allow the
introduction of foreign genes in a host organism for the production of heterologous proteins
biologically actives. Within this context, the choice of the host organism is crucial, since the
functionality, solubility, and activity of the protein must be preserved during its synthesis (Vaquero
et al., 2015). Yeasts are commonly used for the heterologous production of proteins, especially those
that require post-translational modifications for proper folding since these modifications occur less
frequently in prokaryotes.

The H. polymorpha is commonly employed as an expression platform because of its unique
characteristics (Figures 1A–E). It is thermotolerant and capable of growing at temperatures ranging
from 30 to 50◦C (Figure 1B). This capability is advantageous regarding mammalian protein
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FIGURE 1 | Main advantages of Hansenula polymorpha as chassi for recombinant protein production include the availability of genetic tools (A,C), thermotolerance

(B), ability to use various carbon sources (D), and glycosylation pattern (E).

production such as those requiring the 37◦C temperature to
preserve its biological activity (Van Dijk et al., 2000). Moreover,
the presence of protein glycosylation pathway in H. polymorpha
allows the production of eukaryotic recombinant proteins
biologically active. Additionally, unlike other yeasts, it adds fewer
sugar residues to the protein core, avoiding hyperglycosylation
of recombinant proteins (Figure 1E). Finally, H. polymorpha is
capable of using methanol as a carbon source which allowed the
isolation of strong methanol inducible promoters (Figure 1C).

Besides, it can utilize other carbon sources such as glycerol,
glucose, xylose, and cellobiose (Ryabova et al., 2003) (Figure 1D).

Three parental strains with distinct origins of H. polymorpha
are frequently used for recombinant protein production. The
DL-1 strain (NRRL-Y-7560; ATCC26012) was isolated and
characterized from soils samples (Levine and Cooney, 1973). The
CBS4732 strain (CCY38-22-2; ATCC34438, NRRL-Y-5445) was
isolated in irrigated soils in Pernambuco, Brazil (Morais and
Maia, 1959). These two strains are mostly employed for industrial
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use. Lastly, the NCYC495 strain (CBS1976; ATAA14754, NRLL-
Y-1798) is commonly used in the laboratory and was isolated
at Florida from concentrated orange juice (Wickerham, 1951).
Phylogenetic analysis showed that H. polymorpha appears to
be two different species: Ogataea polymorpha and Ogataea
parapolymorpha (Kurtzman and Robnett, 2010; Suh and Zhou,
2010). The strain NCYC495 and CBS4732 are closely related
and renamed as O. polymorpha, whereas DL-1 strain is
phylogenetically distant and reclassified as O. parapolymorpha.
To avoid misunderstanding, the nomenclature H. polymorpha
will be used in this review once both species share all
characteristics elucidated in Figure 1.

Various studies focused on genetically modifying
H. polymorpha strains for the production of several recombinant
proteins (Gellissen et al., 1992; Hollenberg and Gellissen,
1997; Stöckmann et al., 2009). Later on, the advances in
genomic-editing tools, optimization of transformation and
cultivation protocols have led to the industrial development of
H. polymorpha-based processes for the production of various
pharmaceuticals. Currently, three commercially available
Hepatitis B vaccines are produced using antigens derived from
fermentative processes with H. polymorpha: HepavaxGene R©

(Johnson & Johnson), Gen Vax B R© (Serum Institute of India)
and Biovac-B R© (Wockhardt) (http://www.dynavax.com/
about-us/dynavax-gmbh/). Moreover, biopharmaceuticals
successfully produced in this yeast and already available in the
market included hirudin (Thrombexx R©, Rhein Minapharm),
insulin (Wosulin R©, Wockardt) and IFNa-2a Reiferon R© (Rhein
Minapharm) (Gellissen et al., 2005).

It is noteworthy that the last published review of bioprocess
development at H. polymorpha was nearly 10 years ago
(Stöckmann et al., 2009). Thus, this review brings up to date
strategies and examples of using this yeast as a host for
recombinant protein production. The focus will be given on
the studies developed in the last decade and are summarized
in Table 1. The relevance of this yeast for the production
of recombinant proteins, especially those for human welfare,
justifies this literature update. Besides, newly genomic tools
developed in the past years which have improved genetic
manipulation of H. polymorpha are also discussed.

WHY USE H. POLYMORPHA AS HOST FOR
HETEROLOGOUS EXPRESSION?

The advantages of H. polymorpha for industrial processes
comprise high-cell-density fermentation, capacity to utilize low-
cost substrates, an established defined synthetic media, status
GRAS (Generally Regarded As Safe) and consolidated strategies
for cultivation in bioreactors (Jenzelewski, 2002). This yeast
features genome-editing tools available for genetic manipulation
(Figure 1A). An efficient protocol for transformation by
electroporation has been described previously (Faber et al., 1994)
as well as protocols for transforming protoplast ((Tikhomirova
et al., 1988)). Among them, the electroporation method is more
efficient than the protoplast, yielding 1.7 × 106/µg plasmid
DNA vs. 2 to 3 × l04/µg DNA. The lithium acetate-dimethyl

sulfoxide method has also been used tested (Sohn et al., 1999;
Heo et al., 2003; Kim et al., 2015b). Furthermore, a method
using nanoscale carriers for DNA delivery was employed for the
transformation of H. polymorpha with twice efficiency of those
obtained by electroporation and 15-fold for LiAc/DMSOmethod
(Filyak et al., 2013).Moreover, three independent research groups
have recently developed the CRISPR/Cas9 genome-editing tool
for H. polymorpha (Numamoto et al., 2017; Juergens et al., 2018;
Wang et al., 2018). Finally, the three strains ofH. polymorpha had
its genome sequenced, DL-1 (Ravin et al., 2013), NCYC495 (Riley
et al., 2016), and CBS4732 (Ramezani-Rad et al., 2003).

Strategies for heterologous protein production in
H. polymorpha take advantage of the yeast ability to grow
in the presence of methanol. The methanol inducible promoters,
formate dehydrogenase (FMD), and methanol oxidase (MOX)
are the most utilized in genetic engineering strategies as it can
be seen in Table 1. Shifting to methanol-feed led to upregulation
of genes involved in its catabolism, for example the FMD gene
was approximately 350-fold upregulated, while the MOX and
DHAS genes were 17.3 and 19-fold upregulated when compared
to growth on glucose (van Zutphen et al., 2010). Although an
upregulation does not necessarily indicate a high promoter
activity, other studies have shown that in the presence of
methanol the MOX and FMD promoters present an enhanced
activity (Amuel et al., 2000; Suppi et al., 2013).

The methanol-inducible promoters are not present only in
H. polymorpha but in all methylotrophic yeasts. For instance,
the well-known yeast Pichia pastoris (recently renamed as
Komagataella sp.) is the yeast host more utilized for recombinant
protein production. Although P. pastoris also has methanol-
inducible promoters, the advantage of using H. polymorpha
is that some of them are derepressed in the presence of
glycerol which is less pronounced in P. pastoris (60–70% vs.
2–4% of induced levels) (Hartner and Glieder, 2006; Vogl and
Glieder, 2013). In a comparative study, The Kunitz-type protease
inhibitor (KPI) encoding gene was inserted in H. polymorpha
and P. pastoris under the control of the alcohol oxidase, AOX1
promoter (Raschke et al., 1996). For both yeasts, no mRNA
encoding for KPI was detected when the cells were cultured in
glucose as the carbon source but were abundant when induced
by methanol. However, when cells grew in glycerol, it was
possible to detect KPI only in H. polymorpha. Therefore, the
derepression of methanol inducible promoters is a favorable
feature of H. polymorpha over other methylotrophic yeasts.

Additionally, H. polymorpha is thermotolerant while P.
pastoris is not (Figure 1B). The increase in temperature does
not imply a higher yield of the recombinant protein but
is relevant in industrial processes since it reduces microbial
contamination and cooling costs (Abdel-Banat et al., 2010).
Also, higher temperatures facilitate the implementation of
Simultaneous Saccharification and Fermentation (SSF) since
the thermal resistance allows the utilization of thermophilic
hydrolases (Voronovsky et al., 2009). The EGII gene encoding
endoglucanase II from Trichoderma reesei was produced in
both methylotrophic yeasts, and the recombinant proteins
were characterized. Although the secreted enzymes showed
optimum activity at the same temperature (75◦C), the one
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TABLE 1 | Recombinant proteins produced in the last decade using H. polymorpha as host.

Protein Maximum production Promoter Utilized carbon

source

References

Human serum albumin (HSA) 5.8 g/L MOX Glycerol/Methanol Youn et al., 2010

Heat shock protein gp96 ≈150 mg/L FMD Methanol Li et al., 2011

Ferritin (FTH1) 1.9 g/L FMD Glycerol/Methanol Eilert et al., 2012

Bacteriocin enterocin A (EntA) 4.8µg/mL TEF1

(Arxula adeninivorans)

Glucose Borrero et al., 2012

Granulocyte colony stimulating factor (GCSF) ND FMD Methanol Talebkhan et al., 2016

Streptavidin (SAV) ≈751 mg/L FMD Methanol Wetzel et al., 2016

Human parathyroid hormone (PTH) fragment 1–34 150 mg/L FMD Glycerol/Methanol Mueller et al., 2013

Penicillin 1.1µg/mL MOX Glucose/Methanol Gidijala et al., 2009

Human papilomavirus 16 L1 Protein (HPV16L1) 78.6 mg/L MOX Methanol Li et al., 2009

HPV type 16 L1-L2 chimeric protein (SAF) 132.10 mg/L MOX Methanol Bredell et al., 2018

Rabies virus glycoprotein (RVG) 14.6 mg/L FMD Glycerol Qian et al., 2013

Hepatitis B virus PreS2-S antigen 250 mg/L MOX Methanol Xu et al., 2014

Human papillomavirus Type 52 L1 Protein (HPV 52 L1) ND MOX Methanol Liu et al., 2015

Rotavirus VP6 protein (RV VP6) 3350.71 mg/L MOX Methanol Bredell et al., 2016

Hepatitis E virus-like particles (HEV VLPs) 1.0 g/L MOX Methanol Su et al., 2017

Uricase from Candida utilis 52.3 U/mL MOX Methanol Chen et al., 2008

Lipase from Yarrowia lipolytica (YlLip11) 1,144 U/L TEF1

(Arxula adeninivorans)

Glucose Kumari et al., 2015

T4 lysozyme 0.49 g/L Not used Glycerol Wang et al., 2011

Staphylokinase (SAK) 1,212 mg/L FMD Glycerol/Methanol Moussa et al., 2012

ND, Not Determined.

produced by H. polymorpha was shown to be more thermostable
while remaining active after incubation at high temperatures
(60–80◦C) (Akbarzadeh et al., 2013).

If the recombinant protein is to be produced under the
control of a methanol inducible promoter, the cultivation in the
bioreactor is performed in a two-step. Initially, the growth phase
is performed using glucose or glycerol as a carbon source in batch
cultures. Then, the induction phase is accomplished by feeding
the bioreactor with methanol or methanol/glycerol mixtures
that can be added continuously or in pulses. For instance, the
production of ferritin in H. polymorpha using a methanol and
glycerol mixture (4:1) during the induction phase resulted in 1.9 g
L of the recombinant protein (Table 1) (Eilert et al., 2012). In the
case of the rabies virus glycoprotein production, only glycerol
was employed during the induction phase (Qian et al., 2013).
Despite the low levels achieved (14.6 mg/L), this is an example
that glycerol can be used in both the growth and induction phases
of this yeast. Although these two strategies are feasible to control
recombinant protein production, the most common strategy
employed is induction using only methanol 0.5–1% (Table 1).

A disadvantage of using such methanol inducible promoters
is their repression caused by the presence of glucose in the
media, although the derepression has already been reported
(Mayer et al., 1999). In this point of view, H. polymorpha
strains deficient in glucose repression represent alternative
platforms for recombinant protein production (Krasovska et al.,
2007). These mutants have a knock out at the GCR1 gene
that encodes a hexose transporter with altered activity leading

to several alterations in the cell metabolism, including the
derepression of methanol-related genes in the presence of glucose
(Stasyk et al., 2004). Thus, the methanol-induced promoters
controlling the recombinant protein production might be
induced by either methanol or glucose. The H. polymorpha gcr1
mutants are commonly utilized as the bio-elements for Yeast-
based biosensing. Some practical examples of these biosensors
utilization include the detection of L-lactate (Smutok et al., 2007),
urate (Dmytruk et al., 2011), formaldehyde (Sigawi et al., 2014),
and D-lactate (Smutok et al., 2018).

Some H. polymorpha-based platforms utilize the strong
constitutive promoter GAP instead of methanol-inducible ones
(Heo et al., 2003). The use of this promoter for the construction
of recombinant strains, as well as gcr1 mutants, enables the
production of proteins without the addition of methanol.
Since this molecule is flammable and toxic, avoiding its
use can be advantageous. Indeed, several studies developing
H. polymorpha strains for bioethanol production utilize genes
under the control of the GAP promoter (Kurylenko et al.,
2014, 2018). Examples of the utilization of the H. polymorpha
GAP promoter included the development of thermotolerant
strains, improvement of xylose utilization and those capable
of Simultaneous Saccharification and Fermentation (SSF) as
recently reviewed (Dmytruk et al., 2017).

Another advantage of using H. polymorpha as a host for
recombinant protein production is its glycosylation pattern
(Figure 1E). The yeasts frequently hyperglycosylate recombinant
proteins. However, the intensity and type of sugar added
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dependent on both the organism and the sequence of the
heterologous protein. The production of a recombinant
glucose oxidase of Aspergillus niger was attempted using
both yeasts H. polymorpha and S. cerevisiae (Kim et al.,
2004). It has been shown that in H. polymorpha 27% less
glycosylation was observed. Also, antibody anti-α1,3-mannose
did not recognize the protein produced by H. polymorpha
but was positive for that originated from S. cerevisiae which
indicates that in H. polymorpha the recombinant protein
was not immunogenic (Ballou, 1990). In the following
years, efforts were made to develop engineered strains with
human-pattern glycosylation (Kim et al., 2006; Oh et al.,
2008; Cheon et al., 2012). These strains lack essential genes
which encode enzymes for hypermannosylation pathways
such as α-1,6-mannosyltransferase (1hpoch1) and dolichyl-
phosphate-mannose dependent α-1,3-mannosyltransferase
(1hpalg3) beside their has the human gene encoding β-1,2-
N-acetylglucosaminyltransferase I (GNTI). The null mutants
were able to produce human hybrid-type N-glycans (Cheon
et al., 2012). Therefore, all the knowledge acquired about the
physiology, metabolism, and genetics of this yeast enables its
utilization as a host for heterologous protein production.

THE H. POLYMORPHA GENETIC
ENGINEERING TOOLS

The viability of tools for fast and precise genome edition
is crucial for the development of the expression platforms.
Some methods for the genetic manipulation of H. polymorpha
have already been described, both for gene introduction and
deletion (Figure 1A). It has been previously reported that
episomal plasmids are mitotically unstable in H. polymorpha
(Bogdanova et al., 1995, 2000) and consequently are not
suitable for the development of industrial strains. Episomal
plasmids contain the H. polymorpha autonomous replicating
sequences (HARS) derived from subtelomeric regions (Sohn
et al., 1996). Nevertheless, the HARS sequences do not guarantee
stability for circular plasmids. Thus, the prolonged incubation
in selective medium forces the plasmid integration usually in
the respective subtelomeric locus (Kim et al., 2003). Hence, the
integrative plasmids are most suitable for genetic manipulation
of H. polymorpha. Depending on the locus of integration it
is possible to reach between 1 up to 100 copies into the
genome (Agaphonov et al., 1999).

The H. polymorpha integration plasmids (pHIP) series
have several promoters and selective markers (For detailed
information see (Saraya et al., 2012). They show an easy
terminology in which the letter indicates the selective marker
and the number indicates the promoter. For example, the
pHIPH15, the “HIP” means “Hansenula Integration plasmid”
while the letter stands for the selective marker, in this example
hygromycin. The number indicates the promoter utilized
in the plasmid and “15” is for DHAS. There are fifteen
H. polymorpha promoters available in the pHIP series (https://
www.rug.nl/research/molecular-cell-biology/research/the-
hansenula-polymorpha-expression-system), and the site-specific

integration is driven by linearization in the promoter region of
the plasmid. For selection, auxotrophic and dominant markers
can be used. They include Sc LEU2, Hp URA3, Hp ADE11,
Hp MET6, Sh-ble (Zeocine), Sn-nat1 (Nourseothricin), Kp-hph
(Hygromycin B), and Tn-KanMX (G418/Geneticin) (Saraya
et al., 2012). Another possibility for the introduction of an
exogenous gene in H. polymorpha is the wide-range vector
CoMedTM system (Böer et al., 2007). This vector was designed
to fit in many species of yeast, enabling to save time and effort
during the cloning procedure. The vector contains ARS and
rDNA sequences that drive the integration of the plasmid into
H. polymorpha genome. Besides, it was constructed in modules
flanked by recognizing sites of restriction enzymes that allows
the exchange of expression cassettes and selective markers.

Gene deletion in H. polymorpha is reached through the
construction of cassettes containing a homologous region of the
gene to be deleted flanking 5′ and 3′ of the target locus. Usually,
the cassette has an antibiotic as a selection marker such as zeocin
or hygromycin. Although there are different approaches for gene
deletion in H. polymorpha, the disruption frequencies are of
approximately 35% with homology arms ranging from 500 to
1,000 bp (Table 2). The deletion cassettes can be constructed
by single-step PCR as an adaptation of the protocol previously
utilized in S. cerevisiae (Manivasakam et al., 1995). A one-step
mediated-PCR method for gene disruption was also previously
reported (Gonzalez, 1999). As a proof concept, the gene YNR1
ofH. polymorpha strain NCYC495 (ura3) was disrupted utilizing
a construct bearing the URA3 auxotrophic marker flanked by
homologous regions to the target gene. The homologous arms
5‘ and 3‘ tested varied between 25 and 1,000 bp in size with the
best results obtained with the larger homology (35%). Similar
results were observed in the disruption ofMOX gene (36%) with
1,000/1,000 homologous arm size (Gonzalez, 1999) (Table 2).

In another study, the deletion cassettes were designed
containing flanking regions with different lengths for targeting
MOX locus. In size, the homologous arms were tested between
30 and 250 bp. The deletion frequency for fragments of up to 50
bp was only ±12%. The larger homologous arm tested showed
an incidence of 31% (Table 2). Another strategy adopted was
the deletion of ku80 aiming at increasing the deletion frequency
(Saraya et al., 2012). This gene deletion increases the repair by
homologous recombination (HR) instead of non-homologous
end joining (NHEJ), ensuring site-specific integration. The
1yku80 strain was generated by replacing this gene with the
URA3 gene. For cassettes designed to target in MOX gene
with Hygromycin B as selection marker and flanking regions
approximately 250 bp, the deletion efficiency was 88% in 1yku80
strain vs. 31% in the wild-type (Table 2).

The limited number of available markers can impair multiple
gene insertion or deletion. Therefore, recycling the selective
markers using the Cre–loxP recombination technique has been
applied in H. polymorpha (Qian et al., 2009; Agaphonov
and Alexandrov, 2014). The gene PMC1 encoding for the
protein Calcium-transporting ATPase 2 was disrupted in the
strain DL1-L (leu2) using auxotrophic marker LEU2. The
MOX promoter drives the CRE gene expression, so when
methanol was added into the cultivation medium, the cassette
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TABLE 2 | Most common techniques used for gene deletion in H. polymorpha.

Target locus Strain Frequency of Deletion % Method Homologous arm size (5′/3′) bp References

YNR1 NCYC495 35 Deletion cassette 1,000/1,000 Gonzalez, 1999

MOX NCYC495 36 Deletion cassette 1,000/1,000

MOX NCYC495 1yku80 88 Deletion cassette 245/247 Saraya et al., 2012

MOX NCYC495 31 Deletion cassette 245/247

ALG3 NCYC495 35 Deletion cassette 491/520 Qian et al., 2009

ALG3 NCYC495 76 Co-transformation with

single-stranded DNA

491/520

ALG3 NCYC495 19 Deletion cassette ∼250/250

ALG3 NCYC495 33 Co-transformation with

single-stranded DNA

∼250/250

contained the marker LEU2 was excised from the genome.
Furthermore, these clones were unable to grow in the presence
of CaCl2 corroborating the PMC1 deletion. The combination
of different approaches was utilized to increase the efficiency
for gene deletion in H. polymorpha NCYC495 (Qian et al.,
2009). The knock-out system uses a sticky-end polymerase
chain reaction method for the construction of deletion cassettes,
LiAc/single-stranded (SS)-DNA/PEG for cell transformation
and loxP-flanked selective markers for multiple deletions.
The main advantage of this approach is the use of single-
stranded DNA for co-transformation with deletion cassettes.
Two genes were targeted, URA5 and ALG3, encoding the
orotate-phosphoribosyl transferase (OPRTase) and alpha-1,3-
mannosyltransferase, respectively. The cassette bearing loxP-
kanMX-loxP with ∼500 bp or ∼250 bp homologous arms
were co-transformed with and without single-stranded DNAs.
For gene ALG3, the frequency of homologous recombination
increased from 19 to 33% with ∼250 bp homologous arms
in the presence of single-stranded DNA (Table 2). When 500
bp homology regions were utilized, the frequency raised from
35 to 76% for co-transformation with single-stranded DNA
(Table 2). The same pattern was observed for the URA5 locus,
for 250 bp 17% and 500 bp 31% without co-transformation
while in the presence of single-stranded DNA were 32 and 73%,
respectively (Qian et al., 2009).

At present, the CRISPR/Cas9 technologies have been applied
in various organisms aiming at genome edition by the promise
of being more rapid and low cost than previously available
technologies [see details in Donohoue et al. (2018)]. Three studies
already reported the use of CRISPR/Cas9 in H. polymorpha
(Table 3). In the first one, the locus ADE2 in the NCYC495
was targeted due to the red-phenotype that can be easily
visualized upon successful deletion (Numamoto et al., 2017).
For that, an episomal plasmid expressing both Cas9 and gRNA
guided by the promoters ScTEF1 and OpSNR6, respectively
was introduced in H. polymorpha. In the absence of the ADE2
DNA donor, the deletion frequency was around 10−3. When
a DNA donor with 60/60 bp of homologous arms for ADE2
locus was co-transformed with Cas9 and gRNAADE2, it increased
the efficiency by up to 47%. To evaluate the system efficiency
in another locus, the loci ADE8 and PHO8 were disrupted

resulting in 0.36 and 0.08% efficiencies, respectively. Aiming at
improving the CRISPR/Cas9 system in this yeast, the promoters
guiding Cas9 and gRNA were substituted for OpTDH3 and
tRNA promoters, respectively. The cells were then transformed
with these plasmids into two combinations: ScTEF1 (Cas9)
and tRNA (gRNAADE2) promoters and OpTDH3 (Cas9) and
tRNA (gRNAADE2) promoters. Without the DNA donor, the
first combination reached a frequency of 38% whiles the second
one 45% for the locus ADE2. Finally, the improved system
in that OpTHD3 promoter guide the Cas9 expression and the
tRNA promoter the gRNA expression was used for deletion of
three genes from phosphate signal transduction (PHO) pathway,
PHO1, PHO11, and PHO84. In this case, more than one gRNA
was tested for each locus, and no DNA donor was utilized.
Four gRNAs were designed for the PHO1 gene, however, in
2 of them, the disruption efficiency was 0% while for another
two 50, and 71% were observed. For the locus PHO11, one
of three showed 0% of disruption and 17 and 30% for the
other gRNAs. The last locus targeted PHO84 obtained the
same frequency of approximately 67% for both two gRNAs
utilized (Numamoto et al., 2017).

In another study, the CRISPR/Cas9 was used for genome
edition in both Kluyveromyces lactis and Ogataea sp. In the
last one, the utilized strains were CBS4732 and DL-1 (Juergens
et al., 2018). The AaTEF1 promoter was used to guide a Cas9
variant with higher activity, known as improved Cas9 (iCas9)
(Bao et al., 2015). The promoter ScTDH3 was used to control
the gRNA expression. The ADE2 locus also was disrupted with
the same gRNA for both strains O. polymorpha (CBS 4732)
and O. parapolymorpha (DL-1). The disruption frequencies
varied between the two species which may indicate that even in
phylogenetically close species the efficiency of the CRISPR/Cas9
system may require adjustments. The red phenotype, expected
for colonies whose ADE2 was deleted, just appeared after
prolonged incubation time with disruption rates of 9% for O.
polymorpha while O. parapolymorpha showed ∼61 and 63%
after 96 and 192 h of incubation, respectively. Surprisingly,
the utilization of marker-free DNA donor did not affect the
deletion efficiency in this case. Also, a multiple gene editing for
multi-locus targeting was employed in this study. A plasmid
carrying gRNAs targeting the loci ADE2 and YNR1 was utilized
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simultaneously for gene disruption. The gRNAs were placed in
a tandem array spaced by a 20-bp linker. Although the deletion
frequencies reached values between only 2 and 5%, this was the
first report of multiple genes editing in H. polymorpha through
CRISPR/Cas9 (Juergens et al., 2018).

Recently, an efficiently multiplex system was employed using
a laboratory strain CGMCC7.89 (from the China General
Microbiological Culture Collection Center) as host (Table 3). The
plasmids carrying the Cas9 and gRNA were inserted into the
genome to ensure their stability through up- and downstream
homologous arms (∼1.5 kb). The Cas9 was integrated into the
MET2 locus while and the gRNA into the ADE2 locus. The
positive clones were selected by the respective auxotrophies.
All transformations were performed with the presence of
donor DNA consisting of a fragment containing the up- and
downstream region of the target gene amplified from the
H. polymorpha genome. Initially, the LEU2 and URA3 were
targeted to test the CRISPR/Cas9 system. Successful deletion
occurred with 58.33 ± 7.22% for LEU2 and 65.28 ± 2.41%
for URA3. The effect of the size of the homology arms was
tested using the ADE2 locus flanking regions from 50 to 1,000
bp. When 50 bp was utilized, the efficiency was 0%, for 500
and 1,000 bp the values obtained were 37.18 and 62.18%,
respectively. Therefore, all editing templates used for subsequent
experiments had 1,000/1,000 bp of homology. These results
corroborate the hypothesis that for H. polymorpha at least 500
bp are required to ensure deletion efficiency. The competence for
multiple simultaneous deletions was verified with an efficiency of
23.61% for three loci URA3, LEU2, and HIS3. Next, a template
containing a gfpmut3a expression cassette flanked by up- and
downstream homologous arms of the three loci, URA3, LEU2,
and HIS3, were used separately as DNA donor to prove that
gene insertion was feasible using CRISPR/Cas9. The efficiency of
integration observed reached 66.7%, 66.7% and 62.50% for HIS3,
URA3, and LEU2, respectively. After that, the gfpmut3a was
replaced by genes encoding the proteins within the resveratrol
metabolic pathway that resulted in maximum production of 4.7
mg/L. The effect of gene copy number required for resveratrol
synthesis was tested by multiple integrations into rDNA regions
using CRISPR/Cas9. In this strategy, the TEF1 promoter that was
driving the expression of the CAS9 encoding gene was replaced
by the methanol inducibleMOX. In the presence of the gfpmut3a
cassette with homologous arms, its insertion in the rDNA region
occurred with a frequency of 75% and 11 copies of gfpmut3awere
quantified in one of the studied clones. Finally, this approach
was used to introduce the three genes that enable resveratrol
synthesis in this yeast. The maximum resveratrol production was
97.23 ± 4.84 mg/L in a strain containing nine copies of each
gene (Wang et al., 2018).

EXAMPLES OF RECOMBINANT PROTEINS
IN H. POLYMORPHA

The latest recombinant proteins that utilize H. polymorpha as
host are summarized in Table 1 although, up to this moment,
none of the listed examples were performed at industrial scale.

The first heterologous protein produced in H. polymorpha was
the surface antigens from hepatitis B virus (Janowicz et al., 1991).
Furthermore, H. polymorpha, has been extensively used for the
production of Virus-like particle (VLP), which are viral proteins
that can be used for the development of vaccines (Kumar and
Kumar, 2019). Only in the last decade, H. polymorpha was used
to produce VLPs for the hepatitis B virus (Li et al., 2011; Xu
et al., 2014), hepatitis C virus (He et al., 2008), hepatitis E virus
(Su et al., 2017), Human papillomavirus (Li et al., 2009; Liu
et al., 2015; Bredell et al., 2018), rabies virus (Qian et al., 2013),
and rotavirus (Bredell et al., 2016). Recently, a chimeric VLP
was development for H. polymorpha (Wetzel et al., 2018). In
this type of platform, viral proteins are produced heterologously
as chimeric proteins containing antigens from different viruses,
allowing the simultaneous production of different VLPs. For
H. polymorpha, the developed chimeric VLPs contained viral
proteins from bovine viral diarrhea virus, the classical swine
fever virus, the feline leukemia virus, and the west Nile virus,
using as scaffold the small surface protein of the duck hepatitis
B virus (Wetzel et al., 2018).

Further examples of recombinant proteins using
H. polymorpha as host include the human Parathyroid Hormone
(PTH) and Staphylokinase (SAK). Here it is summarized how the
recombinant strain was constructed, the process was optimized
and scaled-up to 80 liters (Moussa et al., 2012; Mueller et al.,
2013). The PTH is a hormone secreted by the parathyroid
gland responsible for calcium homeostasis in the blood and
osteogenesis. It is a glycoprotein, but it has already been shown
that non-glycosylation does not affect its biological activity
(Bisello et al., 1996). The N-terminal 1–34 fragment of this
protein has an essential function as a receptor binding region
and is employed for the treatment of osteoporosis (Cho et al.,
2018). The integrative plasmid pFPMT-MFα containing the
coding region for the 1–34 fragment of PTH fused with MFα
signal was inserted into 1yps7 strain (deficient protease YPS7).
The FMD promoter controlled the production of PTH, and the
plasmid carried a HARS sequence for genomic integration (Kim
et al., 2003). Positive clones for PTH production were selected
for medium optimization on a micro-plate scale.

Using micro-scale assays, it has been possible to evaluate the
influence of culture media on the PTH titers. At this stage,
all standard complex media (YPD, YPG, YNB) in addition to
two synthetic media Syn 6 and Syn 6-cp (supplemented with
citrate and peptone) were tested. The best PTH concentration
(∼40 mg/L) was achieved with the Syn6-cp medium. After that,
the influence of three peptones (soy, wheat, and potato) in a
100mL shake scale was investigated with the highest production
of the recombinant protein (9.6 mg/L) was achieved using
wheat peptone. Next step was performed in 250mL baffled
flasks with 100mL of working volume in fed-batch mode.
Manual applications after 20, 24, 42, 46, and 50 h of inducing-
mixture containing a methanol/glycerol (1:1) and wheat peptone
resulted in 25.4 mg/L of PTH. In the following steps, 300-
mL bioreactors were utilized to test these parameters under
controlled fermentation conditions. Cell cultures were pre-grown
in glycerol 3% for 24 h. After that, the induction phase was
performed with methanol pulsed every 6 h during 24 h leading
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to the production of 68.3 mg/L of PTH. A similar result was
obtained in 2 L reactors (67 mg/L) using the same strategy.
Finally, 8 L and 80 L fermentation were performed using the
optimum conditions. For that, the partial oxygen pressure (pO2)
was set to 30%. The feeding strategy was changed from pulse-
wise to feeding scheduled realized at a constant rate ranging
from 20 to 60 g/L/h for 52 h. Using this fermentation strategy
was obtained 120 mg/L and 150 mg/L PTH in 8 and 80 L,
respectively (Mueller et al., 2013).

A similar approach has been used for the heterologous
production of Staphylokinase (SAK), a biopharmaceutical with
pro-fibrinolytic activity (Moussa et al., 2012). Recombinant
strains producing an SAKTHR164 variant (ThromboGenics NV)
were developed and the process was scaled-up from micro-titer
plates to 80 L. Two isoforms encoding the SAK protein, rSAK-
1 and rSAK-2, were placed under control of the FMD promoter,
in addition to containing the MFα1 sequence for secretion. The
rSAK-2 had a substitution of the Thr-30 amino acid residue for
an alanine. This is a recognition site for N-glycosylation and
its mutation showed to affect the glycosylation pattern of the
produced protein. The final plasmids bearing URA3 auxotrophic
marker and containing the genes encoding rSAK-1 and rSAK-
2 were transformed into the strain RB11, a uracil-auxotrophic
variant of CBS4732. After the selection, the positives clones
were tested for rSAK-1 and rSAK-2 production in shake flasks
using YPG (glycerol). The Western blot assay demonstrated
that r-SAK1 and not r-SAK-2 was glycosylated. Taking into
account that glycosylated SAK shows reduction in enzymatic
activity, only strains producing rSAK-2 were further utilized for
process optimization.

The micro-plate assays were employed to evaluate the pH,
medium and feeding strategy effects on rSAK-2 production using
SYN6medium as basis. The screening of pHs ranging 4–8, twenty
different peptones and two feeding strategies indicated that the
highest production of rSAK-2 (90 mg/L) occurred in pH 6.5
with SYN6 supplemented with wheat peptone and induced by
methanol. Further medium optimization was realized in 500mL
shake flasks with a working volume of 100mL. At this stage,
variations of synthetic medium SYN6 were tested. The removal
of trace elements and vitamins of SYN6 yielded 200 mg/L of
rSAK-2 after 48 h of fermentation, the best production achieved
in shake flasks. This medium was designed as SYN6.46d. After
that, the process was transferred to 300mL bioreactors where
two feeding solutions were evaluated. The first one, named as
FEED_1, contained 20% yeast extract (w/v), 10% peptone (w/v),
5% glycerol (w/v), and 10% methanol (w/v). While FEED_2
in turn was composed by 20% peptone (w/v), 10% glycerol
(w/v), 20% yeast extract (w/v) and 10% methanol (w/v). In
constant feeding mode (4mL of feeding solution per hour)
using FEED_2, the yield of rSAK-2 was 423 mg/L at 48 h
of fermentation, the highest amount reached so far. Finally
two parameters were adjusted before scaling-up the process
from 300mL bioreactors. The air flow was setting to 2 L/min
instead 0.5 L/min and the stirring speed was changed from
500 rpm to 800 rpm. Lastly, fermentations using the medium
SYN6.46d in a constant fed-batch mode with the feeding solution
FEED_2 were performed at bioreactors of 2, 8, and 80 L that

yielded rSAK-2 amounts of 1,212, 1,081, and 1,109 mg/L,
respectively (Moussa et al., 2012).

Although H. polymorpha is more frequently used as host
for recombinant protein, the production of chemicals and fatty
acids has also been described. The most extensive example
discussed in the literature is the utilization of H. polymorpha
to produce ethanol using xylose as carbon source. Up to now
the best reported strain achieved 12.5 g/L using a strain where
CAT8 gene was disrupted. This gene encoding a transcriptional
activator involved in the regulation of xylose metabolism in
H. polymorpha (Ruchala et al., 2017). For an extensive review
on this particular bioprocess the reader is directed to a recently
published review (Dmytruk et al., 2017). Production of γ-
linolenic acid was achieved inH. polymorpha by the introduction
of Mucor rouxii 1

6-desaturase gene under control of the
MOX promoter (Khongto et al., 2010). Despite the utilization
of a methanol-inducible promoter, the maximum γ-linolenic
acid titers, 697 mg/L, was reached when glycerol was used
as the carbon source. For the production of 1,3-propandiol,
all six genes necessary for its biosynthesis were transferred
from Klebsiella pneumoniae (Hong et al., 2011). All inserted
genes were present in one single plasmid under the control
of the GAP promoter. The resulting strains produced 2.4 g/L
and 0.8 g/L of 1,3-Propandiol using glucose and glycerol as
substrate, respectively (Hong et al., 2011). Similarly, the insertion
of four genes were introduced in H. polymorpha enabling the
synthesis of 5-hydroxyectoine (Eilert et al., 2013). Nevertheless,
in this study all genes were cloned in different plasmids, where
each plasmid had upstream- and downstream regions amplified
from the yeast genome to direct the integration and a unique
selection marker. The resulting strain was able to achieve 2.8
g/L of 5-hydroxyectoine using methanol as the carbon source.
Recently, CRISPR/Cas9 was utilized to introduce three genes
(TAL, 4CL, and STS) required for the resveratrol synthesis in
H. polymorpha (Wang et al., 2018). All genes were cloned into
one expression cassette and integrated into the rDNA locus
aiming at multiple copy integrations. The best producing strain
contained 9 copies of each gene and was able to produce
approximately 98 mg/L (Wang et al., 2018).

CONCLUSIONS

The development of new cell factories for the production of
heterologous proteins that are scarce is the primary challenge of
the 21st century. Advances in molecular genetics and cultivation
techniques drive the growing number of new expression
platforms. Among these, the yeast H. polymorpha stand out
as host due to the presence of strongly methanol-inducible
such as MOX and FMD promoters, the glycosylation pattern
compatible with human glycoproteins, the thermotolerance
capacity and it is able to use different carbon sources
(Figures 1A–E). Furthermore, various genetic engineering tools
and transformation protocols are established in this yeast.
Nevertheless, the low frequency of homologous recombination
in H. polymorpha delays the strain construction step. Many
efforts were made to bypass this problem: utilization of ku80
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strain, methods for construction of deletion cassettes and
implementation of CRISPR/Cas9 technology.

Genome editing via CRISPR/Cas9 represents a powerful tool
for genetic manipulation. It is possible to perform not only the
deletion of endogenous genes from the organism but also the
insertion of exogenous sequences into its genome. The three
systems implemented in H. polymorpha allowed disruption or
the introduction of exogenous genes. Furthermore, the utilization
of episomal plasmids for CRISPR/Cas9 implementation in
H. polymorpha required modifications into the initial strategy
to enhance the deletion frequencies (Table 3). In both cases,
adjustments to the developed approach increased the efficiency
of the system: substitution of promoters (Numamoto et al., 2017)
or prolonged incubation times to guarantee the activity of Cas9
(Juergens et al., 2018). Implementation of CRISPR/Cas9 through
integrative plasmids guaranteed gene deletion rates >50% for
different loci (Wang et al., 2018). Also, co-transformation with
a DNA template to induce HR repair after slicing of Cas9 was
more efficient than using only Cas9 and gRNA (Table 3). The
CRISPR/Cas9 system was also efficient for the introduction of
exogenous genes into H. polymorpha (Wang et al., 2018). It was
possible to introduce a complete pathway for the synthesis of
resveratrol in H. polymorpha in a single transformation event,
representing a revolution in the genetic manipulation of this
yeast. Thus, it is evident how the utilization of genome editing

tools will reduce the time and cost of strain construction allowing
a rapid introduction into the commercial scale.

Finally, the examples given for recombinant protein
production can be extrapolated to the production of other
molecules. Micro-scale cultivation is often used to optimize
culture conditions by testing different mediums composition,
pH and other factors that may affect the productivity of the
desired protein. The best results are scaled up adding the feeding
and oxygenation strategies. Altogether these features elucidated
how H. polymorpha is a promising host for the establishment of
various bioprocesses. This is reflected already by the number of
products available in the market and by the pipeline of those that
are in the optimization phase.
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