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Abstract

Increased endothelial permeability is central to the pathogenesis of sepsis and leads to

organ dysfunction and death but the endogenous mechanisms that drive increased endo-

thelial permeability are not completely understood. We previously reported that cell-free

hemoglobin (CFH), elevated in 80% of patients with sepsis, increases lung microvascular

permeability in an ex vivo human lung model and cultured endothelial cells. In this study, we

augmented a murine model of polymicrobial sepsis with elevated circulating CFH to test the

hypothesis that CFH increases microvascular endothelial permeability by inducing endothe-

lial apoptosis. Mice were treated with an intraperitoneal injection of cecal slurry with or with-

out a single intravenous injection of CFH. Severity of illness, mortality, systemic and lung

inflammation, endothelial injury and dysfunction and lung apoptosis were measured at

selected time points. We found that CFH added to CS increased sepsis mortality, plasma

inflammatory cytokines as well as lung apoptosis, edema and inflammation without affecting

large vessel reactivity or vascular injury marker concentrations. These results suggest that

CFH is an endogenous mediator of increased endothelial permeability and apoptosis in sep-

sis and may be a promising therapeutic target.

Introduction

Sepsis is a leading cause of morbidity and mortality in critically ill patients and is the most

common cause of acute respiratory distress syndrome (ARDS) with an annual U.S. incidence

of over 750,000, hospital costs of $24.3 billion, mortality of 25–30%, and high rates of long-

term disability in survivors [1, 2]. There are currently no specific therapies for sepsis or sepsis-
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induced ARDS other than antimicrobials. Further, while it is well recognized that not all

patients with severe infections develop sepsis and not all patients with sepsis develop ARDS,

the underpinnings of this heterogeneity are not well understood. Our prior work has identified

high levels of circulating cell-free hemoglobin (CFH) in 80% of patients with sepsis [3]. More-

over, sepsis patients with high circulating CFH levels have worse clinical outcomes and

increased mortality compared to sepsis patients without elevations in CFH [3].

Hemoglobin circulates in vast quantities in the body but does so within the confines of the

red blood cell which has a robust intracellular antioxidant system. When released from the red

blood cell, hemoglobin is a potent pro-oxidant that can react with other proteins, lipids and

DNA [4]. We have previously reported that CFH increases paracellular permeability in cul-

tured endothelial cells [5, 6] and increases microvascular permeability in the ex vivo isolated

perfused human lung [6] but the in vivo effects of CFH on the endothelium during sepsis have

not been well studied. Increased microvascular permeability is a central feature of sepsis lead-

ing to depletion of intravascular volume as well as increased tissue edema, organ dysfunction

and shock [7]. Given the role of CFH in increasing endothelial permeability [5, 6] and the ele-

vated levels of CFH in the majority of sepsis patients [3], we hypothesized that release of CFH

into the circulation during sepsis induces microvascular permeability leading to organ dys-

function and worse outcomes. To test this hypothesis, we augmented an established model of

polymicrobial sepsis with CFH to reproduce the elevated levels of CFH that are observed in

human sepsis. Further, we used in vitro models to determine the cellular mechanisms of CFH-

mediated lung microvascular hyperpermeability.

Methods

Animals

All animal studies in this manuscript were reviewed and approved by the Vanderbilt Univer-

sity Medical Center Institutional Animal Care and Use Committee (Protocol Number:

M1600006-01). In collaboration with institutional veterinarians we developed a care routine

including frequent monitoring, nutritional supplementation, buprenorphine for pain allevia-

tion, and humane endpoints to minimize suffering of mice in this study.

Cecal slurry polymicrobial sepsis model

The cecal slurry peritonitis model has been described previously [8, 9]. Cecal slurry (CS) was

prepared from 6-week-old female C57BL/6 mice purchased from The Jackson Laboratory (Bar

Harbor, ME). Briefly, cecal contents were collected from euthanized donor mice, resuspended

in 5% dextrose at 80 mg/mL, vortexed for 15 seconds, and filtered through a 25-gauge needle.

Recipient 8-12-week-old male and female C57BL/6 mice were given intraperitoneal injection

of CS at 1.7–2.0 mg/g body weight or 5% dextrose control. Purified LPS-free cell-free hemoglo-

bin (CFH) was purchased from Cell Sciences (Cat. No. CSI9668A, Newburyport, MA), dis-

solved in PBS and sterile filtered prior to use. To test the independent effect of circulating CFH

on organ dysfunction and outcomes during sepsis, recipient mice were also given retro-orbital

injection of CFH (0.15 mg/g body weight) or PBS immediately after CS administration. This

dose of CFH approximates the median concentration of CFH in human patients with sepsis

[3, 10]. After injury induction, cage identifiers were covered to blind researchers to treatment

groups for evaluation of sepsis severity. A series of clinical severity markers were used to deter-

mine the composite sickness score (protocol from Su et al [11] and Manley et al [12]): A)

response to finger poke (4 = normal response, 3 = decreased response, 2 = severely decreased

response, 1 = minimal response, 0 = no response (deceased)); B) signs of encephalopathy

(4 = normal, 3 = tremors, staggering, 2 = twisting, 1 = turning and flipping, 0 = no response
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(deceased)); C) appearance (4 = normal, with one point subtracted for any of the following:

piloerection, periorbital exudates, respiratory distress, diarrhea). During survival studies, mice

were monitored every 4–6 hours for 96 hours and were immediately euthanized if immobility

or a sepsis score equal to or less than 3 was observed. No animals required analgesia after sepsis

induction. For other studies, mice were euthanized after 4 or 24 hours and samples were col-

lected. Both CS and CS+CFH caused severe illness in mice that persisted through 24 hours.

Mice that did not develop clinical signs of sepsis within 24 hours (those that never had sepsis

score <12) were excluded from analysis in the CS and CS+CFH groups (5.6% of experimental

mice).

Sample collection

Mice were euthanized with pentobarbital. From a single, retro-orbital blood draw in heparin-

ized tubes, whole blood was used for bacterial counts and plasma was prepared by centrifuga-

tion at 2,000 x g for 10 minutes. Bronchoalveolar lavage (BAL) was performed with 900 μL

saline as previously described [13–15], centrifuged at 2,000 x g for 10 minutes, and superna-

tants were frozen. At the time of sacrifice, a peritoneal wash was performed with 5 mL of sterile

PBS. The spleen was excised, dipped briefly in 100% ethanol to remove adherent bacteria, and

homogenized in PBS. The aorta was removed and placed in heparinized Plasma-Lyte (10 units

heparin/mL; Baxter Healthcare, Boston, MA) and immediately prepared for measurement of

contractile function. Lungs were removed and immediately flash frozen in liquid nitrogen. All

samples were stored at -80˚C until further analysis.

Plasma cell-free hemoglobin

In one set of mice, blood was collected 4 hours post-injury and plasma CFH was measured

using the HemoCue1 Plasma/Low Hb System (HemoCue America, Brea, CA) as previously

reported [10, 16].

Bacterial counts

Samples of whole blood, peritoneal wash, and homogenized spleen were serially diluted in PBS

and plated onto LB agar, incubated at 37˚C for 24 hours, and quantified. Data were natural log

transformed prior to analysis. The limit of detection was 33 CFU/mL.

Measurement of cytokines and endothelial markers

Interleukin 6 (IL-6), chemokine (C-X-C motif) ligand 1 (CXCL1) and tumor necrosis factor-α
(TNF-α) were measured on the MSD electrochemiluminescence platform (Meso Scale Diag-

nostics, Gaithersburg, MD) [17]. Intercellular adhesion molecule 1 (ICAM-1), E-selectin, and

plasminogen activator inhibitor-1 (PAI-1) were measured in duplicate using the Milliplex

Magnetic Bead Panel Assay (Millipore Sigma, Burlington, MA).

Measurement of aortic contractile function

Mouse aorta was cleaned and suspended in a muscle bath using 0.05 tungsten ring supports

and adjusted to 0.3 g on a 2 g scale and equilibrated in a bicarbonate buffer (120 mM NaCl, 4.7

mM KCl, 1.0 mM MgSO4, 1.0 mM NaH2PO4, 10 mM glucose, 1.5 mM CaCl2, and 25 mM

NaHCO3, pH 7.4), with 95% O2 / 5% CO2 at 37˚C, and rinsed every 15 minutes maintaining a

resting tension of 0.3 g for 1 hour. The aortic ring was manually stretched to 0.6 g followed by

another 1 hour of equilibration without any washing as previously described [18–20]. After

equilibration, the rings were contracted with 110 mM KCl with equimolar replacement of
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NaCl in bicarbonate buffer to determine smooth muscle functional viability. Contractile func-

tion was measured by treatment with phenylephrine (0.01–1 μM) to determine that 0.1 μM

phenylephrine (PE) resulted in 60–70% KCl contraction, the dose chosen for future experi-

ments. To determine endothelial-dependent relaxation, the tissue was then contracted with PE

(0.1 μM) and relaxed with carbachol (CCH, 0.5 μM), an acetylcholine analogue [21]. Force

measurements were obtained using the Radnoti force transducer (model 159901A, Radnoti

LLC, Monrovia, CA) interfaced with a PowerLab data acquisition system and Chart software

(AD Instruments Inc., Colorado Springs, CO) and were converted to stress by adjusting to the

length and weight of the tissue. Percent relaxation was calculated as a change in stress com-

pared to the maximal PE-induced contraction which was set as 100% as described previously

[22, 23].

Assessment of vascular permeability

In selected experiments, each mouse was given a retro-orbital injection of 100 μL AngioSense

750EX (2 nmol/100 μL; Perkin Elmer, Waltham, MA). Accumulation of AngioSense in excised

lung tissue was measured using a Li-Cor Pearl camera. Plasma AngioSense fluorescence was

measured using a fluorescence plate reader and did not differ between groups (p = 0.5786,

data not shown). For lung wet weight to body weight ratio, the left lungs were excised and

weighed. Lung wet weight/body weight was calculated according to published methods [24] by

dividing the wet lung weight by the baseline body weight and normalizing for CS alone

treatment.

Lung histology and scoring

Lung sections (formalin-fixed and paraffin-embedded) were stained with hematoxylin and

eosin as previously described [25, 26]. Ten nonoverlapping images per mouse were taken and

scored by a blinded pulmonary pathologist by assessing septal thickening, edema, inflamma-

tion, and hemorrhage on a 1–5 scale [13].

Lung apoptosis measurement

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed

with In Situ Cell Death Detection Kit, Fluorescein (Sigma Aldrich). Tissue sections were

dewaxed and rehydrated according to standard protocol before incubating at 37˚C for 30 min-

utes with 15 μg/mL Proteinase K. Slides were rinsed twice with PBS and incubated with

TUNEL reaction mixture at 37˚C in the dark for 1 hour. Slides were rinsed twice with PBS and

mounted with DAPI mounting medium before confocal imaging with a Zeiss LSM880 laser

scanning confocal microscope (Zeiss Germany). Endothelial cell apoptosis was ascertained

using the Fluorescein In Situ Cell Death Detection Kit (Roche, Basel, Switzerland) in human

lung microvascular endothelial cells (HULEC-5a, ATCC CRL-3244) and imaged on a Lion-

heart FX automated microscope (BioTek Instruments, Inc, Winooski, VT). TUNEL positive

cells were counted by setting a GFP secondary mask within the DAPI primary mask to count

the number of cells with co-localized staining.

Lung cytokine mRNA expression

Whole lungs were excised, flash frozen and stored at -80˚C. mRNA was extracted from whole

lungs using Qiagen RNeasy Plus Mini Kit (Hilden, Germany). cDNA was generated using a

SuperScript VILO cDNA Synthesis Kit (Invitrogen, Carlsbad, CA). CXCL1 was quantified by
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qPCR and normalized to GAPDH expression using TaqMan primer probes (Thermo Fisher

Scientific, Waltham, MA).

Lung isoprostane measurements

F2 isoprostanes and isofurans were quantified in mouse lung homogenates by stable isotope

dilution gas chromatography/negative ion chemical ionization mass spectrometry as described

previously [27, 28].

Statistical analysis

Statistical analysis was performed using GraphPad Prism (8.3.0) with α = 0.05. Statistical test

performed for each figure is displayed in Table 1.

Results

CFH increases severity of illness and mortality in sepsis

Injection of a single dose of IV CFH immediately following CS injection resulted in increased

circulating CFH in plasma at 24 hours (Fig 1A) establishing that circulating CFH is elevated in

our model as it is in 80% of human patients with sepsis. Although our CFH dosing was calcu-

lated to achieve circulating CFH levels similar to those measured in patients with sepsis (10–40

mg/dL) [3, 10], the actual levels achieved were higher. CS+CFH had a trend towards increased

severity of illness (Fig 1B) and a significant increase in mortality (Fig 1C) compared to CS

alone suggesting that CFH contributes to severity of illness and mortality in this sepsis model.

The increased severity of illness and mortality was not due to increased bacterial burden in the

peritoneal space (Fig 1D) or to changes in bacterial dissemination into the circulation (Fig 1E

and 1F) since the bacterial counts at these sites did not differ between CS and CS+CFH

groups.

Table 1. Statistical analysis.

Figure N = Statistical Test Graph

1A 9–14 One-way ANOVA + Tukey’s mc Mean + 95% CI

1B 20–24 Kruskal-Wallis + Dunn’s mc Median + 95% CI

1C 3–7 Log-rank (Mantel-Cox) Survival proportions

1D-E 7–10 Kruskal-Wallis + Dunn’s mc Median + 95% CI

2A-C 11–12 Mann-Whitney Median + 95% CI

3A-C 10–22 Kruskal-Wallis + Dunn’s mc Median + 95% CI

3D 5 Kruskal-Wallis + Dunn’s mc Median + 95% CI

4B 9–10 Mann-Whitney Median + 95% CI

4C 19–21 Mann-Whitney Median + 95% CI

4E 6–7 Bonferroni-Dunn Median + 95% CI

5B 8–10 One-way ANOVA + Tukey’s mc Mean + 95% CI

5C 12 Mann-Whitney Median + 95% CI

6A 11–12 Mann-Whitney Median + 95% CI

6B 16 Unpaired t test Mean + 95% CI

7A-B 6 Mann-Whitney Median + 95% CI

Abbreviations: mc = multiple comparison; CI = confidence interval

https://doi.org/10.1371/journal.pone.0228727.t001
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CFH increases circulating inflammatory markers

Systemic inflammation is a hallmark of sepsis. To test the contribution of circulating CFH to

systemic inflammation, we measured plasma IL-6, CXCL1 and TNF-α in mouse plasma at 24

hours after treatment with CS or CS+CFH. We found that all three cytokines and chemokines

were increased in CS+CFH versus CS alone (Fig 2) suggesting that CFH augments systemic

inflammation in sepsis.

CFH does not affect circulating markers of endothelial injury or large

vessel endothelial function

Endothelial dysfunction is central to the pathogenesis of sepsis and is characterized by both

macro- and microvascular dysfunction. Markers of endothelial injury are elevated in patients

with sepsis and correlate with severity of illness and organ dysfunction [29–31]. To determine

whether CFH increases endothelial injury in sepsis, we measured ICAM-1, E-selectin, and

PAI-1 at 24 hours in mouse plasma (Fig 3A–3C). All three markers increased in CS and CS

+CFH but did not statistically differ between the two. We aimed to test the impact of CFH on

both macro- (aortic relaxation) and microvascular (lung permeability) endothelial dysfunc-

tion. To assess whether this was a result of large vessel endothelial injury, we measured aortic

relaxation in freshly excised mouse aortae 24 hours after CS or CS+CFH treatment. Although

aortic endothelial-dependent relaxation is impaired after induction of sepsis with CS, CFH did

Fig 1. Intravenous CFH augments mortality in sepsis. To establish a clinically relevant model of sepsis with elevated circulating cell-free hemoglobin (CFH),

we treated mice with an intravenous (IV) injection of CFH, an intraperitoneal (IP) injection of CS, simultaneous IV CFH and IP CS, or sham IV and IP

injections. (A) After 24 hours, the CS+CFH group had the highest circulating CFH levels (n = 9–14, p = 0.0361 vs. Sham). The CS+CFH group had a (B) slightly

lower sepsis score indicating more severe illness (n = 20–24, p = ns vs. CS) and (C) lower survival (n = 3–7, p = 0.0031). Bacterial counts measured in (D)

peritoneal wash, (E) spleen homogenates and (F) blood were elevated in both CS and CS+CFH groups but did not differ between these two groups (n = 7–10).

https://doi.org/10.1371/journal.pone.0228727.g001
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not cause additional impairment of aortic relaxation when combined with CS suggesting that

CFH does not affect large vessel endothelial function during sepsis (Fig 3D).

CFH increases lung microvascular permeability

To next test how CFH may contribute to microvascular endothelial injury, we used a fluores-

cently tagged 70 kD macromolecule, AngioSense, to assess microvascular permeability in the

lung. We found that whole lung AngioSense accumulation was significantly higher at 24 hours

in CS+CFH compared to CS alone (Fig 4A and 4B). In addition, lung wet weight to body

weight was higher in CS+CFH versus CS alone, suggesting increased pulmonary edema in the

presence of CFH (Fig 4C). BAL albumin levels were not different between CS and CS+CFH

(not shown). Notably, lung histology showed no differences in septal thickening, edema,

inflammation, or hemorrhage between groups (Fig 4D and 4E).

CFH increases lung apoptosis

Endothelial apoptosis contributes to increased microvascular permeability in sepsis [32]. To

test whether CFH-mediated endothelial apoptosis is one mechanism by which CFH increases

lung inflammation and permeability during sepsis, we measured lung apoptosis in mice

treated with CS or CS+CFH at 4 hours. We stained lung sections for TUNEL to indicate apo-

ptotic cells (Fig 5A). At 4 hours, the number of apoptotic cells in the lung was significantly

higher in CS+CFH compared to CS alone. We counted TUNEL positive cells (Fig 5B) by

blinded assessment. To test whether CFH could specifically induce apoptosis of lung endothe-

lial cells, we measured apoptosis by TUNEL staining of cultured primary human lung endothe-

lial cells (HULEC) treated with CFH or PBS for 4 hours (Fig 5C). In culture, CFH induces lung

microvascular endothelial apoptosis.

CFH increases lung inflammation

To test whether CFH also augments lung inflammation, we measured BAL CXCL1 (Fig 6A) as

well as whole lung mRNA expression of CXCL1 (Fig 6B). In sepsis, CFH augments both

CXCL1 mRNA and protein expression in the lung.

Fig 2. Intravenous CFH augments systemic cytokine increases in murine sepsis. Plasma cytokines were measured 24 hours after CS or CS+CFH

treatment (n = 11–12). (A) CXCL1 (p = 0.0028), (B) IL-6 (p = 0.0006) and (C) TNF-α (p = 0.0106) were higher in CS+CFH versus CS alone.

https://doi.org/10.1371/journal.pone.0228727.g002
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CFH increases lung oxidative injury

CFH is known to cause oxidative injury in a variety of cells and tissues. To test whether CFH

increased oxidative injury in the lungs in this sepsis model, we measured F2-isoprostanes and

isofurans in flash frozen lungs at 24 hours. We found that CS+CFH increases both F2-isopros-

tanes (Fig 7A) and isofurans (Fig 7B) compared to CS alone suggesting that CFH increases oxi-

dative injury in the lung.

Discussion

In this manuscript we describe a new model of polymicrobial sepsis in which we can test

the independent effects of CFH in mediating sepsis pathogenesis. Importantly, we have

designed the model such that CS alone does not increase circulating CFH and increasing CFH

requires a single dose of IV CFH. The detriments of CFH seem to require an inflammatory

Fig 3. CFH causes vascular injury in murine sepsis. Markers of endothelial injury (n = 10–22), (A) ICAM-1, (B) E-selectin,

and (C) PAI-1 were measured 24 hours after CS or CS+CFH treatment. All three markers are elevated in CS and CS+CFH

groups but do not statistically differ from each other. (D) To test whether large vessel injury was induced by CFH, we

measured aortic relaxation in response to acetylcholine in excised aortas 24 hours after treatment. CFH did not worsen aortic

relaxation when combined with CS treatment (n = 5).

https://doi.org/10.1371/journal.pone.0228727.g003
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environment, as CFH injection alone does not have an effect. The major finding of these stud-

ies is that increased circulating CFH to model the increased CFH seen in 80% of sepsis

patients, independently increased endothelial injury, vascular permeability, systemic inflam-

mation, organ injury, severity of illness and death in a clinically relevant murine sepsis model.

Addition of a single dose of IV CFH to the CS polymicrobial sepsis model was associated with

an increase in lung TUNEL positive cells but we were not able to determine whether these cells

were endothelial in origin. Overall, these results show that CFH augments several indices of

systemic and lung injury during sepsis.

Recent work highlights the central role of the endothelium in sepsis [7]. We found that

endothelial injury markers such as ICAM-1, E-selectin, and PAI-1 were elevated to a similar

degree in CS+CFH versus CS alone, suggesting that plasma levels of these markers may not

reflect microvascular changes at the tissue level. In studying large vessel endothelial function,

we found that while sepsis alone did have a trend towards decreased vasorelaxation compared

to sham or CFH, there was no difference between CS and CS+CFH suggesting that CFH does

not affect macro-vascular endothelial function. Interestingly, the deleterious effects of CFH in

Fig 4. CFH increases lung edema formation in murine sepsis. Lung microvascular permeability was measured by accumulation of fluorescent AngioSense

in mouse lungs 24 hours after injection of sepsis. (A) Excised lungs were imaged using a high sensitivity camera. (B) Fluorescence intensity was quantified

and was higher in CS+CFH versus CS alone (n = 9–10, p = 0.0435). (C) To measure lung fluid accumulation, we calculated lung wet weight to mouse body

weight, expressed as a percent of CS treatment, and found that CS+CFH increases lung weight versus CS alone (n = 19–21, p = 0.0336). (D-E) Lung

histology showed slightly increased septal thickening, edema, and inflammation in CS+CFH versus CS alone but was not statistically different (n = 6–7).

https://doi.org/10.1371/journal.pone.0228727.g004
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Fig 5. CFH increases lung endothelial apoptosis in sepsis. (A) Formalin fixed mouse lung tissue was stained for TUNEL (green) with nuclear DAPI staining

(blue). (B) The number of TUNEL positive cells was higher in CS+CFH versus CS alone by blinded quantification of low powered images (n = 8–10, p = 0.03651).

(C) We also assessed apoptosis by TUNEL staining of HULECs in culture and found that CFH (1 mg/mL) treatment induced apoptosis at 4 hours (n = 12,

p = 0.03755).

https://doi.org/10.1371/journal.pone.0228727.g005

Fig 6. CFH increases lung inflammatory cytokine expression. (A) CXCL1 measured by ELISA increased in mouse

BAL collected 24 hours after induction of sepsis in CS+CFH versus CS alone (n = 11–12, p = 0.0129). (B) Lung CXCL1

expression measured by PCR in whole lungs at 24 hours also increased in CS+CFH versus CS alone (n = 16,

p = 0.02497).

https://doi.org/10.1371/journal.pone.0228727.g006
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our study seem to be limited to the microvascular endothelium. These data were somewhat

surprising in light of other studies showing inhibition of aortic relaxation by hemoglobin [33–

35]. It is important to note that prior studies were done in isolated aortic tissue exposed to

CFH ex vivo, a key difference from our study. When mice were treated with CFH alone there

was no effect on vascular reactivity, perhaps because intact, healthy animals can rapidly clear

CFH as the low CFH levels in this group would imply. In fact, the persistence of CFH at 24

hours in the CS+CFH group suggests that in the setting of sepsis there is persistence of circu-

lating CFH. While not the focus of this work, it will be important to measure circulating CFH

over time to test this hypothesis in future studies.

In contrast, we did observe increased microvascular permeability in CS+CFH versus CS

alone. Increased microvascular permeability is a defining feature of sepsis that leads to organ

injury and dysfunction. In patients, microvascular injury in the lung manifests as acute respi-

ratory distress syndrome (ARDS) characterized by increased microvascular permeability, lung

inflammation, and oxidative injury. To test whether CFH augments lung injury during sepsis,

we measured lung microvascular permeability by tissue accumulation of AngioSense, a 70 kD

fluorescently labeled macromolecule. Interestingly, while AngioSense accumulation was

greater in CS+CFH treated mice, BAL albumin was not different suggesting that AngioSense

accumulated in the lung interstitium and not the airspace. This finding suggests that while

there was a breakdown of the lung microvascular endothelial barrier, the alveolar epithelial

barrier remained intact. The increased lung wet weight-to-body weight ratio with CS+CFH in

the absence of increased BAL albumin supports this concept. Foundational studies in the

1970s showed that the epithelial barrier is relatively resistant to albumin flux, accounting for

>92% of total alveolar-capillary barrier resistance [36] suggesting that an endothelial directed

insult, such as CFH in our model, could induce endothelial but not epithelial permeability.

Recent studies have identified endothelial apoptosis as a critical mechanism of lung endothelial

permeability in sepsis [32] but the drivers of endothelial apoptosis in sepsis are still unclear.

Here we show that increased lung apoptosis is an early event in sepsis, occurring at 4 hours

after CS+CFH treatment. In addition, CFH increased sepsis-induced lung apoptosis suggesting

an independent role for CFH. The induction of lung apoptosis may explain the increase in

lung AngioSense accumulation in the absence of elevated BAL albumin.

Fig 7. CFH increases lung oxidative injury. (A) Whole lung F2-isoprostanes (n = 6, p = 0.0087) and (B) isofurans

(n = 6, p = 0.0260) increased at 24 hours in CS+CFH versus CS alone.

https://doi.org/10.1371/journal.pone.0228727.g007
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In this study, a single dose of IV CFH significantly increased sepsis severity of illness and

mortality. One possible explanation for this could be that CFH facilitates growth and dissemi-

nation of intra-peritoneal bacteria. However, we were unable to detect any significant differ-

ences in bacterial burden in the peritoneal wash, spleen, or blood of CS and CS+CFH animals.

It remains possible that there are differences in numbers of anaerobic organisms not detected

by our culture methods. Furthermore, we found no evidence that CFH facilitated bacterial

growth by providing an iron source.

Another possible mechanism by which CFH augments disease severity would be through

increased inflammation. Despite the lack of effect on bacterial burden, CFH increased systemic

pro-inflammatory cytokines but the specific mechanism of increased cytokine release in

response to CS+CFH is not clear. In addition, CFH augments lung inflammation as measured

by increased CXCL1 in the BAL fluid and lung tissue. Lung inflammation is a key feature of

clinical ARDS. Interestingly, we did not see an increase in BAL neutrophils which is somewhat

surprising given the elevated CXCL1, a major chemoattractant for neutrophils. Again, this

may be explained by a relative preservation of the alveolar epithelial barrier which could limit

inflammatory cell influx into the airspace. Alternatively, CFH may affect the timing of inflam-

matory cell influx, a possibility that needs to be further explored in the future. Studies have

shown a delay between peak BAL CXCL1 (24 hours) and peak BAL neutrophil count (48–72

hours) in response to intratracheal LPS [37]. In addition, others have shown a discordance

between CXCL1 and BAL cell counts with a high CXCL1 and low BAL cell count in murine

models of sepsis or endotoxemia [38, 39] suggesting that lung CXCL1 expression may not cor-

relate with BAL cell counts in indirect models of lung injury.

Finally, we found that CFH independently increases lung F2-isoprostanes and isofurans,

markers of increased oxidant stress, in this polymicrobial sepsis model. Increased oxidant

stress in the lung during sepsis has been well described in cecal ligation and puncture models

[40–43] but none of these studies examined CFH as a potential mediator of oxidant injury.

The CLP model of sepsis also has elevated circulating CFH, raising the possibility that some of

its oxidant effects could be due to CFH [44]. Our novel polymicrobial sepsis model with con-

trolled supplementation of CFH allowed us to specifically test the mechanistic contribution of

CFH during sepsis. CFH is highly susceptible to oxidation, resulting in oxidized ferric (Fe3+)

or ferryl (Fe4+) CFH [45]. In a study of post-operative coronary artery bypass patients, pericar-

dial fluid contained high levels of oxidized CFH that correlated with high levels of F2-isopros-

tanes [46]. In addition, we have shown that treatment of human microvascular endothelial

cells with CFH depletes intracellular ascorbate, a major cellular antioxidant [5], and a study by

Goldman et al showed that oxidized CFH induces apoptosis and cytotoxicity in bovine aortic

endothelial cells [47]. Furthermore, we have previously shown that targeting ferryl CFH with

acetaminophen in sepsis patients results in decreased F2-isoprostanes, suggesting that ferryl

CFH is driving the oxidant injury [10]. Since oxidative stress is a major mediator of inflamma-

tion, it is possible that CFH-induced increases in oxidative stress adds to the pro-inflammatory

and pro-apoptotic burden that lead to tissue injury and represent an integral cause of micro-

vascular endothelial dysfunction during sepsis.

In summary, we have shown that induction of circulating levels of CFH that mimic levels

observed in human sepsis has independent effects on endothelial permeability, systemic and

lung inflammation and pulmonary microvascular apoptosis in the setting of polymicrobial

intra-abdominal sepsis. These effects of CFH involve an increased inflammatory response and

increased oxidant stress, which may underlie mechanisms leading to increased endothelial

apoptosis. These findings add to the growing body of literature on cellular and molecular

mechanisms of microvascular hyperpermeability and organ dysfunction in sepsis. Further, as
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increased CFH is found in 80% of sepsis patients, therapies that target CFH represent a novel

approach to personalized sepsis care.
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