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Differential Scanning Calorimetry (DSC) has been used in the past to study the thermal unfolding of
many different viruses. Here we present the first DSC analysis of rabies virus. We show that non-in-
activated, purified rabies virus unfolds cooperatively in two events centered at approximately 62 and
73 °C. Beta-propiolactone (BPL) treatment does not alter significantly viral unfolding behavior, indicating
that viral inactivation does not alter protein structure significantly. The first unfolding event was absent
in bromelain treated samples, causing an elimination of the G-protein ectodomain, suggesting that this
event corresponds to G-protein unfolding. This hypothesis was confirmed by the observation that this
first event was shifted to higher temperatures in the presence of three monoclonal, G-protein specific
antibodies. We show that dithiothreitol treatment of the virus abolishes the first unfolding event, in-
dicating that the reduction of G-protein disulfide bonds causes dramatic alterations to protein structure.
Inactivated virus samples heated up to 70 °C also showed abolished recognition of conformational
G-protein specific antibodies by Surface Plasmon Resonance analysis. The sharpness of unfolding tran-
sitions and the low standard deviations of the Tm values as derived from multiple analysis offers the
possibility of using this analytical tool for efficient monitoring of the vaccine production process and lot
to lot consistency.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Rabies virus (RABV) belongs to the genus Lyssavirus which
is part of Rhabdoviridae family [1]. RABV has been known since
around 2000 BC [2] and infects a wide number of domestic and
wild animal species worldwide. It is spread to people through
infected saliva by animal bites or scratches, and remains an im-
portant worldwide health problem claiming the lives of an esti-
mated 50,000 people annually [3,4]. Virions travel quickly along
the neuronal pathways to the central nervous system where they
cause a fatal encephalomyelitis. It has been shown that the time
between infection and fatality ranges between 2 days and 5 years
[1]. RABV is an enveloped, negative-stranded RNA virus (NSRV)
harboring a single-stranded RNA genome which encodes five
proteins, namely the nucleoprotein (N), the phosphoprotein (P),
the matrix protein (M), the glycoprotein (G), and the viral RNA
polymerase (L) [5].

Since the first anti-rabies vaccination conducted by Louis Pas-
teur and Emile Roux in 1885, a large number of different vaccines
have been developed, as reviewed in Wu et al. [6]. Anti-rabies
B.V. This is an open access article u
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vaccines are also manufactured by Sanofi Pasteur (France). These
vaccines correspond to beta-propiolactone (BPL)-inactivated virus
particles of the Pitman-Moore strain that were cultured on Vero
cells [7]. The analysis of vaccines by novel, state-of-the art ap-
proaches has two main purposes, namely to increase the basic
knowledge available on the antigen but also to develop analytical
protocols that can be of use for production process and lot to lot
consistency monitoring.

A characteristic feature of most proteins is their capacity to
undergo thermal denaturation in a highly cooperative manner.
Unfolding is an endothermic process (heat consumption) and can
be monitored by Differential Scanning Calorimetry (DSC) [8]. In a
DSC analysis a temperature gradient is applied to the sample and
heat changes due to unfolding events are recorded. The analysis of
such data provides a number of parameters of which the most
relevant are the Tm value (in cases where unfolding occurs in a
two-state process, Tm is the temperature at which half the protein
is present in the native state and the half in the unfolded state)
and the ΔH value representing the enthalpy change upon un-
folding [8]. Since the Tm value can be determined with high pre-
cision, this parameter is thus a very useful marker of protein
conformation.

Although DSC has been used for many decades in life science,
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over the last decades it has become increasingly popular in both
basic and applied science. This is mainly due to important ad-
vances at the instrumental level, since latest generation calori-
meters are characterised by a very high sensitivity (requiring
lower sample amounts) and permit the automated analysis of
many samples [9]. DSC was primarily used to study the unfolding
of purified proteins in the past [8]. However, viruses are associa-
tions of proteins with nucleic acids and in some case lipids. These
rather complex associations were found to unfold in a very co-
operative manner giving rise in most cases to thermograms with
few transitions. For example DSC has been used to study the in-
fluenza virus [10], adeno and adeno-asociated viruses [11–13],
Newcastle disease virus [14], tobacco mosaic virus [15], tymo-
viruses [16], Barley Stripe Mosaic Virus [17], potato virus X [18],
human papillomavirus virus-like particles [19] or the polio virus
[20]. In addition to these fundamental studies, DSC has also been
used for the monitoring of industrial scale vaccine production
[21,22] or the characterization of virus vaccine formulations
[23,24]. However, despite its pharmaceutical relevance, so far no
DSC study of the rabies virus has been reported. We show here
that the rabies virus unfolding is characterised by two transitions
and several approaches indicate that the first transition corres-
ponds to that of the G-protein. Moreover, heat-treated virus in
conditions similar to DSC analysis does not recognize conforma-
tional G-protein specific antibodies anymore.
2. Materials and methods

2.1. Materials

Viral samples are either non-inactivated or BPL-inactivated
bulk lots of strain PM1503 (Pitman-Moore) obtained from the
Sanofi Pasteur (Marcy l’étoile, France) production department.
BPL-mediated virus inactivation was carried out using BPL-virus
ratios of 1 to 4000 (the routine inactivation protocol for industrial
scale vaccine production). DSC experiments were conducted in
PBS purchased from Eurobio (France). Bromelain was purchased
from Sigma-Aldrich (ref. B4882). Purified monoclonal antibodies
[D1-25 [25], TJU11-12 [26] and 50AD1 [27]] were obtained from
BIOTEM (France). The M protein was recombinantly produced in
yeast and purchased from MyBiosource (ref. MBS1194184, San
Diego, USA).

2.2. Methods

2.2.1. DSC analysis
Viral samples were dialysed (10 kDa cutoff, Thermo Scientific,

ref. 66380) against PBS for 2 times 3 h and an additional overnight
dialysis. Experiments were done on an auto-CAP DSC (Microcal,
USA) with a scan rate of 200 °C/h (being the same for scan and
rescan). A scan rate of 200 °C/h was used to help avoiding ag-
gregation or precipitation of the antibody/virus complex. A lower
scan rate (85 °C/h) was tested and shows an identical shape of the
thermogram (data not shown). Dialysis buffer was used as a re-
ference. Syringe and cell/valve were rinsed with ultrafiltrated
water between each run. One scan only was performed for each
sample as DSC analysis required a quite huge amount of virus for
one analysis. Sample protein concentrations were in the range of
0.15–1.10 mg/ml (corresponding around 9 �1010–7 �1011 viral par-
ticles). The protein concentration was determined by the Bradford
assay. For analysis with DTT, this one was added in the microplate
(both in reference cell and sample cell) just before analysis in the
calorimeter. There was no alkylation prior to analysis. Due to the
irreversibility of the unfolding processes, calorimetric enthalpy
values were determined by peak integration using the MicroCal VP
capillary automated analysis 2.0 program. Data were normalized
using the concentration of the G-protein that accounts to ap-
proximately 25% of the total viral protein. G-protein concentration
was thus derived by dividing the total protein concentration by
four. We are aware that values reported are therefore approximate,
but a similar approach, applied to the haemagglutinin protein
based normalization of influenza virus data, [10,20] has permitted
to compare experiments from different laboratories.

2.2.2. Bromelain treatment
A modified version of the protocol described in [28] was used.

Briefly, to samples dialysed against PBS, pH 6.2, 10% (w/protein
weight of virus) bromelain and 0.4% (w/protein weight of virus) L-
cysteine were added. Samples were incubated at 35 °C for 3 h prior
to the addition of iodoacetamide at 1.56 mg/mg virus to inactivate
the protease. Samples were then centrifuged at 112,000� g for
90 min at 10 °C to separate viral particles from the cleaved G
protein ectodomain. The pellet was then re-suspended in PBS, pH
7.4 (Eurobio) and then re-dialysed against the same buffer.

2.2.3. SDS-PAGE
Analyses were carried out on a 4–12% (w/v) SDS gradient PAGE

gels (XT Criterion gels from Bio-Rad) using MOPS (Bio-Rad) as
running buffer. Prior to analysis, samples were denatured by the
addition of 9 ml XT Sample Buffer 4� (Bio-Rad) to 25 ml of viral
sample. 1.8 ml of XT 20� reducing agent (Bio-Rad) was added prior
to an exposure to 100 °C for 5 min. Samples containing 5 mg of
viral protein were loaded onto each well. Gels were stained using
G250 Coomassie Blue. Densitometry analysis of SDS-PAGE was
performed using GS800 densitometer (BioRad). Molecular weight
of the major bands and the relative percentage of each band were
determined using QuantityOne

s

software after substraction of the
background lane.

2.2.4. Protein identification by mass-spectrometry
Protein containing bands were excised from the SDS-PAGE of

inactivated viruses. Samples were washed with 50 mM ammo-
nium bicarbonate (ABC) and subsequently dehydrated by three
consecutive additions of acetonitrile. Samples were re-hydrated in
25 mM ABC containing 10 mM DTT and left at 60 °C for 20 min.
Alkylation was then performed by incubating the samples with
55 mM iodoacetamide in 25 mM ABC for 30 min at room tem-
perature and in darkness. After removing excess DTT and iodoa-
cetamide, gel pieces were washed in 50 mM ABC and dehydrated
with ACN three times before adding 10 ng/μl mass spectrometry
grade trypsin (Promega). Digestion was performed at 37 °C for 4 h
prior to the addition of 0.5% (v/v) trifluoroacetic acid to stop the
reaction. Resulting supernatants are deposited on an anchorchip
and analyzed by an UltrafleXtreme MALDI-TOF instrument (Bru-
ker) operated in the reflectron mode. The resulting peptide peak
list is then processed by the MASCOT software using the UniProt
sequence database to identify the protein. Mascot scores above 89
indicate the reliability of the identification.

2.2.5. Surface Plasmon Resonance (SPR) analysis
Samples have been heated with a ramp temperature mimicking

DSC analysis (7–70 °C). Samples (control and heat-treated sam-
ples) were then analyzed using Biacore 3000TM instrument (GE
Healthcare). Purified monoclonal antibodies (Mab) D1-25, TJU11-
12 and 50AD1 were covalently immobilized by an amine coupling
mechanism on a CM5 sensor chip (BR-1005-30) following the in-
structions provided by the manufacturer. Around 12,000 RU of
each Mab were immobilized. Samples were diluted in HBS-EP
buffer (4 μg/ml total protein) and 10 μl were addressed on the
different flow cells at a flow rate of 10 μl/min. The increase of RU
over time was followed. The complexes formed on the surface of
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the sensor chip were dissociated by the injection of 2 times 10 μl
of 10 mM glycine, pH 1.5 (BR-1003-54) at a flow rate of 60 μl/min.
3. Results

3.1. The rabies virus unfolds irreversibly in two transitions

Samples used in this study correspond to bulk material of ei-
ther non-inactivated or beta-propiolactone-inactivated forms of
the rabies virus from the Sanofi Pasteur production line. First ex-
periments were aimed at assessing the impact of viral inactivation
on the sample integrity. An SDS-PAGE of non-inactivated and in-
activated (1/4000 BPL) samples (Fig. 1A) shows that BPL treatment
did not cause any significant changes in the viral protein compo-
sition. To identify the individual proteins, bands were excised and
the corresponding proteins identified by mass spectrometry based
fingerprinting. The five major bands were found to correspond to
the viral L-, G-, N-, P- and M-protein. Glycoprotein G of viral strain
PM1503 is composed of 524 amino acids with a molecular mass of
58.7 kDa. According to UniProt it is predicted to contain three
glycosylation and one palmitoylation sites. As shown in Fig. 1A two
bands have been identified by mass spectrometry corresponding
to glycoprotein G, that may correspond to different post-transla-
tional modification states. SDS-PAGE analysis shows that bulk
vaccine corresponds to highly purified virus. The sum of the re-
lative intensity of the different bands corresponding to intact viral
proteins L, G, N, P and M is higher than 70%. G protein represents
around 25%.
Fig. 1. Analysis of non-inactivated and BPL-inactivated rabies virus by SDS-PAGE. (A)
inactivated virus, lane 3: beta-propiolactone (1/4000) inactivated virus. Proteins identifi
virus after (lane 2) and prior (lane 3) to bromelain treatment. The arrows indicate glyco
Subsequently, the unfolding behavior of non-inactivated and
inactivated rabies virus was assessed by DSC up-screens from 20 to
100 °C. As shown in Fig. 2A the thermograms of both viral forms
are similar and unfold in two distinct events. A first event centered
at around 61–62 °C was followed by a second event at 71–73 °C
(Fig. 2A, Table 1). Calorimetric enthalpy changes of non-inactivated
and inactivated samples were also comparable (Table 1). However,
the narrower peak shape of the first event of the native sample
may suggest a higher cooperativity of unfolding. We thus conclude
that viral inactivation has only a minor impact on protein un-
folding and have therefore conducted all subsequent analyses with
inactivated samples which correspond to the active component of
the commercially available anti-rabies vaccine. Repeatability of the
method was assessed. Three different vaccine batches (inactivated
virus) were analyzed two times independently. Results reported in
Supplementary Fig. 1 and Supplementary Table 1 show the good
repeatability of the method. To determine the reversibility of un-
folding, up-scans to the ends of both transitions (66 and 77 °C)
were made, followed by down-scans. In both re-upscans no ther-
mal transitions were observed indicating that both unfolding
events are entirely irreversible (Fig. 2B).

3.2. Lowering the pH induces minor changes in the unfolding
behavior

Experiments described above were conducted at pH 7.4. There
is a body of evidence demonstrating that lowering the pH induces
significant structural changes that are particularly pronounced in
the G-protein of the virus [28,29]. To assess how these structural
Assessment of the effect of viral inactivation on the protein profile: lane 2: non-
ed by mass spectrometry fingerprinting are indicated. (B) Protein profile of rabies
protein G.



Fig. 2. Analysis of rabies virus by Differential Scanning Calorimetry. (A) Analysis of non-inactivated (black line) and inactivated virus (dark blue line). B) Different DSC up-
and re-scans to assess reversibility of unfolding of inactivated rabies virus. Dark Blue line: DSC upscan to 90 °C and rescan; green line: DSC upscan to 77 °C (end of second
unfolding event) and rescan, red line: upscan to 66 °C (end of first unfolding event) and rescan. (C) DSC analyses of inactivated rabies virus at different pH values. Dark blue
line: pH 7.3; Purple line: pH 5.8, Pink line: pH 6.3. (D) DSC thermogram of inactivated rabies virus in PBS (dark blue line) and PBS supplemented with 5 mM dithiothreitol
(orange line). (E) DSC scan of rabies virus prior (dark blue line) and after (cyan line) treatment with bromelain. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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changes influence the viral unfolding behavior, experiments were
conducted at pH values of 5.8 and 6.3. As shown in Fig. 2C and
Table 1 lowering the pH caused some changes in the Tm of the first
event, whereas the corresponding parameter of the second event
was relatively conserved. Since the G-protein undergoes
conformational changes at lower pH we hypothesized that the
first unfolding event may correspond to the unfolding of this
protein.



Table 1
Calorimetric parameters of viral unfolding recorded under different experimental
conditions and in the presence of different monoclonal antibodies. Data are of the
BPL-inactivated virus, except row one showing parameters of the non-inactivated
virus.

Unfolding parameters of rabies virus under different conditions

Condition Tm1 (°C) ΔHcal1
(kcal/mol)

Tm2 (°C) ΔHcal2
(kcal/mol)

PBS, pH 7.4a 62.1370.1 455 73.0470.1 434
PBS, pH 7.4b 61.1870.1 388 71.4470.1 447
PBS, pH 7.3b 61.4070.1 313 71.6370.1 368
PBS, pH 6.3b 59.6470.1 365 72.4370.1 413
PBS, pH 5.8b 62.2470.1 352 71.9170.1 362
PBS, pH 7.4, 5 mM
DTTb

Broad transition 71.7870.1 444

PBS, pH 7.4, after bro-
melain treatmentb

No unfolding event 71.8070.1 595

Tm values determined for equimolar complexes of virusb with different
monoclonal antibodies

Antibody alone Tm1 (°C) Tm2 (°C) Tm3 (°C)

D1-25 74.9070.1 79.9670.1 –

50AD1 58.8871.5 67.3670.1 75.9570.1
TJU11-12 76.2870.1 80.0570.1 �

Virus alone Tm1 (°C) Tm2 (°C) Tm3 (°C)

PBS, pH 7.4b 61.1870.5 71.4470.1 �

Antibody/virus
complex

Tm1 (°C) Tm2 (°C) Tm3 (°C)

D1-25 67.9070.5 73.5870.1 79.9470.1
50AD1 65.3570.4 70.1270.1 �
TJU11-12 67.4370.2 73.0070.1 79.7270.1

a Non-inactivated virus.
b BPL-inactivated virus.
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3.3. Large alteration in the unfolding behavior under reducing
conditions

We subsequently conducted experiments to establish the in-
fluence of reducing conditions on viral unfolding. To this end in-
activated samples were dialysed against PBS, pH 7.4 and then
Fig. 3. Influence of the binding of glycoprotein G specific antibodies to the BPL-inactiva
monoclonal antibody. Antibody concentration was adjusted to a 1 : 1 ratio with glycoprot
in complex with Mab D1-25, Red line: in complex with Mab TJU11-12. (B) DSC thermogr
25, Red dotted line: Mab TJU11-12. (For interpretation of the references to color in this
5 mM dithiothreitol was added in the microplate with the sample
and incubated at 5 °C for 7 h and 30 min prior to analysis (in-
cubation time was related to the time needed for buffer analysis,
3 runs). Under these conditions disulfide bonds are suppressed.
Instead of the first unfolding event of the virus observed under
non-reducing conditions, a broad event(s) covering more than
20 °C is seen under reducing conditions (Fig. 2D). As shown in
Table 1 the parameters of the second event at approximately 72 °C
are very little affected by the reducing conditions. Since the
G-protein has several disulfide bonds [30] it appears plausible that
the first unfolding event observed under non-reducing conditions
is primarily due to its unfolding.

3.4. Bromelain cleavage of G-protein suppresses first unfolding event

To verify this hypothesis we have prepared samples in which
the virus was treated with the protease bromelain. It has been
reported that such treatment removed the G-protein ectodomain
from the viral surface [28]. To verify the efficiency of this treat-
ment samples were analyzed by SDS-PAGE. Fig. 1B shows that
bromelain treatment quantitatively removes both G protein bands.
The unfolding thermogram of bromelain treated samples (Fig. 2E)
is somewhat similar to that of the DTT treated samples and
characterized by the absence of the first unfolding event, whereas
the second event was very little affected by the protease treatment
(Table 1). These data provide further support to the notion that the
first unfolding event is primarily due to glycoprotein G unfolding.

3.5. G-protein specific monoclonal antibodies cause an up-shift of
the first unfolding event

We have then proceeded with the evaluation of the effect of
monoclonal G-protein specific antibodies on the viral unfolding. To
this end equimolar mixtures of inactivated virus samples (nor-
malized for the G-protein concentration) with the three mono-
clonal antibodies TJU11-12, D1-25 and 50AD1, were prepared.
These antibodies TJU11-12, D1-25 and 50AD1, have been char-
acterized and their binding epitopes at the G-protein were iden-
tified (site II, site III and site III, respectively) [25–27]. The analyses
of the virus–antibody mixtures are shown in Fig. 3A and those of
the free antibodies in Fig. 3B. All three traces have in common that
the first unfolding event at approximately 61 °C has been
ted rabies virus. (A) DSC thermograms of mixtures of inactivated rabies virus with
ein G. Dark blue line: virus only. Cyan line: in complex with Mab 50AD1, Green line:
ams of antibodies alone. Cyan dotted line: Mab 50AD1, Green dotted line: Mab D1-
figure legend, the reader is referred to the web version of this article.)



Fig. 4. SPR analysis of BPL-inactivated non-heated and heated virus with three conformational Mabs. Cyan line: interaction of inactivated non-heated virus with Mab 50AD1,
Green line: interaction of inactivated non-heated virus with Mab D1-25, Red line: interaction of inactivated non-heated virus with Mab TJU11-12, Black line: interaction of
inactivated heated virus with Mab D1-25 or 50AD1 or TJU11-12. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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upshifted to 65–68 °C (Table 1), confirming the notion that it
corresponds to the glycoprotein G. In addition, in all samples an
event at 70–73 °C was detected which may correspond to the
event at 72 °C of the viral sample without Mabs (see also Sup-
plementary Fig. 2).

3.6. Inactivated heat-treated virus does not recognize G-protein
specific conformational antibodies

Surface Plasmon Resonance (SPR) experiments were conducted
to assess the effect of heat on the structural integrity of the virus.
To this end we performed binding assays of the BPL-inactivated
virus towards the G-protein specific, conformational Mabs TJU11-
12, D1-25 and 50AD1. As shown in Fig. 4, efficient binding was
observed in all three cases. When this experiment was repeated
with heat-treated virus, using a protocol that mimics heat ex-
posure during a DSC experiment, no viral binding to the three
antibodies was observed.

These results demonstrate, firstly, that BPL-mediated viral in-
activation does not prevent G-protein recognition by specific Mabs
and, secondly, show that heat exposure during a DSC experiment
causes the irreversible unfolding of the G-protein.
Fig. 5. Comparative analysis of the entire inactivated rabies virus and recombinantly p
analysis of entire inactivated virus (dark blue line) and purified M protein (green line).
3.7. Analysis of recombinantly produced matrix protein M

The matrix protein M is a major component of the rabies virus.
Recombinantly produced M protein was purchased from MyBio-
source (San Diego, USA). An SDS-PAGE analysis (Fig. 5A) shows
high purity and confirms the sequence derived molecular weight
of 23.3 kDa. The DSC analysis of this protein (Fig. 5B) shows a
major unfolding transition at 74 °C with a calorimetric enthalpy
change of (3.3970.1)�102 kcal/mol. The similarities in the Tm
and ΔHcal values between the purified M protein and the second
event observed for the entire virus may suggest that this second
event may be primarily due to the unfolding of the M protein.
4. Discussion

The rabies virus is an assembly of 5 different proteins with RNA.
We show here that non-inactivated virus unfolds in two transitions
centered at approximately 62 and 72 °C. We show here that BPL
mediated virus inactivation does not cause any significant changes in
the electrophoretic mobility of viral components (Fig. 1A). Importantly,
BPL inactivation does not alter viral unfolding in a significant manner
roduced purified M protein. (A) SDS-PAGE analysis of purified M protein. (B) DSC
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(Fig. 2A). BPL treatment is frequently used for virus inactivation [31].
The chemistry of the BPL reaction with biomolecules has been studied
extensively [32] and data indicate that modifications occur primarily
at the protein surface [33]. In the case of the influenza vaccine we have
demonstrated previously that BPL treatment alters viral adsorption to
and fusion with the membrane [34,35]. The similarity of DSC ther-
mograms of non-inactivated and inactivated rabies virus samples
strongly suggests that the chemical modification of viral components
by BPL treatment has no major influence on protein structure and
unfolding. The standard deviations associated with Tm (Table 1) for
the analysis of different sample preparations were remarkably small.
This can be attributed, firstly, to the sharpness of both transitions and
secondly, to the precision of the instrument. Data thus suggest that the
Tm values can be very convenient marker parameters to monitor the
industrial vaccine production process.

Changes in the pH caused only minor changes in the viral un-
folding behavior. In contrast the exposure to reducing conditions
abolished the unfolding event at approximately 61 °C. We show
that bromelain treatment removes quantitatively the G-protein.
Since the unfolding event at 61 °C is absent from bromelain trea-
ted sample, this event corresponds to the unfolding of the
G-protein. These observations were confirmed by the up-shift of
the first unfolding event upon binding of G-protein specific
monoclonal antibodies.

In this context the analysis of the virus under reducing condi-
tions provides interesting insight into G-protein structure. As
shown in Fig. 2D the viral thermogram under reducing conditions
was characterized by an absence of the first unfolding event. Since
the G-protein has 7 potential intra molecular disulfide bonds [30],
the DTT treatment of the virus induced their rupture, which in
turn had enormous consequences on protein structure and un-
folding. As illustrated in Fig. 2D the presence of the reducing agent
has little impact on the second event, which is likely to correspond
to the cooperative unfolding of the remaining proteins. Viral heat
treatment was shown by SPR to prevent G-protein specific Mab
recognition. The DSC analysis therefore appears to be a rapid and
straightforward tool to assess the structural integrity of the
G-protein.

Interestingly, the unfolding parameters of recombinant
M-protein are very similar to the second unfolding event observed
for the entire virus, suggesting that this latter event may be
dominated by M-protein unfolding. However, future studies are
necessary to affirm this hypothesis.

In summary, the precision in the determination of the Tm va-
lues makes a DSC analysis a very suitable tool to follow the vaccine
production process and to assess lot to lot consistency.
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