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Introduction

Most lung cancer diagnosis are preceded by detection of a 
nodule by chest computed tomography (CT) imaging. The 
majority of those are still found incidentally. The epidemic 
is however growing given the implementation of lung cancer 
screening. Screening-detected nodules are on the rise, with 
an estimated 1.5 million nodules detected per year over an 
estimated 5 million people (1). Several landmark studies in 
the 2010’s demonstrated that early detection of lung cancer 
is a powerful approach to reducing mortality and improving 
patient outcomes in the deadliest cancer worldwide. Lung 
cancer is often asymptomatic until later stage. Screening 
of high-risk individuals allows detection of lung nodules 
that are or may become cancerous at a much earlier  
timepoint (2). The National Lung Screening Trial 

demonstrated that low-dose CT screening of individuals 
with known risk factors has a 20% relative reduction in lung-
cancer mortality when compared to X-ray screening (3).  
Similar results were observed in the Dutch-Belgian 
Randomized Lung Cancer Screening Trial (NELSON) (4), 
with a 26% reduction in 10-year cancer mortality among 
men when screened by CT compared to no screening, 
and the Multicentric Italian Lung Detection (MILD) trial 
resulted in 39% lower lung cancer mortality at 10 years (5). 
Other screening trials have demonstrated similar effects, 
including the Italian lung study (ITALUNG) (6), Detection 
and screening of early lung cancer with novel imaging 
technology (DANTE) (7), Danish lung cancer screening 
trial (DLCST) (8), the German lung cancer screening 
intervention trial (LUSI) (9), and the UK lung cancer 
screening (UKLS) (10). The conclusion is in: Low dose 
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chest CT screening of high-risk individuals reduces lung 
cancer mortality.

However, with this success comes new challenges. 
Currently, an estimated 1.5 million new lung nodules 
are detected annually in the United States alone, and as 
screening programs are more widely implemented, this 
number will continue to rise (1). Lung nodules detected 
on screening CT scans exhibit a false positive rate greater 
than 95%. Lung nodules that are calcified or very small 
are at a very small risk of lung cancer, but most nodules 
detected through screening or incidentally require follow-
up diagnostic procedures. The options to obtain further 
diagnostic information include bronchoscopy, fine needle 
aspiration, transthoracic needle aspiration, or surgical 
biopsy (11). The alternative to tissue-based assessment 
includes sequential CT to assess growth, FDG-PET and 
contrast CT to further assess risk of malignancy.

For many of the cancers with widespread screening 
[breast (12), colorectal (13), cervical, prostate, and skin], a 
positive screening result can be quickly followed up with a 
tissue biopsy at minimal extra risk to the patient (14). This 
is not the case in lung cancer. Invasive procedures often 
require general anesthesia and its attendant risks, including 
significant rates of pneumothorax (15,16). A recent cost-
benefit analysis showed that among Medicare claims over 
40% of the total cost in management of lung cancer was 
attributed to benign patients with an invasive procedure (17).

Diagnostic biomarkers in clinical practice

Because invasive approaches are associated with morbidity, 
cost and delay in diagnosis,  the rationale for the 
development of non-invasive strategies is very strong. Like 
we experience in cardiovascular (troponin) (18), endocrine 
(HbA1C) or infectious (HIV viral load) diseases evaluation, 
diagnostic biomarkers have brought tremendous benefits to 
clinical practice. Most lung cancer diagnoses are preceded 
by a positive chest CT. A biomarker to rule in or out lung 
cancer among patients with indeterminate pulmonary 
nodules (IPNs) would have tremendous clinical benefit 
in reducing the rate of benign thoracotomies, the rate of 
invasive procedures, the time to diagnosis and cost among 
important outcomes, Figure 1. A successful biomarker 
would modify the management of lung nodules and lead to 
improvement of these outcomes by providing actionable 
information. This review does not comprehensively review 
all circulating biomarkers, but rather highlights a few 
studies that have attempted to address the non-invasive 
diagnosis of lung cancer among individuals presenting with 
IPNs with a focus on circulating biomarkers.

Blood protein biomarkers

Blood biomarkers represent one of the most attractive 
methods for diagnostic evaluation due to their low risk to 

Lower rate of unnecessary 
biopsy/thoracotomy/PET

Rule inRule out

Low probability: 
follow up

Clinical risk model

High probability: 
surgical resection

Combined biomarker model 

Intermediate risk pulmonary nodules: PET or biopsy 

The incidentally detected IPN population: roughly 1.2 million per year

Figure 1 The role of diagnostic biomarkers in clinical practice. The combination or addition of biomarker should add to the information 
available to physicians through a clinical risk model.
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the patient and ease of access. The two most studied family 
of blood biomarkers for diagnostics are proteins and micro-
RNA panels. Many signatures have been studied, so in this 
review we choose to focus on studies that have implemented 
a blood biomarker for the purpose of distinguishing benign 
from malignant pulmonary nodules. Here we have chosen 
to focus on studies occurring in the years 2010–2019.

Table 1 contains a summary of studies which have 
implemented molecular blood biomarkers, and more 
specifically, oligonucleic biomarkers as a diagnostic test 
in nodule cohorts. Here we have drawn attention to the 
biomarker panels, the population size in the training and, if 
applicable, validation cohorts broken down by the number 
of patients with a positive cancer diagnosis, patients with a 
nodule determined to be noncancerous, and patients with 
no nodule. The composition of no-nodule populations 
varies from study-to-study, as some studies include healthy 
individuals in the “no nodule” category as control and some 
studies include patients with benign lung disease. We have 
also listed the performance of the biomarker test in terms 
of reported sensitivity/specificity. It should be kept in mind 
that comparing the sensitivity and specificity is not the 
ideal way to compare multiple biomarker tests when the 
tests were trained and validated on different populations. 
Additionally, a single sensitivity/specificity reported for a 
dichotomous test is not indicative of the true performance 
of the continuous variable resulting from these biomarker 
tests. However, when summarizing these results, we 
feel that reporting the sensitivity/specificity, as reported 
by the authors of these studies, serves to showcase how 
the authors intended their biomarker test to be utilized. 
For example, a study with a moderate sensitivity and an 
outstanding specificity can be utilized as a definitive rule-in 
test, and conversely an outstanding sensitivity and mediocre 
specificity can be a helpful rule-out test. For these reasons, 
we caution against using the listed sens/spec values in 
isolation as an indication as to which test performance is 
“better”.

Prior to 2010, several diagnostic biomarker studies 
attempting to discriminate benign from malignant IPNs 
were published. While not meeting all criteria we defined 
above, one is worth mentioning for their contribution to 
the field. Yonemori 2007 used a model incorporating serum 
C-reactive protein (CRP) and carcinoembryonic antigen 
(CEA) in combination with the presence or absence of 
nodule spiculation, calcification, and CT bronchus sign 
in a population of 452 patients (113 benign nodules and  
339 malignant) (19). Their model was compared against an 

expert chest radiologist making predictions. In a validation 
set, the experienced chest radiologist outperformed the 
model, with an AUC of 0.905 vs. 0.858. The two antigens, 
CRP and CEA, have repeatedly been demonstrated to 
have diagnostic potential for lung nodules and are used 
in several of the subsequent studies (45,46). CRP is 
associated with inflammation. CEA is an umbrella term 
for a family of closely related glycoproteins that aide in 
cellular adhesion. CEA typically is downregulated prior to 
birth, but it is hypothesized to be upregulated in several 
epithelial cancers to contribute to metastasis. Kupert et al. 
demonstrated that CEA was useful in combination with 
secretory phospholipase A2-IIa, a phospholipid hydrolase 
enzyme that mediates the release of several precursors to 
eicosanoids, which regulate inflammation, immunity, and 
tumorigenesis (24). sPA2-IIa, which had previously been 
demonstrated to be elevated in prostate cancer patients 
as well, perfectly discriminated between 96 lung cancers 
and 20 healthy donors, but the discrimination between 
lung cancer and 29 benign nodules was less accurate 
(AUC of 0.68). Also included in this study was CYFRA 
21-1, a fragment of cytokeratin 19 which is released from 
epithelial cells upon cell death. CYFRA 21-1 has been used 
as a marker in other epithelial cancers and as a marker of 
epithelial inflammation. The three-protein panel of sPA2-
IIa, CEA, and CYFRA 21-1 quantified by ELISA was 
shown to outperform sPA2-IIa alone. Interestingly none of 
these biomarkers are cancer-specific, but rather markers of 
inflammation, which is a common problem across cancer 
biomarker research. Okamura et al. assessed the level of 
CEA and CYFRA 21-1, and showed improved diagnostic 
specificity in a cohort of 655 lung cancer patients and 237 
patients with benign lung disease when combining the two 
biomarkers (27).

CEA was again investigated by Patz et al., this time 
in the context of a nodule cohort of 298 cancers and  
211 benign nodules, in combination with α1-antitrypsin 
(AAT) and squamous cell carcinoma (SCC) antigen. Alpha 
1 antitrypsin, also known as serum trypsin inhibitor, is an 
inflammatory marker used in T-cell migration, and SCC 
is a protease inhibitor found in squamous epithelium that 
have been shown to promote tumor growth. Malignancy 
was associated with increased levels of CEA, AAT, and 
SCC. In this case, a validation cohort (n=203 cancers and  
196 benign nodules) demonstrated similar performance, 
with both cohorts reporting sensitivity/specificity above 
80%. Again, CEA, CYFRA 21-1, SCC, and ProGRP 
measured by chemiluminescent microparticle immunoassays 
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Table 1 Selected blood biomarker candidates tested in lung nodule cohorts

Study Biomarker candidates

Study population size, n (cancer/
benign nodule/no nodule) Assay/technology

Sens/Spec, 
%/%

Training Validation

Protein Biomarker panels/multivariable models

Yonemori 2007 (19) CEA, CRP + nodule calcification, spiculation, 
CT Bronchus sign

339/113/– 132/16/– EIA –

Yildiz 2007 (20) MALDI-MS signature 92/–/90 50/–/56 MALDI-MS 58/86

Pecot 2012 (21) MALDI-MS score, nodule size and shape, age, 
pack-years of smoking history

158/107/– 43/71/- MALDI-MS –

Farlow 2010 (22) IMPDF, phosphoglycerate mutase, ubiquillin, 
annexin I, annexin II, HSP70-9B

117/13/61 – Luminex immunobead –

Ostroff 2010 (23) Cadherin-1, CD30 Ligand, Endostatin, HSP 
90α, LRIG3, MIP-4, Pleiotrophin, PRKCI, 

RGM-C, SCF sR, sL-Selectin, YES

213/420/352 78/245/118 Aptamer-based 
microarray

91/84

Kupert 2011 (24) sPLA2-IIa, CEA, CYFRA 21-1 96/29/– 44/0/20 ELISA 63/76

Patz 2012 (25) CEA, AAT, SCC 298/211 203/196 Roche Cobas, EIA 
(SCC)

88/82

Daly 2013 (26) IL-6, IL-10, IL-1ra, sIL-2Rα, SDF-1α+β, TNF-α, 
MIP-1α

69/67/– 20/60/– – –

Okamura 2013 (27) CEA, CYFRA 21-1 655/237 – Roche Cobas e411 33/95

Li 2013 (28) ALDOA, COIA1, FRIL, LG3BP, TSP1, ISLR, 
BGH3, FIBA, TETN, LRP1, PRDX1, GRP78, 

GSLG1

72/71/– 52/52/– MRM-MS 66/95

Vachani 2015 (29) ALDOA, COIA1, FRIL, LG3BP, TSP1 – 78/63 MRM-MS –

Fahrmann 2016 (30) PEs: PE34:2, PE36:2 and PE38:4 61/29/- – GC-TOFMS –

Silvestri 2018 (31) LG3BP, C163A – 29/149/– – 97/44

Trivedi 2018 (32) EGFR, ProSB, TIMP1 113/67/– 49/48/0 MagArray 94/33

Ajona 2018 (33) C4d 59/0/79 148/92/0 ELISA 44/89

Du 2018 (34) Autoantibodies to p53, PGP9.5, SOX2, 
GAGE7, GBU4-5, CAGE and MAGEA1

352/45/74 – ELISA 57/92

Yang 2018 (35) ProGRP, CEA, SCC, CYFRA 21-1 163a 179a Chemiluminescent 
microparticle 
immunoassay

84/81

Kammer 2019 (36) hsCYFRA 21-1 150/75/0 – FSA-CIR 85/97

Lastwika 2019 (37) IgG complexed FCGR2A, EPB41L3, LINGO1, 
IGM complexed S100A7L2

125/125/– – HDPA 33/90

Table 1 (continued)
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Table 1 (continued)

Study Biomarker candidates

Study population size, n (cancer/
benign nodule/no nodule) Assay/technology

Sens/Spec, 
%/%

Training Validation

Nucleic acids and signatures

Shen 2011 (38) Plasma miRNA: miRs-21, 126, 210, 375, and 
486-5p

32/33/29 76/80/0 qRT-PCR 75/85

Tang 2013 (39) Plasma miRNA: miRs-21, 145, 155 62/0/60 34/30/32 qRT-PCR 69/78

Cazzoli 2013 (40) Exosome miRNA: miR-151a-5p, miR-30a-3p, 
miR-200b-5p, miR-629, miR-100, and miR-

154-3p

50/30/25 – qRT-PCR 96/60

Gumireddy  
2015 (41)

AKAP4 264/27/108 – PBMC isolation then 
qRT-PCR

93/100

Montani 2015 (42) Serum miRNA: miRs-92a-3p, 30b-5p, 191-
5p, 484, 328-3p, 30c-5p, 374a-5p, let-7d-5p, 

331-3p, 29a-3p, 148a-3p, 223-3p, 140-5p

12/0/12 36/46/1,009 qRT-PCR 78/75

Barón 2017 (43) CA: EGFR, MYC, FGFR1, PIK3CA 68/69/–b 97/185/–c FISH 67/94b; 
20/84c

Xi 2019 (44) miRNA-146a, -200b, and -7 28/12/– 39/13/– RT-PCR 93/69
a, the authors do not state exactly how many patients in these cohorts were cancer/benign nodules. Rather than a training/validation study 
design, Barón 2017 analyzed a high-risk (b) and a screening (c) population. PEs, phosphatidylethanolamines; CA, chromosomal aneusomy.

on the ARCHITECT platform were used in large cohort 
study in China and demonstrated improved performance 
over standard ACCP risk assessment (35).

Our own work has focused on implementation of the free 
solution assay (FSA) method measured by the compensated 
interferometric reader (CIR) for high sensitivity biomarker 
quantification. Like others, we have investigated CYFRA 
21-1, but by focusing on increased biomarker sensitivity, we 
have improved the potential utility of the biomarker. The 
FSA method capitalizes on changes in solution dielectric 
constant when a probe molecule binds to a target molecule 
to quantify the amount of bound target (47). By adding an 
excess quantity of a probe molecule, typically an antibody, 
aptamer (48), or known inhibitor, to a patient serum, 
plasma, or urine sample (49), and a non-binding control to a 
matched aliquot of the same sample, highly specific binding 
can be quantified while minimizing background signals. The 
method capitalizes on a self-referencing technique where the 
patient’s serum or plasma sample is split into two aliquots 
of equal volume, and the probe (a monoclonal antibody) 
is added to one aliquot while a RI-matched solution is 
added to the other, and the difference in signal is measured 

between the two. In a case control study of 150 cancers and 
75 benign nodules, the high sensitivity CYFRA 21-1 assay 
demonstrated a sensitivity/specificity of 85%/97%, which 
outperformed a standard electrochemiluminescence ELISA 
measurement of CYFRA 21-1 on the same cohort. In this 
study, lower limits of quantification enabled more accurate 
measurement of CYFRA 21-1 levels at low concentrations 
when using hsCYFRA 21-1, and as a result, many controls 
were measured to have much lower biomarker levels, 
increasing the discrimination from cases (36).

Yildiz et al. 2007 presented a matrix-assisted laser 
desorption ionization mass spectrometry (MALDI MS) 
signature that could distinguish lung cancer from benign 
lung disease (20). The signature resulted from an analysis of 
serum peptides, but interestingly, the signature was derived 
and tested without a full determination of the underlying 
peptides responsible for the signature. In 2012, Pecot  
et al. demonstrated validation of this signature and showed 
added value to imaging and clinical variables for diagnosis 
when combining the MALDI signature with CT imaging 
variables (nodule size and shape) and clinical variables 
(age and smoking pack years) in a population of patients 
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with indeterminate nodules (21). The added value of the 
MALDI signature was only significant in a subpopulation of  
5–20 mm nodules, however this is the most clinically 
challenging subpopulation.

In 2013, Li et al. used multiple reaction monitoring 
(MRM) MS to develop a proteomic classifier that assessed 
13 proteins. Six of these proteins were secreted (ISLR, 
BGH3, FIBA, TSP1, TETN, COIA1), two were membrane 
receptors (LG38P, LRP1), and 5 were cytoplasmic (FRIL, 
PRDX1, GRP78, ALDOA, GSLG1) (28). The classifier 
was trained in a cohort of 72/71 cancers/nodules and then 
validated in a second cohort of 52/52 and exhibiting high 
sensitivity and lower specificity (83%/29% for an assumed 
prevalence of 20%). This study was then validated in a 
clinical utility study in 2015 by the same group, using a 
refined panel with five proteins (ALDOA, COIA1, FRIL, 
LG3BP, TSP1), and achieving similar results in a cohort of 
78 cancers and 63 benign nodules (29). Use of this classifier 
would have resulted in a 32% reduction in unnecessary 
surgeries and a 31.8% in total invasive procedures, while 
suggesting that 18% of malignant nodules would go 
for surveillance CT, which is favorable to a multisite 
observational study which puts this number at 24.5% in 
current pulmonary practice.

This study was followed-up with the Pulmonary 
Nodule Plasma Proteomic Classifier (PANOPTIC) 
trial (Clinicaltrials.gov trial No. NCT01752114) (31). 
The prospective observational trial of 685 patients with  
8–30 mm lung nodules used a clinical risk prediction that 
incorporated the relative abundance of two plasma proteins, 
LG3BP and C163A to identify likely benign nodules (50). 
The integrated classifier outperformed PET, validated lung 
nodule risk models, and physician probability estimates. 
This trial focused on ruling out patients with a pre-test 
probability of cancer of <50%, and the preliminary analysis 
of clinical utility demonstrated that 40% fewer procedures 
would be performed on benign nodules within this 
population. While the true clinical utility of the biomarker 
is yet to be tested, these results are promising for the 
inclusion of protein biomarkers in risk stratification (51).

Another mass-spec based study analyzed the levels of 
serum phosphatidylethanolamines (PEs). Untargeted GC-
TOFMS and HILIC-qTOF-MS based metabolomics 
was used to determine three PEs with the best accuracy 
in a cohort of 62 malignant nodules and 29 benign  
nodules (30). Further validation of PEs as biomarkers 
should be enlightening.

An autoantibody-based test based upon the Luminex 

Immunobead platform was published by Farlow et al. in 
2010 (22). This panel incorporated several proteins that 
were found to be highly different between cancers and 
controls (13 benign nodules, 30 COPD patients, and  
31 healthy controls) by 2D western blot followed by MS 
identification of promising markers. The signature included: 
(I) Inosine-5’-monophosphate dehydrogenase (IMPDF), an 
important catalyst of oxidation of inosine monophosphate to 
xanthosine monophosphate, a rate limited step in synthesis 
of guanine nucleotides. (II) Phosphoglycerate mutase, a 
glycolysis enzyme. (III) Ubiquillin, a ubiquitin like protein 
thought to functionally link the ubiquitination machinery 
to the proteasome to affect in vivo protein degradation. 
(IV) Annexin I and (V) annexin II, which are lipocortins 
that are involved in the inhibition of inflammation by 
glucocorticoids. (V) HSP70-9B, a member of the heat shock 
protein 70 family thought to be involved in the control of 
cellular proliferation. This 6-marker panel was used in a 
“Cart” algorithm to classify patients and demonstrated a 
low false positive rate (4%).

Daly et al. demonstrated a similar performance using a 
panel of 7 circulating biomarkers including IL-6, IL-10, IL-
1ra, sIL-2Rα, and stromal cell-derived factor-1α+β . The 
added performance of ILs in this panel is not unexpected, 
as they, like many other biomarkers in this field, are integral 
in the immune response. This panel achieved a perfect 
sensitivity and negative predictive value (100%) with a 
specificity of 52% (26).

Autoantibody tests have the promise of high specificity 
but relatively low sensitivity for the low prevalence of 
common autoantibodies identified in lung cancer. Tumor-
associated antigens targeted included CAGE, GBU 4–5, 
p53, MAGE A4, HuD, NY-ES0-1 and SOX-2. This is an 
autoantibody test in the plasma of high-risk individuals. 
We recently tested its clinical significance in a registry 
study where a total of 451 patients (32%) had at least one 
nodule, leading to 296 eligible patients after exclusions, 
with a lung cancer prevalence of 25%. In 4- to 20-mm 
nodules, a positive test result represented a greater than 
two-fold increased relative risk for development of lung 
cancer as compared with a negative test result. Also, when 
the “both-positive rule” for combining binary tests was 
used, adding EarlyCDT-Lung to risk models improved 
diagnostic performance with high specificity (>92%) and 
positive predictive value (>70%) (52,53). This classifier was 
designed to have high PPV, achieving >25% as required for 
clinical practice. Such a biomarker may be worth proposing 
as a surveillance program for high-risk individuals with lung 
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nodules, if the classifier passes a probability threshold that 
avoids futile further clinical work-up or a missed chance for 
cure.

A blood based proteomic profile was developed in 2018 
by Trivedi et al. which utilized a novel immunoassay sensing 
technique, MagArray, to detect 3 circulating proteins, 
EGFR, ProSB, and TIMP1. The MagArray platform uses a 
sandwich strategy with a magnetic nanoparticle conjugated 
to the detection antibody. Changes in the magnetic field at 
the sensor surface correlate with antigen concentration (54). 
The initial training cohort consisted of 113 cancerous and 
67 benign nodules, with a validation of 49 cancer/48 benign 
nodules, demonstrating a sensitivity of 94% (32). Subsequent 
work by the same group expanded the panel to also include 
CEA and NAP2, and demonstrated a sensitivity/specificity of 
76%/82% in a testing cohort of 144 patients (55).

Fragments of complement component 4 (C4), specifically 
fragments containing the C4D moiety, were investigated as 
a circulating marker of malignancy by Ajona et al. in 2018. 
In contrast to the group’s previous studies, specific C4D 
outperformed total C4 derived fragments in a study comparing 
39 cancers with 39 age and smoking matched controls. 
Measurement in plasma outperformed bronchoalveolar 
lavage. Assessment performance of C4D in a nodule cohort 
demonstrated improved accuracy over CT, with especially 
strong specificity.

High density protein arrays (HDPA) represent a 
promising approach for biomarker discovery, validation, 
and use as a large panel (56). This technology uses several 
thousand (3,000–17,000, depending upon the configuration) 
different antibodies printed in an array. After a sample, such 
as human plasma, is introduced, any binding interaction 
with the immobilized antibodies will then be measured 
using fluorescence. In this method, many thousands of 
targets can be assayed simultaneously with the sensitivity 
of a more involved ELISA immunoassay. An advantage of 
this technology is the ability to simultaneously measure 
the protein in its native state, glycosylated through post-
translational-modification, and bound to an autoantibody. 
Any protein that shows a consistent cancer-specific change 
in two or three of these can be considered a “hybrid 
marker”. In addition to the extra dimensionality that the 
hybrid markers provide, it is hypothesized that hybrid 
markers could enable less variation between different 
individuals because one of the markers can serve to 
standardize the measurement (57). A HDPA was recently 
implemented to profile autoantibodies isolated from B 
cells in resected lung tumors, and the most significantly 

elevated autoantibodies were used in a panel for plasma 
analysis. Thirteen of these B-cell-derived antibodies were 
selected, and five were found to be significantly higher in 
plasma from patients with non-small cell lung cancer when 
compared to plasma from patients with benign nodules (37). 
A logistic regression was used to build a classifier of four 
autoantibodies (FCGR2A, EPB41L3, and LINGO1 IgG-
complexed autoantibodies and S100A7L2 IgM-complexed 
autoantibody) that enabled discrimination between cases 
and controls in a 250-patient cohort (ROC AUC of 0.737). 
Interestingly, these autoantibodies may provide novel 
information about the malignant nodules because none of 
the antibodies were correlated with any of the currently 
used clinical risk factors (smoking status, age, or nodule 
volume).

Another study investigating autoantibodies developed a 
panel of 7 AAbs (to p53, PGP9.5, SOX2, GAGE7, GBU4-
5, CAGE and MAGEA1) in a cohort of 305 NSCLCs, 47 
SCLCs, 45 benign nodules, and 74 controls (34). When 
combined with CT, this signature produced a specificity of 
91.6% for cancers vs. benign nodules, with a sensitivity of 
56.5%.

An alternate approach to lung nodule management is 
to confirm a benign nodule’s disease state, as has been 
done with testing for antibodies against histoplasma 
capsulatum to rule out benign nodules as granulomas 
of infectious origin (58). Histoplasmosis is a soil fungi 
endemic to wet regions (59), which produces granulomas 
that are radiologically at indeterminate risk for cancer. 
An initial evaluation showed that all patients who were 
positive for both an elevated IgG and IgM autoantibodies 
to histoplasmosis capsulatum were benign, thus conferring 
to the test an excellent negative predictive value for 
cancer. While this specific test is appropriate in a small 
subset of the total IPN population, it is very powerful at 
confirming benign nodule status when used in the correct 
circumstances.

Genetic and epigenetic biomarkers

Circulating RNAs have been widely studied to develop 
diagnost ic  panels ,  and several  s tudies  have been 
implemented in nodule cohorts, with promising sensitivity 
and specificity. In Table 1 we have highlighted several 
studies which have tested plasma (38,39), serum (42), and  
exosomal (40) miRNA signatures. Plasma signatures 
have also been combined with CT features for IPN 
discrimination (44).
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Gumireddy et al. demonstrated a method to capture 
peripheral blood mononuclear cells (PBMCs), then use RT-
PCR to detect a messenger RNA, AKAP4, as a biomarker 
for IPN diagnosis (41). Another approach to PBMC 
analysis utilized gene expression in a 29-gene signature (60). 
This signature enabled a 91% sensitivity, 80% specificity in 
a cohort of 137 NSCLC patients 91 controls, including 41 
with benign lung nodules.

Chromosomal aneusomy (CA) was demonstrated to 
be a potential biomarker in a study of high risk patients  
(68 cancers and 69 controls) and a screening cohort  
(97 cancers and 185 controls) (43). CA was assayed using a 
FISH analysis for a four-target DNA panel encompassing 
the EGFR and v-MYC avian myelocytomatosis viral 
oncogene homolog (MYC) genes, and the 5p15 and 
centromere 6 regions or the fibroblast growth factor 1 
gene (FGFR1) and phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit alpha gene (PIK3CA). The four-
target DNA panel achieved a sensitivity/specificity of 
67%/94% in the high-risk population and 20%/84% in the 
screening cohort.

Cancer specific methylation of CD01, HOXA9, and 
TAC1 is a strong biomarker for lung cancer, reported by a 
study that derived the methylation signature in The Cancer 
Genome Atlas, and then validated in two independent 
cohorts of primary samples (61). The methylation signature 
achieved 100% specificity, with no methylation in 75 
TCGA normal samples and seven primary normal samples 
and achieved between 83% and 99% sensitivity for non-
small cell cancer.

Silvestri et al. demonstrated a bronchial genomic 
signature specifically for nodule patients with nondiagnostic 
bronchoscopies (62). While this study did not utilize 
circulating biomarkers, the use of genomic signature on 
bronchoscopic samples enabled high-sensitivity (96 and 
98% across two study cohorts) confirmation of benign 
status that could avoid further invasive procedures.

Liquid biopsy

Liquid biopsy refers to the analysis of circulating 
biomarkers from peripheral blood such as circulating tumor 
cells (CTCs), circulating tumor DNA (ctDNA), methylated 
DNA, exosomes or tumor-educated platelets (TEPs). 
These candidate biomarkers offer a new source of cancer-
derived products that may reflect the status of the disease. 
A very recent report demonstrated that integrating CTCs 
with CEA quantification could aide in diagnosis of IPNs 

in a cohort of 80 (30 nodules, 50 cancers) (63). Detection 
of folate receptor (FR)-positive CTCs was achieved using 
immunomagnetic bead negative enrichment, and FR-
positive CTCs were quantitatively detected by ligand-
targeted PCR. The combination achieved a sensitivity of 
70% and specificity of 79%.

Another novel  approach to biomarker use was 
demonstrated by Cohen et al. which assessed circulating 
proteins and mutated driver genes in cell-free DNA 
(CancerSEEK) to diagnose eight cancer types (64). This 
test would be broadly administered, and a positive test 
comes with a localization to a specific organ system. The 
test demonstrated a lung cancer specific sensitivity of 
58%, and an excellent specificity of 99%, with only 7 of  
812 healthy controls resulting in a positive determination. 
This approach has not been formally tested in IPNs as of 
yet. Start a new paragraph here. Very few of these candidate 
biomarkers have been assessed in a screening setting. 
Despite implementation of screening guidelines, screening 
by low dose CT leads to a high number of false positives. 
Additionally, current screening guidelines only cover a 
fraction of patients who go on to develop lung cancer (65). 
For these reasons, investigating circulating biomarkers in the 
context of screening may prove to be useful in the future.

One such study was by Guida et al., which developed 
a panel of 4 proteins (CA-125, CEA, Pro-SFTPB, and 
CYFRA 21-1) in ever smoking patients, provided a 
sensitivity/specificity of 42%/95% that patients would 
develop cancer within the next year (66). This proof-
of-principle study demonstrated that use of circulating 
biomarkers have the potential to inform lung cancer risk, 
and to facilitate screening.

Radiomics

Imaging features are widely used in the non-invasive 
diagnosis of lung cancer, but in clinical practice they are 
currently limited to measuring the nodule’s largest diameter 
and assigning one or more semantic features, such as 
lobulation, spiculation, density solid/subsolid/part solid and 
location. However, there is a wealth of information present 
in the three-dimensional reconstruction of the nodule that 
has yet to be leveraged in the clinic for more accurate risk 
assessment. In fact, the most experienced radiologists can 
look at this wealth of data and make diagnostic predictions 
that outperform quantitative risk models (67). Despite 
the accuracy of experienced radiologists, generalizability 
is difficulty due to the years of training and experience 
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required to obtain this level of expertise (68). Inter-grader 
variability confounds this challenge to generalizability, 
even when the radiologists grading the scans are of similar 
experience level (69,70).

Quantitative structural image analysis incorporates and 
standardizes more of the imaging data into diagnosis or risk 
assessment. From the three-dimensional reconstruction of 
the nodule, many image “features” can be calculated. Some 
of these relate to the nodule’s size, such as the diameter in 
in multiple dimensions, or the shape, such as the nodule’s 
sphericity. Other features can relate to the nodule’s density 
or heterogeneity, such as Grey-Level-Co-occurrence-Matrix, 
entropy, or Kurtosis. Several approaches have been developed 
for this, including analysis of static nodules (71-75) and 
analyzing the change in quantitative features over time (76).

Another approach for in-depth radiomics analysis, 
which skips the intermediate step of quantifying nodule 
parameters, is direct analysis of the CT scans using deep 
learning. Arteta et al. demonstrated that a convolutional 
neural network (CNN) trained on CT scans from the 
NLST outperformed the Brock University model in 
predicting malignancy for IPNs (77,78). Similarly, Ardila  
et al. demonstrated that a CNN algorithm could outperform 
six trained radiologists of different experience levels with 
absolute reductions of false positives by 11% and false 
negatives by 5% when analyzing a single scan (79). When 
multiple scans were available, the CNN’s performance was 
comparable to the more experienced radiologist. Such an 
approach to CT analysis could be especially useful in lower-
resource settings which do not have access to a team of 
highly experienced radiologists.

Our own work has focused on developing a Lung Cancer 
Prediction Convolutional Neural Network (LCP-CNN) 
model to determine malignancy. The LCP-CNN was 
trained using CT images of IPNs from the National Lung 
Screening Trial (NLST), internally validated, and externally 
tested on cohorts from two academic institutions.  The 
ROC-AUC in the external validation cohorts were 83.5% 
and 91.9% compared with 78.1% and 81.9 respectively for 
a commonly used clinical risk model for incidental nodules.  
Using ACCP rule-in and rule-out guidelines defining low 
and high-risk categories, the overall net reclassification 
in the validation cohorts for cancers and benign nodules 
compared to the Mayo model was 0.34 and 0.30 as a rule-
in test, and 0.33 and 0.58 as a rule-out test, for the two 
validation cohorts, respectfully (80). Similar approaches to 
automated risk assessment using machine learning or deep 
learning methods have been reported by several (72,75,81).

A comment on biomarker study design

When conducting biomarker studies or analyzing results 
from others, researchers should keep in mind that the 
current clinical standard performs solidly when used in 
the appropriate context. Clinical guidelines ensure that 
suspicious nodules are followed, so even if a definitive 
diagnosis is not reached at the initial time of nodule 
detection, the nodule can typically be diagnosed within a 
time frame that minimizes extensive stage shift (82). Because 
the use of a biomarker test for lung cancer diagnosis (as 
opposed to risk assessment) will nearly always follow 
the discovery of an IPN, diagnostic biomarker studies 
performed outside of the context of IPN setting are unlikely 
to lead to significant change in clinical decision making.

Thus, the study design and in particular the selection 
of appropriate controls for biomarker discovery is critical. 
Because current clinical decision making is driven by the 
nodule’s appearance on CT image (e.g., size, shape, and 
margin), even studies with controls containing radiologically 
IPNs could be deceptively optimistic or pessimistic. A case-
control study where there is a stark contrast in nodule size 
between cases and controls may present biomarker results 
that discriminate patients with impressive accuracy, but due 
to the disparate nodule sizes, the clinical standard decision-
making process may already perform very well in this 
cohort. In such a study design, the biomarker may add very 
little to the overall discriminatory ability of clinicians, and 
therefore despite impressive results, may not add much of 
value to the field. Conversely, a case-control cohort study of 
patients who have similar known risk factors (include nodule 
characteristics) may demonstrate moderate biomarker 
performance, but it may yield significant improvement over 
current clinical standard.

Additionally, the selection of source material for 
biomarker (e.g., plasma, serum, exosomes, urine, airway 
specimens, DICOM images) discovery and validation is 
important in this regard, both in biology and in the patient 
cohort selection. Tumors are structurally, molecularly 
and functionally heterogeneous in both space and time, 
and therefore capturing this heterogeneity in a biomarker 
strategy is challenging. While single biomarkers are 
unlikely to perform well, combination of biomarkers of 
different biochemical properties and eventually from 
different source has recently been proposed, and biomarkers 
selected from the circulation may present such opportunity. 
Some biomarkers are “shed” from living tissues, while 
others result from cell death. Molecular entities can 
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undergo structural modifications during cell death or after 
release into circulation. Although not directly tested in 
the evaluation of IPNs, strategies combining protein and 
genomic information for example shows promise (64). 
This offers new technical challenges of testing a variety 
of moieties with different technologies and the need for 
integrating those in a predictive diagnostic model.

A correlated concern is the value added of the test to 
clinical standard of care. A biomarker test will be useful 
if it adds information about a patient’s disease status that 
is not already available to the clinician (83), and that may 
trigger another management decision. If a biomarker test 
accurately rules in patients that would have already been 
suggested for surgery based upon the radiological traits of 
the nodule, the biomarker has not added significantly to the 
clinician’s diagnostic toolkit and may not add much value to 
the field (84-86). A clinician does not need a blood test to 
suggest a tissue biopsy for a 30 mm nodule with spiculated 
margins in the chest of a 65-year-old with 80 pack years of 
smoking history. For this reason, biomarkers that adds value 
to what is already known by imaging alone for example will 
be much more valuable than biomarkers that yield duplicate 
information. Thus, to move biomarker testing in a clinical 
meaningful way often requires derivation and validation of 
biomarker tests in the same clinical context.

We therefore encourage researchers to include 
comparison to the relevant current clinical standard of 
care when presenting biomarker validation results, and 
simultaneously, we encourage the community to remain 
especially skeptical of biomarker studies that omit this 
crucial benchmark when evaluating the true value of 
any candidate diagnostic biomarker. Improvements 
in discriminatory power should be presented with the 
appropriate tests for significance (87), and when appropriate, 
assessment of risk classification and reclassification (88-90). 
This observation is not novel (91) , yet reports continue 
to appear in the literature containing otherwise strong 
candidate biomarker studies that lack proper evaluation of 
the true value of the test.

In conclusion, biomarker research is rapidly progressing 
towards a better understanding of the mechanisms 
underlying the pathophysiology of lung cancer development 
and towards the non-invasive management of IPNs. Some 
of the most useful innovations in the management of IPNs 
include the possibility to detect the presence or absence 
of imaging features, circulating protein biomarkers, driver 
gene mutations with the subsequent choice to decide on 
a tissue diagnosis or non-invasive follow up. The future 

management of IPNs could include the application of 
predictive models integrating longitudinal assessment of 
clinical, molecular and imaging biomarkers. In the near 
future, we also hope to see personalized molecular screening 
available to help identify individuals at highest risk for lung 
cancer in a cost-effective and non-invasive manner.
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