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Abstract

Background: Arylamine N-acetyltransferase 1 (NAT1) is a drug metabolizing enzyme that has been associated with
cancer cell proliferation in vitro and with survival in vivo. NAT1 expression has been associated with the estrogen
receptor and it has been proposed as a prognostic marker for estrogen receptor positive cancers. However, little is
known about the distribution of NAT1 mRNA across an entire patient population or its effects on outcomes. To
address this, gene expression data from breast cancer patient cohorts were investigated to identify sub-populations
based on the level of NAT1 expression. Patient survival and drug response was examined to determine whether
NAT1 mRNA levels influenced any of these parameters.

Results: NAT1 expression showed a trimodal distribution in breast cancer samples (n = 1980) but not in tumor
tissue from ovarian, prostate, cervical or colorectal cancers. In breast cancer, NAT1 mRNA in each sub-population
correlated with a separate set of genes suggesting different mechanisms of NAT1 gene regulation. Kaplan-Meier
plots showed significantly better survival in patients with highest NAT1 mRNA compared to those with intermediate
or low expression. While NAT1 expression was elevated in estrogen receptor-positive patients, it did not appear to be
dependent on estrogen receptor expression. Overall survival was analyzed in patients receiving no treatment, hormone
therapy or chemotherapy. NAT1 expression correlated strongly with survival in the first 5 years in those patients receiving
chemotherapy but did not influence survival in the other two groups. This suggests that low NAT1 expression
is associated with chemo-resistance. The sensitivity of NAT1 mRNA levels as a single parameter to identify
non-responders to chemotherapy was 0.58 at a log(2) < 6.5.

Conclusions: NAT1 mRNA can be used to segregate breast cancer patients into sub-populations that demonstrate
different overall survival. Moreover, low NAT1 expression shows a distinct poor response to chemotherapy. Analysis of
NAT1 expression may be useful for identifying specific individuals who would benefit from alternative therapy or drug
combinations. However, additional information is required to increase the sensitivity of identifying non-responders.
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Background
Breast tumors arise primarily from the epithelial cells in
the milk ducts. However, they exhibit considerable histo-
logical heterogeneity not only between patients but also
within patients. In the past, histological grading of breast
cancers, hormone receptor status and lymph node involve-
ment have been used to help guide treatment, with better
survival outcomes in many patients [1]. More recently,
molecular classification by gene expression has added
significantly to our understanding of breast cancer hetero-
geneity and has provided additional information for devel-
oping treatment strategies [2]. Nevertheless, there remains
significant sub-populations that do not respond well to
therapy based on their histopathological and/or molecular
characterization.
Arylamine N-acetyltransferase 1 (NAT1) is one of two

human enzymes that metabolizes arylamine and
hydrazine-type drugs [3]. The gene that encodes NAT1
resides on chromosome 8 and is genetically polymorphic
[3]. Apart from its role in biotransformation, NAT1 has
also been associated with cancer cell growth and invasion
[4–6]. Thus, it joins a number of other drug metabolising
enzymes such as Cyp2E1 [7], glutathione transferases [8]
and UDP glucuronyltransferases [9] that have been shown
to affect cell proliferation.
The expression of NAT1 in over 40 cancer microarray

studies was recently reviewed and a number of cancers
showed significant differences between normal and malig-
nant tissues [3]. The most striking examples were seen in
breast cancer array data where NAT1 up-regulation was
commonly associated with estrogen receptor (ER) positive
tumors [10–12]. Indeed, NAT1 has been proposed as a
prognostic marker for ER positive breast cancer [13].
NAT1 is included in the Prosigna Breast Cancer Prognostic
Gene Signature Assay (PAM50) [14], which has proven to
be useful in identifying patients most likely to benefit from
drug treatment [15]. NAT1 mRNA is also elevated in male
breast cancer [16, 17] and breast tumors that preferentially
metastasize to the bone [18, 19]. Interestingly, it is signifi-
cantly down-regulated in early onset breast cancer [20].
Why NAT1 might influence cell proliferation in vitro

or invasion in vivo is unknown. Moreover, its role in
breast cancer patient survival has not been determined.
Along with the estrogen receptor 1 gene (ESR1), NAT1
segregates with GATA3 and FOXA1 in ER-positive
tumors [21]. Both GATA3 and FOXA1 form complexes
with ESR1 to initiate expression of estrogen-responsive
genes [22]. It is possible that the up-regulation of NAT1
is a response to these transcriptional factors. However,
while NAT1 expression is increased by androgens [23],
is does not appear to be regulated by ER or the ER/
FOXA1/GATA3 complex [22]. Nor is it responsive to
estrogen in breast cancer cells [24]. NAT1 expression
may simply be another prognostic marker for ER positive

tumors. Alternatively, it may have a biological role in cell
growth and survival in vivo such that understanding of its
expression could lead to alternative approaches to treat-
ment. The current study was undertaken to address these
different possibilities and to determine whether NAT1
influences patient survival. To do this, curated gene expres-
sion data from extensively described breast cancer patient
cohorts were investigated to identify sub-populations based
on the level of NAT1 expression. Other genes that segre-
gated into these sub-populations were also identified.
Finally, patient survival and drug response was examined
to determine whether NAT1 mRNA levels influenced any
of these parameters.

Results
NAT1 expression in breast cancer patients shows multiple
sub-populations
NAT1 expression in breast cancer was examined by Probit
analysis using data from METABRIC (n = 1980). Fig. 1a
shows NAT1 mRNA levels (log(2) transformed) in these
patients. The distribution was not normal, as demonstrated
by the non-linear Probit plot (Kolmogorov-Smirnov Nor-
mality Test, K-S distance = 0.0574, p < 0.0001). By contrast,
NAT1 expression in ovarian, prostate, cervical and colorec-
tal cancers showed single, normally-distributed populations
(Fig. 1b). The non-normal distribution of NAT1 transcripts
in breast cancer was not unique to patients in the METAB-
RIC cohort as a similar distribution was seen in patients
from the Cancer Genome Atlas database (n = 1100) and in
patients from Ciriello et al. (n = 814) [25] (Additional file 1:
Figure S1).
To identify the number of specific NAT1

sub-populations, the frequency data were numerically fitted
to multiple Gaussian distributions. The results showed the
presence of three distinct sub-populations of NAT1 mRNA
– low, intermediate and high expression (Fig. 1c, red line).
The parameters for each of these distributions are shown
in Table 1. The mean log2 mRNA levels were 6.25, 7.89
and 10.58, respectively, which represents a 20-fold differ-
ence between the low and high groups. The number of pa-
tients in each sub-population was estimated from the area
under the Gaussian curves. There were 515 patients (26%)
who expressed low NAT1, 752 (38%) who expressed inter-
mediate NAT1 and 713 (36%) with high NAT1. When a
similar multiple Gaussian distribution was fitted to the data
shown in Additional file 1: Figure S1, a trimodal distribu-
tion best described NAT1 mRNA expression. These results
show that NAT1 expression is heterogeneous in breast
tumors with at least 3 different mechanisms that regulate
its mRNA levels.

Differential gene expression in NAT1 sub-populations
The 3 different sub-populations of NAT1 suggest different
mechanisms that regulate NAT1 mRNA. One approach to
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investigate this possibility is to compare co-expressed
genes in each of the sub-populations.To do this, patients
were divided into low, intermediate and high NAT1
expression with log2 cut-off boundaries from 5 to 6.5,
7.25–8.5 and 10–13, respectively (see Methods). Using
Pearson’s correlation coefficient with significance adjusted
for multiple comparisons, genes that co-expressed with
NAT1 in each of these groups were identified and sorted
using a Venn diagram (Fig. 2). While there were 1066 and
255 genes that co-expressed with NAT1 in the low and

high groups, respectively, there was only 1 in the intermedi-
ate group. The specific genes in each group are listed in
Additional file 2: Table S1. The low overall number of genes
common between groups supports the notion that different
transcriptional/post-transcriptional mechanisms regulate
NAT1 expression in the different sub-populations.
Each of the genes that correlated with NAT1 expression

in the low and high sub-populations was categorized
according to its molecular function using the Panther
software [26]. There was a surprising similarity between
the two groups with more than 80% of the genes catego-
rized as “catalytic activity” or “protein binding” (Fig. 2b).
Moreover, those genes that were common to the two
sub-populations also showed a similar functional distribu-
tion. When compared to the percent of all genes in each
category (Fig. 2b, right graph), genes that co-expressed
with NAT1 were similarly distributed suggesting no
specific pathway unique to each group. In support of this,
an analysis of molecular functions over-represented in the
two NAT1 sub-populations showed none in the high
NAT1 group and only 1 in the low NAT1 group, which
was “translation regulation” with a 3.56-fold enrichment
(p = 0.0019).

NAT1, clinical attributes and estrogen receptor expression
We analysed the relationship between NAT1 mRNA ex-
pression and various clinical attributes. When the patients
were divided according to their PAM50 classification,
NAT1 expression was significantly higher in the Luminal
A and B groups compared to basal and HER2 positive
groups (Additional file 3: Figure S2A). By contrast NAT1
mRNA levels were not associated with Nottingham’s prog-
nostic index, histological grade or tumor stage (Additional
file 3: Figure S2 B-D). There was a significant correlation
between age at diagnosis and NAT1 expression (r = 0.175,
p < 0.0001). However, this relationship explained less than
4% of the variation between the 2 variables, suggesting very
little physiological relevance (Additional file 3: Figure S2E).
A similar significant correlation was seen between NAT1
mRNA and tumor size, with an equally weak relationship
(r = − 0.07, p = 0.0016).
The higher levels of NAT1 in luminal versus basal

breast cancer suggests a relationship with ER expression.
NAT1 has previously been qualitatively associated with
ER both in microarray studies as well as histological and

Table 1 Gaussian distributions for NAT1 mRNA populations in breast cancer

Low NAT1
Gaussian distribution

Intermediate NAT1
Gaussian distribution

High NAT1
Gaussian distribution

Amp Mean SD Patients (%) Amp Mean SD Patients (%) Amp Mean SD Patients (%)

ALL 104 6.25 0.39 26% 54 7.89 1.12 38% 68 10.58 0.86 36%

ER+ 35 6.47 0.37 10% 49 8.07 1.10 44% 67 10.61 0.84 46%

Amp Amplitude, SD Standard deviation of the mean, Patients in each population were estimated from the area under the Gaussian distributions as a percent of
total area

Fig. 1 Distribution of NAT1 mRNA in cancer patients. a Probit plot
of NAT1 mRNA for 1980 patient samples. Deviation from linearity
was confirmed by the Kolmogorov-Smirnov Normality Test (K-S
distance = 0.0574, p < 0.0001). b Probability plots for NAT1 mRNA in
ovarian (n = 299), prostate (n = 491), cervical (n = 190) and colorectal
(n = 383) cancer patient samples (from TCGA). c Frequency plot of
NAT1 mRNA in breast cancer patients. Multiple Gaussian distribution
fitted by nonlinear regression is shown in red
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cell studies [13, 27–29]. NAT1 mRNA levels in ER posi-
tive patients, based on their clinical diagnoses, were ana-
lyzed using a frequency plot (Fig. 3). The ER positive
patients showed a trimodal Gaussian distribution of NAT1
mRNA similar to the entire population (Fig. 3a). However,
when the frequency distribution of transcripts for the ER
gene (ESR1) was examined, a trimodal distribution was not
observed (Fig. 3b). Although the correlation between NAT1
and ESR1 expression for all patients was 0.60 (Spearman’s
correlation coefficient), the relationship showed two distinct
populations (Fig. 3c). One population consisted of patients
with low ESR1 and low NAT1 expression (diagnosed as ER
negative - red symbols). The second consisted of high ESR1
(log(2) mRNA > 8) but NAT1 ranging from low to high ex-
pression (blue symbols). When the ER positive patients
were analyzed separately, Spearman’s correlation coefficient
for ESR1 and NAT1 expression decreased to 0.3 indicating
that, in this group, ESR1 expression explained less than
10% of the variation in NAT1 expression. These results
suggest that much of the association between these two
genes reported previously is due to the low, or negligible,
expression of NAT1 in patients with low ESR1 expression.

The possibility that patients with low NAT1 were simply
non-expressers of the gene (background response on the
microarray) was assessed by examining the frequency
distribution of the Y chromosome gene SRY on the
assumption that this gene was absent in the patient
cohort. The SRY mRNA frequency distribution showed a
mean value of 5.4 (Additional file 4: Figure S3), which is
well below that for NAT1 expression in any of the differ-
ent populations.

NAT1 sub-populations and breast cancer survival
The overall survival of patients in each of the NAT1
sub-populations was analyzed using Kaplan-Meier plots
(Fig. 4). Over 10 years, there was a significantly better sur-
vival in patients with high NAT1 compared to those with
low NAT1 (Log-rank Mantel-Cox test p = 1.9 E-7), while
the intermediate population plotted between the high and
low NAT1 groups (Log-Rank test for trend p = 1.1E-7). By
year 10, 46% of the low NAT1 patients remained at risk
while 44% of the intermediate group remained at risk.
Thus, the overall survival was similar at 10 years. The
major difference was a more rapid decline in survival from

Fig. 2 a Three-way Venn diagram showing the number of genes with expression that correlated with that for NAT1 using a Pearson’s correlation
coefficient with probability adjusted for multiple comparisons. b Distribution of molecular functions for genes in the Low and High NAT1
populations as well as those common to both groups. The overall distribution of each function in the Panther database is also shown
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year 1 to 4 in the low NAT1 cohort, which was confirmed
by the highly significant Gehan-Breslow-Wilcoxon statis-
tic for these 2 groups (p = 0.021), which places more
weight on events that occur early in overall survival. In
patients with high NAT1 expression, 58% remained at risk
after 10 years. These data show that the increase in NAT1
expression in the different sub-populations is associated
with a significant better overall survival.
To confirm this association, Kaplan-Meier plots were

generated for NAT1 mRNA using independent data
from Gyorffy et al. [30], which comprised 1402 breast
cancer samples (http://kmplot.com/analysis/). These
samples were divided into high and low NAT1 around
the median mRNA value. Survival was significantly
greater (p = 1.2E-7) in the high NAT1 group (Additional
file 4: Figure S4). This result confirms the survival
advantage of elevated NAT1 expression in breast cancer.
Finally, the association between survival and NAT1

sub-populations, tumor size, age at diagnosis, and treat-
ment was investigated using univariate and multivariate
Cox proportional hazard regression models (Additional
file 5: Table S2). Increasing NAT1 mRNA significantly
decreased the hazard ratio (HR) consistent with the

Fig. 3 NAT1 and estrogen receptor (ESR1) expression. a Frequency
distribution of NAT1 mRNA levels in ER positive patients (n = 1546).
b Frequency distribution of ESR1 mRNA levels in ER positive patients
(n = 1546). c Relationship between NAT1 mRNA and ESR1 mRNA in
all patients. Red symbols represent those patients diagnosed as
ER negative

Fig. 4 Kaplan-Meier plot of patients in the low, intermediate and
high NAT1 sub-populations. Number of patients at risk at 2 year
intervals is also shown
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results in Fig. 4. By contrast, both increasing tumour size
and age at diagnosis increased HR. Neither menopausal
state nor radiotherapy or hormone therapy were signifi-
cant variables in either model whereas chemotherapy in-
creased HR. This is probably due to the patient cohort
that is offered chemotherapy, which tends to be the
more aggressive, triple negative tumors.

NAT1 expression and response to drug treatment
There were 541 patients in the METABRIC cohort who
received neither hormonal treatment nor chemotherapy.
Of these, 385 patients satisfied the inclusion criteria (see
Methods). Fig. 5a shows no correlation between survival
over the first 5 years and NAT1 mRNA levels in this
patient cohort (test for trend p = 0.14). When a similar
analysis was performed on patients receiving only
hormone therapy (n = 1121), again no correlation with
survival was observed (Fig. 5b; test for trend p = 0.08).
This result suggests that NAT1 expression does not
predict response to hormone therapy. There were 412
patients who received adjuvant chemotherapy with a total

of 376 patients who satisfied the inclusion criteria. Figure
5c shows a highly significant correlation between NAT1 ex-
pression and survival from years 1 to 5 (Pearson’s r = 0.99,
test for trend p = 0.0008). From the graph, it can be esti-
mated that, during the first 5 years following diagnosis, an
increase of one log(2) unit of NAT1 mRNA was associated
with an increased survival of 2.4 years. These results show
that NAT1 expression predicts survival in those patients
who received chemotherapy but not in those who received
hormone treatment or no treatment. Early death from the
disease following treatment may be a measure of poor
response, or chemo-resistance. By contrast, survival beyond
5 years suggests sensitivity to drug treatment. Thus, the
results in Fig. 5c suggest that low NAT1 expression is
associated with resistance to chemotherapy.
To determine the sensitivity of NAT1 mRNA to predict

drug resistance, a decision plot of NAT1 expression levels
versus both sensitivity (true positive rate) and specificity
(true negative rate) was constructed (Fig. 5d). The
cross-over point of the two curves, seen at a log(2) mRNA
of ~ 6.5, estimates optimum sensitivity. This shows that

Fig. 5 NAT1 expression and response to drug treatment. a NAT1 mRNA in patients receiving no drug treatment (n = 385) plotted against overall
survival of 1 to 5 years or greater than 5 years. b NAT1 mRNA in patients receiving hormone therapy (n = 1121). c NAT1 mRNA in patients
receiving chemotherapy (n = 375). d Decision plot of sensitivity (left axis) and specificity (right axis) for NAT1 mRNA to predict drug resistance
(< 5 years survival) or sensitivity (> 5 years survival) against NAT1 mRNA cut-off
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NAT1 gene expression can predict resistance to chemo-
therapy with a sensitivity and specificity of approximately
58% suggesting NAT1 can modulate drug response, or
that it is a surrogate marker for other physiological pa-
rameters that determine response.

Discussion
This is the first study to specifically examine the dis-
tribution of NAT1 mRNA in primary breast cancers
from a well-characterized and extensively studied pa-
tient cohort. The trimodal distribution supports mul-
tiple mechanisms for regulating NAT1 expression,
which was specific to breast cancer and not seen in
other cancers such as prostate, ovarian, cervical or
colorectal. In those patients expressing low and high
levels of NAT1, there was significant correlation with
the expression of many other genes. Somewhat
surprisingly, very few were shared between the two
groups suggesting different genetic regulatory path-
ways. In the intermediate group, which comprised
38% of all patients, NAT1 mRNA levels correlated
with only 3 other genes (PSD3, SEMG1 and PMP22).
This observation suggests that NAT1 mRNA in this
group was regulated by non-genetic mechanisms. The
stability of mRNA is influenced by a number of pro-
cesses including miRNA- and lncRNA-mediated deg-
radation, exoribonucleases and RNA binding proteins
[31–33]. The NAT1 transcript is a potential target for
mir-1290, which is differentially expressed in breast
cancer. The target sequence is located 551 bp down-
stream of the stop codon [34]. The NAT1 gene has 3
potential polyadenylation sites situated 286, 387 and
870 bp downstream of the stop codon [35]. Thus,
mir-1290 would only target NAT1 transcripts that
utilize the longest 3’UTR. It would be interesting to
correlate mir-1290 expression with that for NAT1, es-
pecially in the intermediate breast cancer group.
While NAT1 mRNA was high in ER positive samples,

its expression did not appear to be regulated by ER. This
is supported by studies in breast cancer cell-lines [24].
High NAT1 expression was almost always associated
with high ESR1 expression. However, low NAT1 expres-
sion was associated with both low and high ESR1 ex-
pression. Indeed, the strongest association appeared to
be the very low or absence of expression in ER negative
tumors. The present study suggests that NAT1 may not
be a good marker of ER positive breast cancer, especially
when its level of expression is low.
NAT1 mRNA showed a strong correlation with over-

all survival. Patient tumors with a log(2) NAT1 mRNA
greater than 11.5 had a 10 year survival of almost 90%.
For those patients with log(2) NAT1 mRNA less than
11.5, 10 year survival decreased to less than 70%. More-
over, in the low patient group (log(2) NAT1 mRNA less

than 6.5), 30% of patients survived less than 5 years.
There have been a number of other studies that have
reported the effects of NAT1 in breast cancer recur-
rence and overall survival. Endo et al. [34] found no dif-
ference in relapse-free survival between high and low
NAT1 expression, but did see better survival if the high
NAT1 patients were also node-positive. By contrast,
Andres et al. [36] showed elevated NAT1 expression
was associated with a decreased hazards ratio for both
mortality and recurrence. The association between
NAT1 expression and overall survival does not distin-
guish cause and effect. Experiments in cells suggest that
low NAT1 should result in a less aggressive, more dif-
ferentiated phenotype [5, 6, 37]. This is consistent with
the increase in bone metastasis for breast carcinomas
expressing high levels of NAT1 mRNA. However, it
does not account for the low survival in those patients
with low NAT1 mRNA. A possible explanation is the
effect of NAT1 on chemo-sensitivity and overall
response to therapy.
There have been several attempts to identify multiple

gene signatures that classify breast cancer sub-types or
help predict survival [38–44]. NAT1 has been included
in signatures for breast cancer identification and staging
[11], as a prognostic marker in male breast cancer [17]
and non-triple negative breast cancer [45]. Hatzis et al.
[39] found predictive genomic signatures for both
chemo-sensitivity and hormone sensitivity in breast
cancer suggesting a predisposition to chemotherapy
response in the cancer patients. In patients receiving
chemotherapy, low NAT1 expression was associated
with a significant decrease in survival over the first
5 years following diagnosis. This suggests resistance to
the drug treatment as no association was seen in those
patients who received hormone therapy. The commonly
used cytotoxins for breast cancer include taxanes, antha-
cyclines, 5-fluorouracil and methotrexate. None of these
drugs are substrates for NAT1 indicating that differences
in drug sensitivity is unlikely to be related to drug
metabolism. Alternatively, NAT1 mRNA levels may be a
surrogate marker other physiological parameters that
determine drug response.
Other groups have reported a change in drug sensitivity

in vitro with over-expression or under-expression of
NAT1 [4, 46–48]. The positive relationship between
NAT1 expression and survival in those patients receiving
chemotherapy may be a significant finding that can be
used to identify individuals requiring alternative treatment
regimens. However, as a single biomarker, its sensitivity
and specificity requires improvement for clinical applica-
tions. To achieve this, it will be important to understand
how NAT1 expression influences chemo-sensitivity.
Moreover, an understanding of the underlying mecha-
nisms that link NAT1 to drug response is required.
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Conclusions
There are multiple populations in breast cancer that can
be segregated based on NAT1 mRNA levels. For those
patients with low expression, overall survival is signifi-
cantly less than for those patients with intermediate or
high expression. Moreover, low NAT1 expression shows
a distinct poor response to chemotherapy. Analysis of
NAT1 expression may be useful in the future for identi-
fying specific individuals who would benefit from alter-
native treatments.

Methods
Patient microarray and clinical data
All gene expression data were obtained through
cBioPortal for Cancer Genomics (http://www.cbioporta-
l.org). A description of the array data methodology and
ethical approval for each of the studies is included in the
original publications [25, 49–53]. The study was also
approved by the Institutional Human Ethics Committee
(Approval 2017001552). For RNA expression, data from
the METABRIC cohort (n = 1980) [49] and The Cancer
Genomics Atlas cohort (TCGA; n = 1100) [25] were
used. Clinical data for the METABRIC patients were also
accessed through cBioPortal. For NAT1 expression in
ovarian, prostate, cervical and colorectal cancers, data
were obtained from TCGA [50–53]. All RNA levels were
normalized by log(2) transformation before analysis.

Source data analysis
Probit analysis, frequency distributions and statistical ana-
lyses for specific genes were performed using Prism soft-
ware (Graphpad Software, La Jolla, USA). For modelling
of the frequency distribution of NAT1 transcripts, log(2)
transformed values were binned using a bin size of 0.2.
Multiple Gaussian distributions (n = 1 to 3) were fitted to
the frequency data by nonlinear regression using the
following equation:

y ¼
Xn

i¼1

Ai:e
ð−0:5: ðx−xi

SDi

� �2
2
4

3
5

where y = observed number in each bin, A = amplitude,
x = bin mean, SD = standard deviation and n = number
of Gaussian distributions. Convergence was confirmed
using at least 3 independent initial estimates of each par-
ameter. The area under each Gaussian distribution
(AUC) was calculated using:

AUCi ¼ Ai:SDi:
ffiffiffiffiffiffi
2π

p

Convergence was only observed with a trimodal
Gaussian distribution where the correlation coefficient

between the observed and predicted values was greater
than 0.96 and the standard deviation of the residuals
(Sy.x) was 5.74.

Gene expression correlations
Patients were divided into low, intermediate and high
NAT1 expression using log2 cut-off boundaries from 5 to
6.5, 7.25–8.5 and 10–13, respectively. These were chosen
to maximise the number of patients in each group while
limiting the number of patients incorrectly allocated due
to the overlapping Gaussian distributions. This is shown
in Additional file 6: Figure S5 where the individual Gauss-
ian curves, along with the selected cut-off boundaries are
illustrated. The estimated number of incorrectly assigned
patients was 14.8, 1.9 and 4.1% in the low, intermediate
and high NAT1 sub-populations, respectively.
To identify genes in each sub-population that

co-expressed with NAT1, log(2) transformed mRNA levels
for each gene on the Affimetrix array were compared with
that for NAT1 using Pearson’s correlation coefficient.
Global significance was assumed at p < 0.01. Bonferonni’s
correction was used for multiple comparisons such that the
gene-level significance was p < 4 × 10− 7. Correlated genes
were classified into their predicted molecular functions
using the Panther software [26]. The same software was
used to identify over-representation of molecular function
datasets.

Breast cancer patient survival analysis
Overall survival of cancer patients in each NAT1
sub-population was analyzed by Kaplan-Meier plots
using Prism software (Graphpad Software, La Jolla,
USA). Significant differences were assessed with the
Log-rank Mantel-Cox test.

Response to chemotherapy
The METABRIC cohort was divided into patients who
received no treatment, patients who received hormone
treatment only and patients who received chemotherapy
only. Those patients with survival less than 5 years were
classified as ‘resistant’ to treatment while those patients
with survival longer than 5 years were classified as
‘sensitive’ to treatment. Patients who died of causes
other than their cancer within 5 years of diagnosis were
excluded from the analysis. In addition, patients who
were still alive but their last follow-up was less than
5 years since diagnosis were also excluded (there were
no data on whether these individuals survived longer
than 5 years). NAT1 expression was then compared for
each treatment group versus overall survival time by
one-way ANOVA. Specificity and sensitivity calculations
for NAT1 mRNA levels and overall survival were
performed as described elsewhere [54].
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Hazard ratio estimates
Univariate and multivariate Cox proportional hazard
models were applied to identify risk factors for overall
survival. The hazard ratio (HR) and 95% confidence in-
tervals (CI) were estimated using SPSS statistical soft-
ware, version 24.0 (IBM Corp, Armonk, NY). A
two-sided p-value less than 0.05 was considered statisti-
cally significant.

Additional files

Additional file 1: Figure S1. Probit plots of NAT1 mRNA expression
from the TCGA provisional database (http://www.cbioportal.org) and
from Ciriello et al. Cell 163: 506–519, 2015. (TIF 1303 kb)

Additional file 2: Table S1. List of genes that correlate with NAT1
expression in the METABRIC database. (PDF 196 kb)

Additional file 3: Figure S2. NAT1 mRNA expression and clinical
attributes in the Metabric database (PAM50 and claudin-low populations,
Nottinham’s Prognostic Index, histological grade, tumor stage, age at
diagnosis and tumor size). (TIF 2405 kb)

Additional file 4: Figure S3. Frequency distribution of SRY mRNA in
the METABRIC database. Figure S4. Kaplan-Meier curves for low and high
NAT1 expression using data from Gyorffy et al. (Breast Cancer Res Treat
123: 725–731, 2010). (TIF 4197 kb)

Additional file 5: Table S2. The Cox proportional hazard regression
models based on survival for NAT1 sub-populations, tumour characteris-
tics and treatment. (PDF 121 kb)

Additional file 6. Figure S5. Separation of patients into low,
intermediate and high NAT1 expression based on log(2) mRNA levels.
(TIF 3115 kb)
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