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Abstract
Purpose Transcorneal electrical stimulation (TES) is a novel treatment approach for patients with retinitis pigmentosa (RP). The
aim of our study was to observe changes in optical coherence tomography angiography (OCTA) that would be attributed to TES
treatment.
Methods A total of 73 eyes were included: 43 eyes of 22 subjects (11 ♀, 11 ♂) suffering from RP were examined at baseline
(BL), after first stimulation (TS), 1 week (1W), and 6 months (6M) after treatment initiation and were compared with 30 control
eyes of 15 subjects (8♀, 7 ♂). TES was performed simultaneously on both eyes for 30 min weekly. OCTA scans of 9 × 15 mm
were recordedwith a PLEXElite 9000 swept-source OCTA device (Carl Zeiss Meditec AG, Jena). Vascular density metrics such
as perfusion density (PD) and vessel density (VD) were calculated automatically for the macular area by using standardised
extended early treatment diabetic retinopathy study (ETDRS) grids centred around the fovea. In addition, the capillary perfusion
density (CPD) and the capillary flux index (CFI) of the peripapillary nerve fibre layer microvasculature in all four quadrants of an
annulus centred at the optic disc were measured. All parameters were determined over all retinal layers and separately for the
superficial (SCP) and deep capillary plexus (DCP). ANOVA-based linear mixed-effects models were calculated with SPSS®.
Results Throughout the course of TES treatment, the macular VD and PD of all retinal layers in all subsections showed a slight
decrement without reaching statistical significance, also when analysed separately in the SCP and DCP (p > 0.08). In analogy, the
average CPD and CFI also presented with a slight decrement (p > 0.20). However, when compared with controls, most OCTA
parameters showed a significant decrement (p < 0.05). When analysed systematically in all subsections of the extended ETDRS
grid, the temporal macular subsections within the outer ring (radius 1.5–3 mm) and also of the peripheral C1, C2, and C3 rings
(radius 3–7.5 mm) showed lower VD and PD values when compared with the other subsections (p < 0.05).
Conclusion Vascular density metrics in the macular region and the peripapillary microvasculature appear to remain unaffected by
continuous TES treatment within a period of 6 months.
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Introduction

Transcorneal electrical stimulation (TES) is a new treatment
method for patients suffering from retinitis pigmentosa (RP)
[1, 2]. The pathophysiological mechanisms are not fully un-
derstood. However, it is likely that the stimulation induces the
release of neurotrophic factors that improve the remaining
retinal cells’ survival [2–9]. A more detailed explanation is
given in the TES pivotal trial and in the TES study presenting
1-year results [1, 2].

In order to evaluate the therapeutic TES response in RP
patients in a short-lasting, non-invasive, contact-free, and
patient-friendly way, a recent study has shown that retinal
vessel oximetry (RO) might be superior over full-field elec-
troretinography (ffERG) or visual field (VF) as outcome mea-
surement [1–3]. However, since RO devices so far are mainly
used in a scientific context and thus are mostly preserved to
specialised ophthalmology centres, further monitoring
methods that are short-lasting, non-invasive, contact-free,
and patient-friendly and have a better availability in daily clin-
ical practice are needed.

It is known that changes of the retinal vasculature with
vessel attenuation are a hallmark of RP [4–11]. In this context,
swept-source coherence tomography angiography (OCTA)
that allows for a non-invasive depth-resolved visualisation of
the retinal and choroidal microvasculature in vivo might be
useful as a monitoring method for TES treatment.

Several recent studies conducted with OCTA have reported
a reduction of retinal vessel density and retinal perfusion den-
sity, impaired choroidal blood flow, or significantly altered
sizes of the foveal avascular zones in eyes of patients suffering
from RP [12–27]. Given the known microvascular alterations
in RP, it might be beneficial to use OCTA in the context of
TES treatment.

Furthermore, so far, many studies either used small areas
for OCTA analysis (3 × 3 mm or 6 × 6 mm) that mainly fo-
cused only on parafoveal macular density metrics and/or pre-
sented these results as averaged values and not systematically
in standardised segmentation grids over a wide-field area that
covers the whole macula and also the peripapillary regions.

Therefore, the aim of our study was to compare OCTA
parameters in RP patients undergoing TES therapy in order
to find changes that might be attributed to TES treatment.
Furthermore, we aimed to use wide-field swept-source
OCTA in order to perform the analysis of OCTA parameters
systematically within all subsections of a standardised extend-
ed ETDRS grid.

Methods

This prospective observational study was conducted from
January 2018 until December 2018 in a single ophthalmology
centre (University of Basel, Department of Ophthalmology,
Switzerland) on a total of 73 eyes: 43 eyes from 22 subjects
suffering from RP were compared with 30 eyes of 15 healthy
controls. Approval of the local authorities (Ethics
Commission of Central and Northern Switzerland, EKNZ,
Basel, Switzerland) was obtained with a positive vote for pro-
spective observational investigation (trial number EKNZ
BASEC 2017-00937).

The inclusion criteria for all study participants were
Caucasian origin, refractive spherical equivalent error of < 6
dioptres for either myopia or hyperopia, no previous ocular
surgery, implants as pacemakers, or other ocular or systemic
pathology (intraocular surgeries such as vitreoretinal surgery,
diabetic retinopathy, retinal or choroidal neovascularisation,
exudative age-related macular degeneration, glaucoma,
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history of retinal detachment, diseases of the optic nerve, sys-
temic diseases such as diabetes mellitus, systemic hyperten-
sion, or neurological diseases) that may influence the OCTA
data. In addition, the inclusion criteria for all patients were
clinical and electrophysiological diagnosis of RP, absence of
macular oedema, a residual central VF of > 10 degree visual
angle, and no contraindications for TES therapy. Further ex-
clusion criteria were OCTA scans with inadequate quality
(signal strength index (SSI) < 8) due to significant motion
artefact or incorrect automatic segmentation, unreliable per-
formance of TES therapy, absence of an electrical stimulation
threshold (expected in advanced or severe RP), and expressed
unwillingness to participate in the study. The research proce-
dures were performed in accordance with institutional guide-
lines and the Declaration of Helsinki. Written informed con-
sent was obtained before examination. All healthy participants
received an ophthalmic examination including refraction,
best-corrected visual acuity (BCVA with standardised
ETDRS charts), slit lamp examination with biomicroscopy,
and funduscopy. All patients underwent a detailed ophthalmic
examination at baseline (BL) and after 6 months (6M) of TES
treatment that included refraction, best-corrected visual acuity,
slit lamp examination, biomicroscopy, funduscopy, fundus
autofluorescence, and VF with semi-automated kinetic
perimetry (V4e, III4e, I4e, III3e isopters tested with Octopus
900®, Haag-Streit AG Bern, Switzerland), if supported from
the patient’s health insurance including molecular genetic as-
sessment and full-field electroretinography (ffERG,
Diagnosys LLC Espion system; ISCEV standard [28]). In
cases where the ffERG was extinguished at BL, it was not
repeated at the 6M follow-up. The follow-up interval was
chosen because of the leasing policy of the Swiss TES dealer
that provided a trial period with reduced fees for 6 months. All
patients were recruited from the hospital’s hereditary retinal
degeneration consultation hour and were diagnosed by one
experienced fellowship-trained retina specialist (HPNS).

Prior to OCTA measurements, both pupils were dilated
with Tropiphen eye drops. This medication is prepared in
our institutional pharmacy as a combination of tropicamide
0.5% and phenylephrine 1%. Three drops at 10-min intervals
were applied per eye.

Transcorneal electrical stimulation

TES (OkuStim®, Retina Implant, Reutlingen, Germany) was
performed according to the recommendations of the pivotal
trial [1] and the study presenting 1-year results measured with
VF and electroretinography [2]. The OkuStim® system has
three parts: the stimulation box, a special frame that is adjusted
to the patient’s face, and electrodes that have to be placed into
the frame to ensure good contact with the conjunctival tissue
of the lower eyelid and the inferior bulbar conjunctiva for a
low impedance during TES threshold measurement and

stimulation. Standard DTL-based electrodes were used with
an additional stirrup in order to simplify a stable position in the
frame. In addition, a ground red-dot electrode (3M Europe,
Diegem, Belgium) is attached to the ipsilateral side of the
forehead. The OkuStim TES system is able to deliver different
stimulus intensities on both eyes simultaneously. All patients
received a determination of their individual electrical phos-
phene thresholds (EPTs) in a darkened room on each eye
separately in three independent measurements per eye by
one single experienced operator (UM). The individual stimu-
lation parameters were programmed onto a patient’s individ-
ual USB stick required to start stimulation by plugging it into
the OkuStim TES system. Stimulation was performed once
per week for 30 min at 200% of the EPT simultaneously on
both eyes at 20 Hz with current-balanced 5-ms positive de-
flections followed by 5-ms negative deflections. Every patient
could choose between a supervised TES stimulation in the
hospital or a non-supervised TES stimulation at home.
However, the latter required a thorough instruction of the pa-
tient or a relative of her/him in order to perform a reliable and
safe TES stimulation. For security reasons, the OkuStim box
is programmed to stop stimulation automatically in case the
impedance increases. In these cases, or if the handling is not
reliable enough to ensure good tissue contact, patients were
scheduled for additional instruction appointments. For all pa-
tients, TES stimulation parameters (duration, timing, imped-
ance, and frequency of all stimulation sessions) were recorded
and reviewed for consistency before inclusion in the study.

Optical coherence tomography angiography
acquisition

OCTA scans of 9 × 15 mm centred around the fovea were
performed at the baseline visit before TES initiation (BL),
shortly after EPT determination including the first TES stim-
ulation (ST), as well as 1 week after the first TES stimulation
(1W) and at the 6-month follow-up (6M). We used a PLEX
Elite 9000 swept-source OCTA device (Carl Zeiss Meditec
AG, Jena) with an active eye-tracking system that assesses
simultaneously the fundus and the OCTA image acquisition
in order to achieve a better signal-to-noise ratio. All scans used
for the analysis were anonymised and calculated automatical-
ly in the Zeiss© ARI network environment, using the newest
versions of the macular density algorithm (v0.7.2) and the
peripapillary nerve fibre layer microvasculature density algo-
rithm (v0.9). All parameters were determined over all retinal
layers (retina slab) and separately for the superficial (SCP) and
deep capillary plexus (DCP). All OCTA scans were checked
independently by two retina specialist (MdVW and AR) to
ascertain a correct position of the subsection grids for all mac-
ular and peripapillary analyses. Furthermore, the automated
segmentation of the retinal layers used for the analysis of the
SCP and DCP was reviewed for correctness as well. The
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OCTA device provides an automatic segmentation of three
depth-resolved slabs: the retinal slab measured over all retinal
layers, the SCP between the internal limiting membrane
(ILM) and the inner plexiform layer (IPL), and the DCP be-
tween IPL and the outer plexiform layer (OPL).

OCTA analysis of the macular region

Macular density metrics such as vessel density (VD) and per-
fusion density (PD) were calculated using standardised ex-
tended ETDRS grids in the macular area (Fig. 1). VD was
defined as the total length of perfused microvasculature per
unit area in the measurement region and is measured in mm/
mm2. The result is a number with a minimum of 0 (no vessels)
and an unbounded maximum. PDwas defined as the total area
of perfused microvasculature per unit area in the region of
measurement. The result is a number that ranges from 0 (no
perfusion) to 1 (full perfusion). The macular density algorithm
uses binarised slab images of the whole retina, and separately
the SCP and the DCP, the latter being cleared from projection
artefacts. Large vessels are removed when quantifying all
macular density metrics. The presented results are averaged
density values for both the entire scan area and for subsections
of the extended ETDRS grid in different regions of measure-
ment: (C) centrally in the foveal area within 1-mm diameter,

(I) within an inner ring with a radius of 0.5–1.5 mm divided in
four quadrants ((IS) superior, (II) inferior, (IT) temporal, and
(IN) nasal quadrant), (O) within an outer ring of 1.5–3-mm
radius divided in four quadrants ((OS) superior, (OI) inferior,
(OT) temporal, and (ON) nasal quadrant). In addition, since
the 9 × 15-mm wide-field OCTA scans provide a relatively
big area ofmeasurement, further subsections in extended rings
C1 (radius 3–4.5 mm), C2 (radius 4.5–6 mm), and C3 (radius
6–7.5 mm) were calculated as well, using the labels (S) supe-
rior, (I) inferior, (T) temporal, and (N) nasal as indicated in
Fig. 1.

OCTA analysis of the peripapillary region

Peripapillary microvasculature metrics such as the capillary
perfusion density (CPD) and the capillary flux index (CFI)
of the peripapillary nerve fibre layer microvasculature were
measured. CPD was defined as the total area of perfused mi-
crovasculature per unit area in a region of measurement. The
result is a number ranging from 0 (no perfusion) to 1 (fully
perfused). CFI was defined as the total weighted area of per-
fused microvasculature per unit area in a region of measure-
ment. The peripapillary microvasculature algorithm performs
a segmentation of the ILM and retina nerve fibre layer
(RNFL), creates radial peripapillary capillary (RPC) vascula-
ture enface, and calculates capillary density metrics over an
annulus centred at the optic disc. Large vessels are removed
when quantifying the microcirculation. An optic disc–centred
image protocol was applied, where two concentric rings were
created in the peripapillary area: one with a diameter of 2 mm
and second with a diameter of 6 mm. The region between
these two circles defined the area of interest, in which all
calculations were automatically performed. The results are
presented as averaged values within four different sectors:
(S) superior, (N) nasal, (I) inferior, and (T) temporal (as la-
belled in Fig. 2).

Statistical analysis

Study endpoints were the VD (mm/mm2) and the PD (no unit)
in the macular region, as well as the CPD (no unit) and the CFI
(no unit) in the peripapillary region at BL, after the ST, 1W,
and 6M after TES.

For statistical evaluation, normal distribution for all param-
eters was ensured with histograms and Shapiro–Wilk tests.
Since RP may be presented asymmetrically or even unilater-
ally [29, 30], we calculated ANOVA-based linear mixed-
effects models with SPSS® (IBM SPSS Statistics®, version
22.0.0.0) which allows taking the dependency of the left and
right eyes in the same subject into account and its suitability
for repeated measurements. All pairwise comparisons with
ANOVA were adjusted with Bonferroni corrections. The re-
sults are presented as arithmetic mean and standard deviation

Fig. 1 Example for a vessel density (VD) calculation within different
sectors of a standardised extended ETDRS grid on a retinal OCTA slab
in the right eye of a healthy subject. The colour bar represents the VD
measurements as a colour code in mm/mm2. Results of the VD analysis
are averaged values for both the entire scan area, but also for subsections
of the ETDRS grid in different regions of measurement: (C) centrally in
the foveal area within 1-mm diameter, (I) within an inner ring with a
radius of 0.5–1.5 mm divided in four quadrants ((IS) superior, (II) inferi-
or, (IT) temporal, and (IN) nasal quadrant), (O) within an outer ring of
1.5–3-mm radius divided in four quadrants ((OS) superior, (OI) inferior,
(OT) temporal, and (ON) nasal quadrant). In addition, further subsections
in extended rings C1 (radius 3–4.5 mm), C2 (radius 4.5–6 mm), and C3
(radius 6–7.5 mm) are calculated as well, using the labels (S) superior, (I)
inferior, (T) temporal, and (N) nasal
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(± SD) for all examined groups, with their corresponding p-
values. To calculate the effect of TES on OCTA measure-
ments at the different follow-up visits (BL, ST, 1W, 6M), the
eye, the refractive spherical equivalent, and the follow-up ef-
fect were taken into account, where the eye, refraction, and the
follow-up were treated as fixed factors and the subject as a
random factor. All results are presented as mean and standard
deviation (± SD) for all examined time points and subsections
with their corresponding p values. A p value of < 0.05 was
defined as statistically significant.

Results

Altogether, 73 eyes were enrolled in the study: 43 eyes of 22
patients diagnosed with RP (11♀, 11♂; 22 OS, 21 OD, 47.5
± 15.2 years, range 20–81 years) and 30 age-matched control
eyes from 15 healthy participants (8 ♀, 7 ♂; 15 OS, 15 OD,
43.8 ± 16.6 years, range 21–71 years). Twenty patients decid-
ed to perform a non-supervised TES stimulation at home after
having received a thorough instruction; 2 patients received
supervised TES stimulations in the hospital. A subset of pa-
tients was screened for mutations in retinal disease genes, and
mutations in the following genes were found: three cases with
USH2A; three cases with EYS; one case each with USH3A
(CLRN1), DHX38, RHO, RPGR, and RP9. In controls, the
mean logMAR BCVA was 0.01 ± 0.07. In all patients, the
mean logMAR BCVA at BL was 0.23 ± 0.25 and improved
slightly after 6 months of TES treatment (6M) to 0.22 ± 0.22,

however without reaching statistical significance (p = 0.30).
The mean VF, measured with V4e isopter area, was 4470.2
± 4318.2 deg2 at BL and worsened to 4351.5 ± 4437.8 deg2 at
the 6M follow-up (p = 0.41). No OCTA parameter showed a
statistically significant influence by gender, spherical equiva-
lent, or the side of the eye (all p > 0.83).

Macular microvasculature metrics

Comparison of macular VD and PD at baseline, after first
stimulation, 1 week, and 6 months after TES and versus
control

In general, the macular VD and PD parameters in all retinal
layers, also when analysed separately in the SCP and DCP,
were significantly lower in almost all subsections when
compared with controls (p < 0.05, Tables 1, 2, and 3).
However, in RP patients, these values presented only with
a slight decrement without reaching statistical significance
throughout the course of TES treatment: the average VD
was 24.13 ± 4.71 mm/mm2 at BL, 21.15 ± 7.09 mm/mm2 at
TS (p = 0.13), 20.71 ± 6.96 mm/mm2 at 1W after stimula-
tion (p = 0.08), and 20.90 ± 5.88 mm/mm2 at 6M of TES
stimulation (p = 0.17, Table 1, Table 2, Fig. 3). Similar
observations were made when analysed separately in the
SCP and DCP.

Furthermore, the average PD was measured 0.32 ±
0.06 at BL, 0.28 ± 0.10 at TS (p = 0.14), 0.28 ± 0.09 at
1W after stimulation (p = 0.07), and 0.27 ± 0.08 at the
6M follow-up (p = 0.054, Table 1, Table 3, Fig. 3).
When analysed separately in the SCP and DCP, similar
findings were observed (Fig. 3).

When the VD and PD were analysed over all subsections
throughout the course of TES treatment, only few pairwise
comparisons revealed significant differences: the VD in the
C1ST subsection of the C1 ring (see Fig. 1) in the retinal slab
revealed a significant decrease from 24.06 ± 7.55 at BL to
18.33 ± 9.54 mm/mm2 at 1W (p = 0.0265, Table 2,
Supplementary Table S1C). Also, the VD in the C2TS sub-
section of the C2 ring for both the retinal and SCP slab pre-
sented with significant decrements from 18.20 ± 7.59 at BL to
12.86 ± 8.85 mm/mm2 at 1W and from 12.66 ± 7.20 at BL to
7.55 ± 6.04 mm/mm2 at 1W (p = 0.0326 and p = 0.0069,
Table 2, Supplementary Table S1D). Also, for the PD, only
few significant changes could be detected: the C1ST subsec-
tion of the C1 ring (see Fig. 1) in the retinal slab revealed a
significant decrease from 0.41 ± 0.09 at BL to 0.33 ± 0.13 at
6M (p = 0.0465, Supplementary Table S2C). Similar to VD,
also the PD in the C2TS subsection of the C2 ring in the SCP
slab showed a significant decrease from 0.16 ± 0.09 at BL to
0.10 ± 0.08 at 1W (p = 0.0159, Table 3, Supplementary
Table S2D). Furthermore, the C3NI subsection in the DCP
slab of the C3 ring presented with a significant decrease of

Fig. 2 Example for the calculation of peripapillary microvasculature
parameters in the right eye of a healthy subject. An optic disc–centred
image protocol is applied, where two concentric rings are created in the
peripapillary area: one with a diameter of 2 mm and second with a diam-
eter of 6 mm. The region between these two circles defined the area of
interest, in which all calculations were automatically performed. The
results are presented as averaged values within four different sectors:
(S) superior, (N) nasal, (I) inferior, and (T) temporal

1171Graefes Arch Clin Exp Ophthalmol (2021) 259:1167–1177



the PD from 0.18 ± 0.09 at BL to 0.15 ± 0.09 at 1W (p =
0.0206, Supplementary Table S2D). However, regarding the
number of pairwise comparisons that were performed, these
few differences should not be over interpreted. Therefore, in
summary, the macular density metrics VD and PD seem to
remain unaffected despite ongoing TES treatment.

Comparison of macular VD and PD in all subsections
of the ETDRS grid

Independent from TES treatment, we found various differ-
ences for VD and PD between the different subsections within
the extended ETDRS grid (Fig. 1). When analysed systemat-
ically within all subsections of all retinal slabs (retina, SCP,
DCP), we found significant differences in the outer, C1, C2,
and C3 rings. However, not within the inner ring (p > 0.87).

In the outer ring, the VD and PD presented with signifi-
cantly lower values in the OT (outer temporal) subsection
when compared with the other OS, ON, and OI subsections
(p < 0.05 for VD and < 0.04 for PD, Supplementary
Table S3A, B).

Also, in the peripheral C1, C2, and C3 rings, mainly the
VD and PD of the temporal subsections (C1TS and C1 TI in
the C1 ring, C2TS and C2TI in the C2 ring, and C3TS and
C3TI in the C3 ring) were significantly lower when compared
with the superior, nasal, and inferior subsections (p < 0.05,
Supplementary Table S3A, B).

Peripapillary microvasculature metrics

Comparison of peripapillary CPD and CFI at baseline,
after first stimulation, 1 week, and 6 months after TES
and versus control

When compared with healthy control eyes, all CPD and CFI
values throughout the time course of TES therapy showed
significantly lower values (p < 0.0001, Table 4). However,
within RP eyes, we found only slight differences over the time
course without reaching statistically significant values when
the peripapillary nerve fibre layer microvasculature density
parameters CPD and CFI were taken into account (Fig. 3,
Tables 1 and 4). The temporal and superior CFI showed sig-
nificant differences (p < 0.047) over all follow-up visits; how-
ever, when analysed further in pairwise comparisons, these
changes were significant (p > 0.97) neither for these two sub-
sections nor for the other subsections between all follow-up
visits (p > 0.99, Table 1).

Comparison of peripapillary CPD and CFI in all subsections
of the segmentation ring

When comparing the CFI and CPD within the different sub-
sections of the peripapillary ring (see Fig. 2), we found noTa

bl
e
1

A
ve
ra
ge

ve
ss
el
de
ns
ity

(V
D
)
an
d
av
er
ag
e
pe
rf
us
io
n
de
ns
ity

(P
D
)
re
su
lts

fo
r
al
lr
et
in
al
O
C
T
A
sl
ab
s
(r
et
in
a,
S
C
P
,a
nd

D
C
P
),
as

w
el
la
s
th
e
av
er
ag
e
pe
ri
pa
pi
lla
ry

ca
pi
lla
ry

fl
ux

in
de
x
(C
FI
)
an
d

av
er
ag
e
ca
pi
lla
ry

pe
rf
us
io
n
de
ns
ity

(C
P
D
)
re
su
lts

fo
r
co
nt
ro
l
ey
es

as
w
el
la
s
fo
r
R
P
ey
es

w
ith

al
lf
ol
lo
w
-u
p
vi
si
ts
(B
L
,T

S,
1W

,6
M
)
an
d
in
cl
ud
in
g
th
e
co
rr
es
po
nd
in
g
p
va
lu
e
in

br
ac
ke
ts
.A

ll
pr
es
en
te
d

p
va
lu
es

co
rr
es
po
nd

to
th
e
co
m
pa
ri
so
n
ve
rs
us

ba
se
lin

e
(u
pp
er

va
lu
e)

or
ve
rs
us

co
nt
ro
ls
(l
ow

er
va
lu
e,
ita
lic

no
ta
tio

n)
;s
ig
ni
fi
ca
nt

p
va
lu
es

ar
e
bo
ld

an
d
m
ar
ke
d
w
ith

an
as
te
ri
sk

Fo
llo

w
-u
p

vi
si
t

V
D
re
tin

a
(m

m
/m

m
2
;

m
ea
n
±
S
D
)

V
D
S
C
P
(m

m
/m

m
2
;

m
ea
n
±
SD

)
V
D
D
C
P
(m

m
/m

m
2
;

m
ea
n
±
S
D
)

PD
re
tin

a
(m

ea
n
±

SD
)

P
D
S
C
P
(m

ea
n
±

S
D
)

PD
D
C
P
(m

ea
n
±

S
D
)

C
F
I
(m

ea
n
±
SD

)
C
PD

(m
ea
n
±
S
D
)

C
on
tr
ol

ey
es

28
.2
4
±
4.
63

25
.6
3
±
4.
12

21
.9
6
±
6.
32

0.
38

±
0.
06

0.
34

±
0.
06

0.
27

±
0.
08

0.
36

±
0.
03

0.
57

±
0.
02

B
L

24
.1
3
±
4.
71

(p
=
0.
01
60
*)

19
.6
0
±
4.
55

(p
=
0.
00
01
*)

13
.9
4
±
5.
11

(p
=
0.
00
02
*)

0.
32

±
0.
06

(p
=
0.
00
29
*)

0.
26

±
0.
06

(p
<
0.
00
01
*)

0.
17

±
0.
06

(p
<
0.
00
01
*)

0.
22

±
0.
06

(p
<
0.
00
01
*)

0.
50

±
0.
05

(p
<
0.
00
01
*)

T
S

21
.1
5
±
7.
09

17
.0
7
±
6.
67

12
.2
9
±
6.
87

0.
28

±
0.
10

0.
22

±
0.
09

0.
15

±
0.
08

0.
18

±
0.
06

0.
47

±
0.
04

(p
=
0.
13
44
)

(p
=
0.
00
08
*)

(p
=
0.
18
28
)

(p
<
0.
00
01
*)

(p
=
0.
56
19
)

(p
<
0.
00
01
*)

(p
=
0.
13
55
)

(p
=
0.
00
10
*)

(p
=
0.
13
55
)

(p
<
0.
00
01
*)

(p
=
0.
58
79
)

(p
<
0.
00
01
*)

(p
=
0.
29
37
)

(p
<
0.
00
01
*)

(p
=
0.
44
93
)

(p
<
0.
00
01
*)

1W
20
.7
1
±
6.
96

16
.5
3
±
5.
93

11
.6
7
±
5.
28

0.
28

±
0.
09

0.
21

±
0.
08

0.
14

±
0.
06

0.
17

±
0.
06

0.
49

±
0.
04

(p
=
0.
07
80
)

(p
=
0.
00
02
*)

(p
=
0.
08
49
)

(p
<
0.
00
01
*)

(p
=
0.
30
45
)

(p
<
0.
00
01
*)

(p
=
0.
06
87
)

(p
=
0.
00
10
*)

(p
=
0.
08
97
)

(p
<
0.
00
01
*)

(p
=
0.
30
10
)

(p
<
0.
00
01
*)

(p
=
0.
19
45
)

(p
<
0.
00
01
*)

(p
=
0.
96
92
)

(p
<
0.
00
01
*)

6M
20
.9
0
±
5.
88

16
.5
7
±
5.
36

10
.9
3
±
5.
28

0.
27

±
0.
08

0.
21

±
0.
07

0.
13

±
0.
07

0.
23

±
0.
05

0.
50

±
0.
03

(p
=
0.
16
57
)

(p
<
0.
00
01
*)

(p
=
0.
14
73
)

(p
<
0.
00
01
*)

(p
=
0.
15
54
)

(p
<
0.
00
01
*)

(p
=
0.
05
44
)

(p
<
0.
00
01
*)

(p
=
0.
06
39
)

(p
<
0.
00
01
*)

(p
=
0.
10
87
)

(p
<
0.
00
01
*)

(p
=
0.
98
99
)

(p
<
0.
00
01
*)

(p
=
0.
98
16
)

(p
=
0.
00
01
*)

1172 Graefes Arch Clin Exp Ophthalmol (2021) 259:1167–1177



significant pairwise comparison for the CFI (Supplementary
Table S3C). However, for the CPD, the temporal subsection
showed significant differences when compared with the supe-
rior section at the BL follow-up (p = 0.0054) and when com-
pared with the nasal section both at the TS (p = 0.0436) and
6M follow-up (p = 0.0310, Supplementary Table S3C).

Discussion

With few exceptions such as gene therapy for RPE65-
associated retinal dystrophy, TES is currently the only
evidence-based and clinically available method to slow down
disease progression in RP [1, 2]. A recent study suggested

Table 2 Results of the vessel density (VD) analysis for all retinal
OCTA slabs (retina, SCP, and DCP) are presented as p values
(ANOVA) between all four follow-up visits (BL, TS, 1W, 6M) and all

subsections as indicated with the extended ETDRS grid in Fig. 1.
Significant p values are in italics and marked with an asterisk

VD subsection group Slab ANOVA p value across
all follow-up visits

ANOVA p value
versus control

ANOVA p value across
subsections

IN-IS-IT-II Retina > 0.0553 < 0.003* > 0.4601

SCP > 0.0614 < 0.002* > 0.1255

DCP > 0.0683 < 0.0001* > 0.5482

ON-OS-OT-OI Retina > 0.0507 < 0.0005* < 0.006*

SCP > 0.0967 < 0.0006* < 0.001*

DCP > 0.1492 < 0.0001* < 0.0468* (BL & 1W), else > 0.1892

All C1 subsections Retina < 0.0409* (C1IN & C1ST), else > 0.1090 < 0.009* < 0.001*

SCP > 0.0578 < 0.005* < 0.001*

DCP > 0.0654 < 0.0001* < 0.001*

All C2 subsections Retina 0.0380* (C2TS), else > 0.0924 < 0.03* < 0.001*

SCP 0.0152* (C2TS), else > 0.1020 < 0.0002* < 0.001*

DCP > 0.0834 < 0.0001* < 0.0035*

All C3 subsections Retina > 0.0962 0.0034* (C3NS), else > 0.08 < 0.011* (BL & TS), else > 0.0785

SCP > 0.0858 < 0.006* < 0.0011*

DCP 0.0368* (C3NI), else > 0.1964 < 0.01* > 0.5143

Table 3 Results of the perfusion density (PD) analysis for all retinal
OCTA slabs (retina, SCP, and DCP) are presented as p values (ANOVA)
between all four follow-up visits (BL, TS, 1W, 6M) and all subsections as

indicated with the extended ETDRS grid in Fig. 1. Significant p values
are in italics and marked with an asterisk

PD subsection group Slab ANOVA p value across all
follow-up visits

ANOVA p value
versus control

ANOVA p value
across subsections

IN-IS-IT-II Retina > 0.0690 < 0.02* > 0.3337

SCP > 0.1032 < 0.0005* > 0.1240

DCP > 0.0623 < 0.0001* > 0.5765

ON-OS-OT-OI Retina > 0.0774 < 0.006* < 0.0126*

SCP > 0.1296 < 0.003* < 0.001*

DCP > 0.2078 < 0.0001* 0.0130* (BL), else > 0.0558

All C1 subsections Retina 0.0441* (C1IN), else > 0.0658 < 0.05* < 0.001*

SCP > 0.0830 < 0.0003* < 0.001*

DCP > 0.0994 < 0.0001* < 0.001*

All C2 subsections Retina > 0.0553 < 0.04* < 0.001*

SCP 0.0288* (C2TS), else > 0.1484 < 0.0001* < 0.001*

DCP > 0.1073 < 0.0001* < 0.0049*

All C3 subsections Retina > 0.0874 0.004* (C3NS), else > 0.07 < 0.488* (BL, TS, 1 W), else 0.3346

SCP > 0.1068 < 0.03* < 0.0017*

DCP 0.0417* (C3NI), else > 0.2135 < 0.009* > 0.5515
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retinal vessel oximetry to possibly serve as a sensitive moni-
toring method for TES therapy [3]. However, since these de-
vices are preserved to specialised ophthalmology centres, we
aimed to investigate whether OCTA might also show changes
that are attributed to TES treatment.

Our results indicate that vascular density metrics in the
macular region and the peripapillary microvasculature remain
unaffected despite ongoing TES treatment, at least in a 6-
month interval. There are several explanations for our find-
ings: the mutated genes expressed in the retinal photoreceptors
or retinal pigment epithelium [31] in RP induce apoptosis of
the involved sensory retina [32]. With progression of atrophy,
the neural retina responds with secondary remodelling such as

Fig. 3 A, B Box plot analysis illustrates the average vessel density (VD,
A) and average perfusion density (PD, B) of all retinal layers (retina slab,
white), SCP (light grey), and DCP (dark grey). The y-axis shows the VD
inmm/mm2, and the PDwithout unit for all follow-up visits (BL, TS, 1W,
6M) and control eyes are shown on the x-axis. C Box plot analysis illus-
trates the average capillary perfusion density (CPD, light grey) and the
average capillary flux index (CFI, dark grey). The y-axis shows the CPD
and CFI without units for all follow-up visits (BL, TS, 1W, 6M), and
control eyes are shown on the x-axis. The upper and lower whiskers of the
box plots present the minimum and maximum value, the upper and lower
boarders of the box itself represent the 25th and 75th percentile, and the
black horizontal bar within the box represents the median. The grey
points indicate outliers
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proximal intraretinal pigment migration followed by inner ret-
inal atrophy, neuronal or glial migration, and neurovascular
remodelling [32]. These structural changes seem to be not as
dynamic as the retinal vessel oxygen metabolism [3].
Furthermore, our findings are compatible with preliminary
data showing that TES does not have a significant effect on
the diameter of large peripapillary vessels [3]. Our study con-
firms that also the microvascular changes in the different ret-
inal layers seem to follow the same mechanism and thus re-
main unaffected despite ongoing TES treatment. One further
possible explanation might be the maximal follow-up of
6 months. Since neurovascular remodelling in RP seems not
to change significantly over a period of 6 months, further
studies with long-term outcomes of TES onOCTAparameters
are needed to provide a clear evidence-based recommendation
for or against the usage of OCTA for TES therapy monitoring.

Several studies have focused on the microvascular changes
in RP using OCTA [13–27]. However, to the best of our
knowledge, this is the first study reporting on longitudinal
observations in RP. Furthermore, publications reporting on
microvascular changes in RP were mainly presenting mean
values in smaller parafoveal scans [15, 18–20, 25]. By using
wide-field swept-source OCTA, a systematical analysis with-
in all subsections of a standardised extended ETDRS grid
could be performed and revealed significant differences in
the vascular density metrics of the macular region.

In particular, we found the VD and PD values of the tem-
poral subsections in the outer as well as in the peripheral C1,
C2, and C3 rings to be significantly lower than the other sub-
sections, while the inner ring did not present with significant
differences. Our results are in accordance with current OCTA
studies: Mastropasqua et al. investigated on the PD and vessel
length density in 12 RP patients by using three rings of differ-
ent sizes centred around the fovea and found a significant
reduction of the PD and vessel length density in the central
and peripheral retinal areas of RP patients when compared
with healthy subjects [12]. Koyanagi et al. investigated on
microvascular changes in RP by using a foveal and parafoveal
ring within small OCTA scans of 3 × 3 mm and found the
foveal and parafoveal flow densities to be significantly re-
duced when compared with controls [21]. Also, Toto et al.
performed VD analyses by using a foveal and parafoveal ring
and found the parafoveal rather than the foveal regions to
present with significant reductions in comparison with con-
trols [24].

In healthy subjects, the mean VDs were not reported to
show significant differences within quadrants: in a large study
with 1631 participants, You et al. found the mean superficial
VD measured within a foveal and parafoveal ring to be slight-
ly higher in the superior quadrant followed by the temporal,
nasal, and inferior quadrants. In the deep retinal layer, VDwas
also found to be the highest in the superior quadrant followed
by nasal, inferior, and temporal quadrants. However, the

authors did not report any significant differences between
the subsections [33]. Moreover, our findings of reduced vas-
cular density metrics especially in the temporal subsections of
the retina are in accordance with current investigations on the
metabolic dysfunction in RP. Bojinova et al. found a nasal–
temporal difference in the oxygen metabolism within rod–
cone dystrophies such as RP [9]. They explained these find-
ings with the variations in human photoreceptors’ topography:
in the peripheral nasal retina relative to the temporal retina, a
higher cone density was found [34]. On the contrary, rods
seem to have a higher density in the peripheral temporal areas
[34]. Since rod–cone dystrophies such as classic RP present
mainly with impaired rod function, it is to be expected to find
signs of degeneration also in OCTA with significant changes
of the microvascular structures especially in the temporal re-
gions as we could now confirm in our present study.

Furthermore, when performing OCTA studies in RP, the
examined groups are often mixed with and without the pres-
ence of macular oedema [15, 18–20, 22, 23, 25–27].
However, as described previously, macular oedema has a sig-
nificant impact on OCTA parameters [11]. This might explain
why some studies presented contradictory results, e.g. with
larger foveal avascular zones in RP when compared with con-
trols, while others reported smaller zones [19] or found no
significant difference at all [21]. Furthermore, parameters such
as avascular zones, especially in the DCP layer, are manual
measurements and therefore not very reliable. Hence, we only
included RP patients without macular oedema in this study
and used solely parameters from fully automated
measurements.

Due to its exploratory nature, our study has a number of
limitations: a small sample size, a relatively short follow-up of
6 months, the genetic heterogeneity of RP patients, and the
lack of a sham-controlled RP group.

In conclusion, the microvascular changes in RP measured
with OCTA appear to remain unaffected by ongoing TES
treatment. However, our wide-field swept-source OCTA ap-
proach with a systematic analysis of all subsections in a
standardised extended ETDRS grid revealed significant
changes of the microvascular structures especially in the tem-
poral retinal areas in eyes suffering from RP.
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