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Despite over a century of research, Mycobacterium tuberculosis (Mtb), the causative
agent of tuberculosis (TB), continues to kill 1.5 million people annually. Though less than
10% of infected individuals develop active disease, the specific host immune responses
that lead to Mtb transmission and death, as well as those that are protective, are not yet
fully defined. Recent immune correlative studies demonstrate that the spectrum of
infection and disease is more heterogenous than has been classically defined.
Moreover, emerging translational and animal model data attribute a diverse immune
repertoire to TB outcomes. Thus, protective and detrimental immune responses to Mtb
likely encompass a framework that is broader than T helper type 1 (Th1) immunity.
Antibodies, Fc receptor interactions and B cells are underexplored host responses toMtb.
Poised at the interface of initial bacterial host interactions and in granulomatous lesions,
antibodies and Fc receptors expressed on macrophages, neutrophils, dendritic cells,
natural killer cells, T and B cells have the potential to influence local and systemic adaptive
immune responses. Broadening the paradigm of protective immunity will offer new paths
to improve diagnostics and vaccines to reduce the morbidity and mortality of TB.
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THE CHALLENGE OF HETEROGENEITY IN
CLINICAL TUBERCULOSIS

Every six seconds, an individual is diagnosed with tuberculosis (TB); every twenty seconds an
individual dies from active disease (1). This level of morbidity and mortality persists today despite
shorter antimicrobial treatment regimens and more sensitive, specific and widely distributed
diagnostics. Strategies that prevent active disease are necessary to complement advances in
detection and cure. However, defining the targets of prevention is challenged by the
heterogeneity of manifestations and outcomes in clinical TB.

Improvements in microbiologic, immunologic and radiographic tools to identify and
characterize humans infected with Mycobacterium tuberculosis (Mtb) have expanded the
org March 2022 | Volume 13 | Article 8304821
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phenotypic spectrum appreciated within and beyond the classical
states of latent infection and active disease (Figure 1). Over 90%
of human TB is thought to exist as latent infection. This state is
defined by the presence of IFNg secreting T cell response to Mtb
antigens after exposure to the bacteria and the absence of signs
and symptoms of active disease. The host response is historically
captured by the tuberculin skin test (TST), a cell mediated
response to intradermal injection of a mixture of Mtb proteins
prepared from culture called purified protein derivative (PPD).
To overcome false positive responses to non-tuberculous
mycobacteria (NTM), including the vaccine strain,
Mycobacterium bovis Bacille Calmette-Guérin (BCG), IFNg
release assays (IGRA) were developed as blood tests that
measure responses to the Mtb proteins ESAT6, CFP10 and
TB7.7. Yet despite enhanced specificity, the rates of false
negatives have limited the use of these T cell-based tests in the
diagnosis of the remaining 5-10% of TB which is active disease.
Instead, active TB disease is defined by the presence of clinical
signs and symptoms, radiographic evidence of disease and
microbiological evidence of bacteria (detectable by culture, cell
wall stain or nucleic acid amplification). Thus, only latent but not
active TB is routinely diagnosed using markers of the host
immune response. Specific patterns of human immune
reactivity that are sterilizing have not yet been discovered but
has significant implications for understanding protection from
Mtb infection and disease (2).

Beyond latent and active TB, immunological and imaging
modalities point towards states of infection after Mtb exposure
that do not fall into the latent versus active TB dichotomy
(Figure 1). Waxing and waning T cell and antibody responses
to Mtb antigens in a subset of individuals with “latent TB”
suggest the existence of states after Mtb exposure outside of the
traditional definition but are also not active disease (3). Detection
ofMtb RNA and DNA from individuals who meet the definitions
of clinical and microbiological cure show bacterial persistence,
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highlighting the difficulty of conventional immune and
microbiological assays to identify the presence of bacteria (4,
5). Finally, highly sensitive computed tomography (CT) and
positron emission tomography (PET) imaging has demonstrated
different lesions concomitantly regressing and progressing
within the same individual, indicating immune response
heterogeneity between granulomatous lesions that may
underlie clinical outcomes (6–9). These findings advance our
understanding of the spectrum of clinical TB, demanding similar
innovation in models of disease to expand beyond the current T
helper type 1 (Th1)-centric immunological paradigm to capture
the diverse spectrum of Mtb infection and disease (10–12).
THE POTENTIAL OF ANTIBODIES AND B
CELLS TO INFLUENCE TUBERCULOSIS

As a major arm of adaptive immunity, B cells and antibodies
have the potential to modulate immune responses to Mtb. In
contrast to the dominant roles uncovered in responses to viral
and other bacterial infections, antibodies and B cells fill a minor
part of the literature on the host response toMtb. Yet even in this
limited evaluation, there is data to suggest that humoral
immunity is a complex and promising path towards
understanding TB immunology.

Divergent interpretations of antibody and B cell data reflect
limitations in contemporary experimental systems. Ablation of B
cell (13) and antibody Fc effector functions (14) in mice and non-
human primate models (15) impact local bacterial burden and
pathology, and antibody Fc features correlate with different
human disease states (16–18). Yet, passive transfer of
antibodies into mice do not consistently confer protection (19),
human deficiencies in immunoglobulins or B cells do not incur
increased risk of TB (20, 21) and antibody titers alone are unable
to define infection and disease (22). For animal studies, one of
FIGURE 1 | The spectrum of outcomes in human tuberculosis (TB) is heterogenous. Classical clinical states are defines by the presence of detectable bacteria and
host response to Mycobacterium tuberculosis antigens by interferon g release assay (IGRA), with uninfected having neither, latent TB infection having a positive IGRA
but no detectable bacteria and active TB disease diagnosed by the capture of Mtb by growth in culture, nucleic acid amplification or cell wall stain. The transition
between these states is fluid and poorly captured by these criteria: a. Individuals who have received antibiotic therapy for latent TB infection cannot be differentiated
from those who are treatment naïve. b. Individuals who progress subclinically from latent infection to active disease (5-10%) and those who regress or remain asymptomatic
(>90%) are indistinguishable. c. After successful treatment with antibiotics for active TB disease, individuals no longer have detectable bacteria as captured by standard
assays but may have residual positive IGRA. Moreover, emerging epidemiological and immune correlates data suggest that beyond these classical states, there are
groups who are highly exposed to Mtb who potentially represent an alternative state to latent TB infection not yet clearly defined.
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the inherent caveats is that models imprecisely phenocopy
human Mtb infection and disease. For example, the wildly used
inbred C57BL6 mouse model does not form the same granuloma
pathology (23) and have different antibody and Fc receptor (FcR)
repertoires compared to humans (24). For human studies, power
is limited by access to relevant tissues containing Mtb and
heterogenous clinical manifestations requiring years in
duration for evaluation. For studies of humoral immunity,
these difficulties are compounded by the persistence of residual
antibodies and B cells despite pharmacologic depletion of plasma
and B cells in humans (25, 26). As such, the potential of
antibodies and B cells to influence the course of TB is
inescapably stitched from studies that identify correlates of
protection and disease in humans and evaluate mechanisms in
model systems. Here, we extrapolate from the literature to
understand the capacity of antibodies and B cells to: (1)
modulate initial interactions between Mtb and host cells, (2)
guide the development of adaptive immunity, and (3) contribute
to protection and disease across the spectrum of clinical TB.
FUNCTIONAL DIVERSITY IN ANTIBODIES
AND B CELLS

Antigen Binding Fraction (Fab) Domain
Computational analyses of high throughput sequencing data
estimate that the human antibody repertoire has the capacity
to bind to 1013 unique molecules via the antigen binding
fragment Fab domain (27). Targeted molecules span proteins,
glycans, lipids and nucleic acids from self and non-self,
contributing to specific and broad recognition patterns. For
Frontiers in Immunology | www.frontiersin.org 3
Mtb, potential antigens recognized by antibodies emanate from
the over 4000 open reading frames (28) as well as carbohydrates
and lipids that comprise ~60% of the bacterial cell envelope (29).
Because of molecular mimicry between microbial and human
glyco- and lipo- conjugates, broadly reactive antibodies even at
low affinity and avidity have the potential to influence Mtb-host
interactions. As such, somatic recombination of V(D)J gene
segments and hypermutation in the naïve variable gene region
following antigen recognition generate diverse Fab domains with
the potential to induce different antibody mediated immune
responses and clinical outcomes. Yet efforts to develop antibody-
based diagnostics demonstrate that titers poorly capture the
spectrum of TB (22). Thus, the search continues for Mtb
antigens that induce relevant immune correlates via new
combinations of protein, carbohydrate and lipid targets such as
lipoarabinomannan (LAM). Moreover, the inability of indirect
measures of mycobacterial antigenic burden, such as that by the
antibody Fab domain to capture the complexity ofMtb infection
and disease, compel the pursuit of immune responses beyond
direct target detection.

Crystallizable Fraction (Fc) Domain
Antibody function is determined by the combination of the Fab
and crystallizable (Fc) domains. The Fc domain can alter the
structure of the Fab domain, impacting antigen recognition.
Equally as important as antigen binding, the Fc domain is
essential to recruiting innate and adaptive humoral and cellular
immune responses. Diversity in the Fc domain is generated
through different isotypes (IgM, IgG, IgA, IgE, IgD) and
subclasses (IgG1, IgG2, IgG3, IgG4, IgA1, IgA2) (Figure 2A).
Studies of polyclonal responses show that all are produced in
A

B

C

D

FIGURE 2 | Differential antibody engagement with Fc receptors mediate diverse innate and adaptive immune cell effector functions. Antibody diversity (A) in antigen
specificity (theoretical n=1013), isotype (n=5), subclass (n=6) and post-translational glycosylation (theoretical n=36 possible different moieties) influence engagement of
Fc receptors. Subsequent differential activation of high (red) and low (white) affinity Fc receptors (B) expressed on innate and adaptive immune cells (C) have the
potential to mediate effector functions such as antibody dependent cellular phagocytosis and cytotoxicity (D) that in concert determine the heterogenous outcomes
in human TB.
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response to Mtb infection with no one dominating correlate of
disease or protection, although there are hints in some cohorts
that decreased IgG3 is associated with recurrence (30) and
increased IgG4 with active disease (18). Some monoclonal
studies have suggested potential differential capacities between
IgA, IgG and IgM to induce extra and intracellular host
environments that restrict or enhance Mtb (31, 32). If these
findings are confirmed by studies in polyclonal responses that
influence clinical outcomes, the mechanisms likely involve
differential immune complexing. With monomeric and
multimeric antibodies, the affinity and avidity for microbial
antigens in the Fab domain and host receptors and
complement in the Fc domain can vary widely.

Antibody Post Translational Glycosylation
All antibodies are glycoproteins. These post translational
modifications are made by glycosyltransferases and glycosidases
during trafficking through the endoplasmic reticulum and Golgi
apparatus of B cells. Some data suggest that further modification is
possible in a B cell independent manner through glycosyltransferases
secreted into the circulatory system (33–36). While all polyclonal IgG
have a conserved asparagine residue 297 on the Fc domain that is
glycosylated, only 15-20% are modified on the Fab domain (37).
These N-linked glycan structures have a complex bi-antennary core
composed of N acetylglucosamine and mannose residues
(Figure 2A). The further addition and subtraction of N-
acetylglucosamine, galactose, sialic acid and fucose extend the
structural and functional heterogeneity of the Fc and Fab domains
by altering affinity for FcRs and target antigens. O-linked
glycosylation of proteins occurs on functional hydroxyl groups of
serine and threonine, but site-specific analyses of O-glycans is
challenged by the paucity of efficient proteolytic tools. Nevertheless
the plethora of data on N-glycans within IgG show distinct and
sometimes plastic glycosylation patterns in many physiological states:
male versus female, age, pregnancy, infections such as those withHIV
and SARS-CoV2, chronic non-infectious diseases such as diabetes
and renal disease, autoimmune diseases and exacerbations (38). In
some cases such as diabetes, passive transfer of antibodies intomice of
differentially glycosylated IgG and the in vivo modification of
glycosylation show that altered sialic acid is not merely associative
but also contributes to non-immune processes such as glucose
intolerance through FcR mediated insulin transport (39, 40).

For latent and active TB, the N-glycan profiles on IgG diverge
and vary with antigen specificity (16–18, 41). However, some
themes that emerge are that glycans associated with an anti-
inflammatory state (galactose and sialic acid) are increased in
individuals with latent compared to active TB (16). This is
consistent with an overall decreased immune mediated
inflammation in latent compared to active TB. In contrast,
fucose is decreased in latent compared to active TB. The lack of
fucose is generally associated with increased inflammation (42,
43). That afucosylated IgG is enhanced in latent TB indicates that
this change is not a biomarker of inflammation but rather
potentially reflective of an antibody function. Because studies
using polyclonal and monoclonal antibodies show that changes
in glycosylation influence FcR affinity and cellular effector
functions such as antibody dependent cellular phagocytosis
Frontiers in Immunology | www.frontiersin.org 4
(ADCP) and cytotoxicity, differential modulation of immune
responses are implicated for latent and active TB. Afucosylated
IgG have increased affinity for FcgRIII/CD16 which mediates
antibody dependent cellular cytotoxicity (ADCC). Both are
enhanced with IgG purified from latent compared to active TB
patients, implicating roles in potential protection for TB (16). If
and how antibody glycosylation contributes to immune mediated
outcomes in the context of HIV, diabetes and renal disease, the
most significant risk factors for TB, remain uncharacterized (44).
As biomarkers, direct comparison between Mtb reactive-IgG
glycans and titers in a small cohort of individuals show that the
former has enhanced ability to distinguish between latent and
active TB (17). This is likely due to the ability of IgG glycans to
capture the complexity of host immune responses that connect to
pathology as compared to microbial burden alone by using
antibody titers. As mediators of protection, one study showed
that passive transfer of non-Mtb specific polyclonal human IgG
into mice after enzymatic removal of glycans increases bacterial
burden (45). Whether this applies to Mtb specific IgG and what
species of glycans specifically are responsible are not known but
could shed light into how differential IgG glycosylation is linked to
pathology and protection.

IgA and IgM are also glycosylated, but because far more
residues are involved, the deconvolution of these complex post
translational modifications lags behind IgG. However, emerging
data from the mouse model shows changes in IgM glycans with
Mtb infection (46). With further definition, these post
translational mechanisms of antibody diversification that
contribute to the extent of the B cell antibody repertoire can be
clarified across the clinical spectrum within and beyond the
latent and active TB spectrum.
Neutralizing and Non-Neutralizing
Antibody Functions
For infectious diseases, directly neutralizing and non-neutralizing
antibody functions potentially impact microbial infection,
replication and immune mediated pathology. Through the Fab
domain, antibodies recognize and bind to microbial antigens. This
could lead to direct neutralizing activity in which the organism is
immediately sequestered after binding. In comparison, non-
neutralizing antibody functions involve the Fc domain function
to a greater extent. In conjunction with targeting an antigen via the
Fab domain, the Fc domain engages complement and FcRs on
immune cells that induce host responses to the microbe. Non-
neutralizing antibody functions include cellular phagocytosis,
cytotoxicity, activation (including NETosis and antigen
presentation) and cytokine production, each of which could be
protective or pathogenic based on the specific context of the
microbe and host. Demonstration of consistent antibody-
mediated direct neutralization of Mtb leading to prevention of
infection has been elusive to date with monoclonal antibodies.
While in vitro studies showdifferent non-neutralizing cellmediated
functions with polyclonal IgG isolated from individuals with latent
TB, active TB (16), after antibiotic treatment (18), after BCG
vaccination (32, 47, 48) and/or high exposure toMtb (41, 49), it is
less clear whether they are protective, inert or pathogenic in vivo.
March 2022 | Volume 13 | Article 830482
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Fc Receptors (FcR)
Beyond the antibody glycoprotein, FcR variations in copy
number and single nucleotide polymorphisms (SNPs) generate
diversity. These exist for receptors that have high (FcgRI/CD64,
FcRN encoded by FCGRT, FceRI), intermediate (polymeric
immunoglobulin receptor pIGR and Fa/m receptor) and low
affinity (FcgRII/CD32, FcgRIII/CD16, FcaRI/CD89, FceRII/
CD23) for monomeric immunoglobulins (Figure 2B). High
variation in copy number has been observed particularly in the
FCGR loci. For FcgRII/CD32a, the polymorphism R131H (also
described as 167) affects the membrane proximal Ig-like domain
of the extracellular region and ablates the ability to bind and
phagocytose IgG2 coated particles (50, 51). The R/R131 allotype
is associated with more severe outcomes in disseminated
meningococcal infection (52) and recurrent bacterial infections
(53) in some human populations suggest that these FcR changes
could have implications across multiple infectious diseases as
well as vaccines. For FcgRIII/CD16a, valine at amino acid 158
(also described as 176) increases the affinity for IgG1 and IgG3
via interactions with the lower hinge region whereas
phenylalanine in this same position enhances IgG4 binding
(54, 55). The functional implications of this variation are most
well-described with ADCC, where individuals with 158V/V
compared to 158F/F have higher levels of this classic natural
killer cell mediated function. Some human studies link these
allelic variants to autoimmune diseases (56) and responses to
monoclonal antibody therapies in cancer (57), though the
extrapolated mechanisms and impacts may be obscured by the
complexity of these conditions. For the only inhibitory FcR, a
loss of function variant FcgRIIBT232 is associated with
protection against severe malaria in an East African population
and susceptibility to the autoimmune disease systemic lupus
erythematosus in the Caucasian population (58). These
functional impacts are conceptualized in the context of non-
neutralizing antibody activity. However, studies in mice show
that Fc-FcR binding is critical in enhancing monoclonal antibody
mediated direct neutralization of pathogens including HIV (59,
60), influenza (61, 62) and SARS-CoV2 (63–66). Thus, FcR
variations have the potential to influence directly neutralizing
and non-neutralizing antibody functions.

ForTB, studies focused onFCGR genetic variations show amixed
association with outcomes. Increased FCGR1A/CD64 copy number
in individualswith active disease indicates an associationwith poorer
outcomes (67).Because thehighaffinityFcgRI/CD64 is also identified
in the non-human primatemodel as a correlate of disease it could be
simply a marker of general inflammation, or induce pathology (68).
Beyond FcgRI/CD64, higher FCGR3B copy number in a
subpopulation of Ethiopians is associated with the development of
TB inpeople livingwithHIV,compared to thosewithHIValone (69).
The data from these two studies suggest that FCGR sequence
heterogeneity is involved with inflammation in TB. Studies
incorporating a larger clinical spectrum from highMtb exposure to
outcomes of antimicrobial treatment and recurrence could further
clarify howFCRgenetic variability impactsMtb infectionanddisease.

In addition to pathology, data from both mouse models and
human studies show that FcRs have the capacity to impart effects
Frontiers in Immunology | www.frontiersin.org 5
that protect the host against bacteria. Knockout of the
immunoreceptor tyrosine-based activation motif (ITAM)
responsible for activating signaling across FcRs in a low dose
aerosol C57BL6 mouse model of Mtb infection leads to increased
pulmonary Mtb burden and pathology along with decreased
survival (14). Consistent with these findings, mouse knockout of
the only the inhibitory FcgRIIb/CD32b leads to decreased
pulmonary Mtb burden and pathology (14). Because FcgRIIb/
CD32b is the only FcR functionally conserved between mice and
humans, these findings could have relevance for translating
findings. While in vitro blocking antibody studies show that Mtb-
reactive IgGmediated opsonophagocytosis into humanmonocytes
is FcgRII/CD32 dependent, the blocking antibody clone itself does
not distinguish between the activating CD32a or inhibitory CD32b
in these cells (47). Overcoming this limitationwith FcgRIIb/CD32b
specific tools could help clarify each respective role (70, 71). Apart
from FcgRII/CD32, levels of the activating FcgRIII/CD16 correlate
with latent compared to active TB across multiple cohorts (72). In
addition, IgG purified from individuals with latent compared to
active TB have higher affinity for FcgRIII/CD16 (16). However, the
benefit of the activating FcgRIII/CD16 is likely cell type specific as
CD16+ monocytes as opposed to macrophages and natural killer
cells may be associated with disease severity (73). Finally, data from
in vitro whole blood assays with blocking antibodies suggest that
decreased bacterial replication mediated by polyclonal IgG from
health care workers highly exposed toMtb is in part due to FcgRIII/
CD16 together with FcgRII/CD32 (49). Thus, the combinatorial
engagement of low affinity inhibitory and activating FcRs (74) by
differential immune complexes containing distinct antibody Fc
determines signaling (75) contributes to immune response
variability that could influence host outcomes.

Antibody Mediated Cellular
Effector Functions
Antigen bound antibodies induce cell surface FcR aggregation
and downstream signaling to induce effector functions (76)
(Figure 2C). Antibody dependent cellular cytotoxicity (ADCC)
is classically mediated by natural killer cells and macrophages
that express FcgRIII/CD16 (Figure 2D). Granules containing
perforin and granzyme from activated natural killer effector cells
as measured by CD107a and IFNg are released to mediate
cytolysis of target cells with antigens present on the surface
and recognized by the antibody. Following binding of IgG
immune complexes to platelets, the release of serotonin stored
in the granules is thought to contribute to systemic shock (77,
78). For FceR, aggregation can lead to activation of mast cells,
eosinophils and basophils with secretion of vasoactive amines
and enzymes to generate allergic responses. Thus, the effect of
granule release is dependent on the contents.

In addition to FcR aggregation, internalization of the antigen via
antibody dependent cellular phagocytosis (ADCP) is an Fc effector
function that can occur in neutrophils, monocytes, macrophages
and dendritic cells (Figure 2D). Neutrophils express FcRs that
engage IgG and IgA with phagocytosis (79), production of reactive
oxygen species (80) and neutrophil extracellular traps (NETs) (81,
82) as potential consequences. Monocytes and macrophages can
March 2022 | Volume 13 | Article 830482
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respond to IgG, IgA and, sometimes, IgE mediated antigen uptake
(62)with autophagy (83) andvesicular trafficking into the lysosome
(84) aswell as inflammasomeactivation (85, 86). In contrast,ADCP
indendritic cells induces antigenpresentation, cytokine production
andmaturation (70, 87–89).Thus, FcRcrosslinking inducemultiple
effector immune functions that are cell type specific.

In TB, antibody cellular effector functions have been described to
potentially impact bacteria during initial acquisition of infection and
in latent and active TB. In vitro Mtb infection studies show that
opsonophagocytosis is influenced by antibodies from BCG
vaccination (32, 48, 90). Because extracellular Mtb is thought to
exist primarily during initial acquisition of infection and active TB,
divergent cellular effector functions resulting from ADCP could be
more relevant in these states. Differential macrophage
phagolysosomal co-localization and inflammasome activation with
intracellular bacteria are reported with polyclonal IgG from latent
and active TB (16). Because intracellularMtb is associatedwith latent
infection, cellular effector functions that target an infected host cell as
opposed to bacteria alone could be relevant. This could beADCCbut
morebroadly speaking, anyeffector cell function that could impact an
infected target cell (for example granule or cytokine release, vesicular
trafficking, the production of reactive oxygen species) in cis or trans is
plausible. To this point, the discovery of new receptors that bind to
antibodies such as the cytoplasmic TRIM21 brings opportunities to
Frontiers in Immunology | www.frontiersin.org 6
expand the repertoire of linked cellular effector functions such as
ubiquitination and degradation of intracellular organisms (91). How
cytoplasmic receptors, asopposed tocell surface expressing receptors,
mediate responses to intracellularMtb is not knownbut broadens the
potential mechanisms by which antibodies modulate the immune
response in TB.

B Cell Functions
T cell-B cell interactions in lymphoid follicles lead to the
development of long-lived, antigen-specific humoral responses
from plasma cells and plasmablasts (92) (Figure 3A). Expression
of the CXCR5 chemokine receptor helps define the structure of B
cell follicles by facilitatingCD4Tcell trafficking to germinal centers.
In secondary lymphoid organs such as lymph nodes and tertiary
lymphoid structures in the Mtb-infected lung, CD4+ CXCR5+ T
cells are thought to mediate host protective responses (93, 94).
CCR7 regulates the trafficking of B cells toward the T cell zone,
where they present endocytosed antigen in the form of peptide
fragments loaded onto major histocompatibility complex type II
(MHC-II) molecules to CD4 T cells (95). In addition, naïve and
central memory CD4 T cells express CCR7, enabling circulation
through lymphoid organs and interactions with antigen presenting
cells (APCs). CCR7 knockout mice have a decreased ability to
control Mtb growth after high but not low dose aerosol infection
A B

D C

FIGURE 3 | Direct and indirect B cell responses occur in Mtb infection. Direct responses include cytokine production and differentiation of B cells specific into plasma
cells that secrete Mtb-specific antibodies (A). In response to Mtb infection in the lung, B cell effectors such as memory B cells, plasmablasts and plasma cells secrete
pro-inflammatory cytokines (TNFa, IFNg, IL2, IL6, GM-CSF and CCL3), while a subset of B cells can secrete inhibitory cytokines, such as IL10, which limits Th17 cell
and neutrophil infiltration. In secondary and tertiary lymphoid organs such as lymph nodes and inducible bronchus-associated lymphoid tissue (iBALT), B cells facilitate
antigen presentation to T cells (B, C). B cells receive T cell help from Tfh cells to initiate germinal center responses (B) and might also participate in priming T cells through
the transfer of Mtb antigens (purple) to dendritic cells via exosomes and extracellular microvesicles (C). Finally, Fc-FcR interactions can enhance Mtb phagocytosis,
macrophage and dendritic cell effecror functions, and antigen presentation to T cells in the lung granuloma (D).
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(51, 96). The T cell response is delayed in these knockout mice but
whether this is due to a decreased CCR7mediated B cell trafficking
andmaturation is less clear. Thus, the co-localization of T cells and
B cells in secondary and tertiary lymphoid structures are
opportunities for reciprocal interaction and synergy that could
influence outcomes in TB (Figures 3B, C).

The presence of B cells and follicular structures in granulomas
and inducible broncho-alveolar associated lymphoid tissue
(iBALT) is described in humans, mouse and non-human
primate models of TB. These pulmonary lesions are associated
with protection against active disease in the non-human primate
model (15, 93, 97–99). Furthermore, the identification of Mtb-
specific antibody responses and their association with protection
in latent infection and in other heavily exposed individuals
indicate a protective role for B cells in TB (16, 41, 49),
potentially through the activation of Mtb-specific T cell
responses and regulation of inflammation (13).

While dendritic cells classically act as APCs to activate T cells
in lymphoid organs, early experiments identified a role for B cells
in the priming of antigen-specific CD4 T cell responses to
vaccine antigens in mice (100). B cell depletion prior to
vaccination ablates subsequent T cell proliferation upon ex vivo
exposure to APCs and antigen. Interestingly, subcutaneous B cell
supplementation proximal to draining lymph nodes at the time
of vaccination rescues this muted T cell expansion. Moreover, B
cells produce cytokines that regulate T cell responses during
infection and persist as antigen-specific memory cells after the
resolution of inflammation (101). While patients with active TB
have dysfunctional circulating B cells (102–104), the implications
for effector functions beyond antibody production and how they
impact local (13, 15, 97) and systemic responses remains to be
clarified. Because B cell depletion by anti-CD20 antibodies alters
T cell activation, cytokine production and Mtb burden in
pulmonary lesions (15), evaluation at the lesional level may
afford the best appreciation of the diverse spectrum of B
cell functions.

B cells were only recently observed to act as natural APCs for
T cells, promoting their activation and proliferation when B cells
were exposed to T follicular helper (Tfh) cell CD40L and IL4
signaling in contrast to IL21 signaling (105, 106). Colocalization
at the T cell-B cell border of lymph nodes or within B cell follicles
represent opportunities for B cell antigen presentation to T cells,
facilitating T helper functions, B cell activation and clonal
expansion. Furthermore, the distinct presence of B cell follicles
and germinal centers in the lung as a feature of both granulomas
and the adjacent iBALT raises the possibility of roles for B cells in
local antigen presentation to T cells, either directly or via
exosomes and microvesicles (107) (Figures 3C, D). CD40-
activated B cells have been shown to prime at least transient
effector CD8 T cell responses to intracellular bacteria such as
Listeria monocytogenes (108). Dissecting the impact of B cell
mediated antigen presentation for the intracellular Mtb could
provide a path towards recognizing alternative mechanisms of T
cell activation.

B cells and plasma cells produce pro-inflammatory cytokines
(IFNg, TNFa, IL2, IL6, CCL3, GM-CSF) that are balanced by the
Frontiers in Immunology | www.frontiersin.org 7
ability of certain subsets to produce anti-inflammatory IL10 and
IL17 to regulate T cell responses (109). Exploitation of IL10
associated inhibitory properties by intracellular pathogens have
been described with Salmonella typhimurium (110) and Listeria
(111). In mouse models of these infections, stimulation of TLR2
and TLR4 induces IL10 production from B cells which, when
inhibited, improves host control of bacterial burden. In non-
human primate models of TB, IL10 is thought to regulate local
immune responses toMtb in lung granulomas where both T and
B cells traffick (112). Thus, it is plausible that like Salmonella and
Listeria, TLR2 signaling induced by Mtb (113) could modulate
IL10 levels through B cells as well as macrophages to locally
influence outcomes in TB lesions (114). Similarly, Th17
responses not only modulate B cell function by inducing class
switching but B cells, particularly the regulatory subset, can in
turn suppress Th17 responses (115, 116). In patients with more
severe cavitary TB disease, CD19+ CD1d+ CD5+ B regulatory
cells are increased, dampening IL17 (117, 118). Thus, IL10 and
IL17 are additional conduits through which B cells can regulate T
cell responses and subsequent protection as well as pathology.
AT THE INTERFACE OF INNATE HOST
Mtb INTERACTIONS

Antibodies in the Respiratory Tract
Because antibodies are detected at the alveolar epithelia, the site
of initial Mtb exposure in aerosol transmission, they are well-
positioned to mediate the initial interactions with bacteria. In
healthy humans, bronchial sampling by lavage demonstrates that
IgG is present in the respiratory tract at levels equivalent to
peripheral serum (119). During infection by the SARS-CoV2
virus, IgG levels increase even beyond those of IgA (120). In the
widely used C57BL6 mouse model, IgG, IgA, and IgM are
detected in the uninfected lung parenchyma with IgG2b levels
in bronchoalveolar lavage (BAL) fluid higher than those of IgA
(121). Thus, multiple isotypes and subclasses are likely present in
the respiratory tract for these early events.

Cross Reactive and Specific Antibodies
That Recognize Mtb
The repertoire of Mtb antigens recognized by antibodies in the
respiratory tract, as well as systemically, remains a critical gap in
knowledge. However, BCG vaccination (32, 47, 48, 122) and
exposure to environmentally prevalent non-tuberculous
mycobacteria likely introduce at minimum cell wall antigens
that elicit antibodies cross-reactive to Mtb (32, 123, 124). As in
the gut, symbiotic microbiota from the pulmonary compartment
could induce systemic IgG responses that induce protection
against pathogens (125). These antibodies arising from non-
self antigens complement those from self. Natural IgM and IgG
have the ability to engage with carbohydrate and lipid Mtb
targets to influence initial host-microbial interactions and
subsequent infectious challenge (126). As the products of B-1
cells (127) that arise during immune development independent
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of exogenous antigens and T cells, natural IgM targeting self-
antigens such as phosphorylcholine modulate autoimmunity and
responses to virus via antibody mediated induction of
complement (128) and efferocytosis of apoptotic cells (129,
130). In murine influenza studies, passive transfer of IgM from
uninfected mice into those deficient in B-1 B cells or are unable
to secrete IgM enhance survival and microbial specific IgG levels,
suggestive of a role in modulating the development of the
adaptive immune response in secondary lymphoid organs (131,
132). Beyond IgM, data from mouse studies suggest that natural
IgG can aid in FcR mediated phagocytosis of ficolin coated gram
negative and positive bacteria to impact susceptibility to
infection (133, 134). Whether by specific and or cross-reactive
antigen recognition, these studies suggest that localized and
systemic antibodies are poised to recognize Mtb and mediate
initial interactions within even an uninfected, naïve host.

In individuals who have developed an adaptive immune
response to Mtb infection, the over 4000 open reading frames
and the plethora of cell membrane and wall lipids and glycolipids
provide a spectrum ofMtb targets to which antibodies can direct
immune responses (28, 29). Because replicative and non-
replicative Mtb states vary in relative abundance of these
microbial antigens (135, 136), different specificities may be
relevant for antibody functions in latent TB, active TB and
with prior antimicrobial treatment. T cell responses to genes
encoded by the dormancy regulon ofMtb are enhanced in latent
infection (137) but the impact from the antibody standpoint is
not known. Moreover, different clinical strains could mean that
the Fab domain repertoire vary by geographical region (138). It is
presumed that the majority of Mtb targets are expressed by live
bacteria and infected host cells including epithelial cells (139) as
well as macrophages (140). However, exosomes in the blood and
granuloma also contain Mtb antigens that can activate immune
cells in vitro and in vivo (141, 142). Thus, antigen specific
antibody effector functions can be induced even in the absence
of live Mtb.

FcRs in the Respiratory Epithelia
With aerosol transmission, the first encounter between Mtb and
host likely occur with non-immune cells in the respiratory tract.
At this earliest stage, the conditions that determine if the bacteria
infect and cause disease are not known. Antibody Fc domain
engagement of receptors aid in translocation across the lumen
and induce non-immune cells to secrete local cytokines,
activating resident immune cells such as alveolar macrophages.
Thus, FcR on epithelial airway cells could be the first to
encounter antibody-complexed Mtb to enable bacterial
movement and initiate host responses. The two most abundant
FcR in the respiratory tract are the neonatal FcR (FcRN) and
polymeric immunoglobulin receptor (pIGR) though other FcRs
that bind IgG, IgA and IgE are also expressed.

In the respiratory tract, FcRN facilitates transport of IgG
across the mucosal surface (143). Its high affinity nature permits
binding to monomeric IgG to guide through the endocytic
excretion pathway and extend serum half-life by preventing
lysosomal degradation. After low dose aerosol Mtb challenge,
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pulmonary bacterial burden is lower in FcRN knockout
compared to wildtype mice at early but not late timepoints.
However, there is an absence of differences in initial inoculum
(121) and dissemination into the spleen and liver. These findings
indicate that though uptake may be similar via non-Mtb specific
antibodies, subsequent host responses and bacterial outcomes
are transiently affected (121). Monoclonal Mtb specific IgG but
not IgA increases opsinophagocytosis in FcRN expressing A549
human lung epithelial cell line (31). Thus, in vivo and in vitro
data suggest that Mtb reactive IgG from prior mycobacterial
exposure enhances early infection transiently via FcRN at the
epithelium. The implications for outcomes in chronic disease
and in the presence of Mtb reactive antibodies induced by BCG
vaccination, prior Mtb or NTM infection are less clear but likely
involve immune as well as epithelial cells.

Similar to FcRN, the polymeric immunoglobulin receptor
(pIGR) is widely expressed in the respiratory tract. Unlike FcRN
which focuses on IgG, pIGR supports the transport of dimeric
IgA and, to a lesser extent, IgM from the interior basolateral
surface of the epithelium to the exterior apical side. Interestingly,
IgA levels are decreased in saliva but not bronchoalveolar lavage
in a total mouse pIGR knockout (144). In these mice, there is an
early and unsustained increase in pulmonary bacterial burden
and decrease in IFNg and TNFa after low dose aerosol infection
with virulent Mtb strain H37Rv. These data suggest that the
effects of non-specific IgA transported to upper respiratory tract
by pIGR can be transiently protective in early infection.

Direct neutralization byMtb specific compared to non-specific
IgA in the mucosa that blocks bacterial uptake could mediate a
more significant and durable effect. Monoclonal antibodies
targeting the mycobacterial glycosylated lipoprotein phosphate
transporter subunit PstS1 demonstrate this potential in human
lung epithelial cells in vitro (31). Polyclonal antibodies induced
after intranasal vaccination with PstS1 shows that in vivo
protection in a high dose intranasal BCG challenge model can
be generated in a pIGR dependent manner (31). That FcaR/CD89,
the primary human IgA FcR, is not detected on human epithelial
cells or expressed in mice points towards direct neutralization as
one likely mechanism. However, other receptors for IgA including
Fca/m receptors (145), asialoglycoprotein receptors (146),
transferrin receptors (147) and M cell receptors (145, 148) have
been reported to be able to bind to the IgA Fc domain. These
receptors provide unexplored FcaR/CD89 independent
mechanisms of non-neutralization by which Mtb specific IgA
that could inhibit bacteria in the respiratory tract.

While the type I FcgRs are commonly described in cells of
hematopoietic lineage, which consequently have been the focus
of most functional studies, some data suggest that these FcRs can
be found in non-immune cells, permitting IgG to induce non-
neutralizing functions. The low affinity FcgRIII/CD16 is
expressed in primary nasal epithelial cells and in vitro blocking
antibody studies demonstrate a role in mediating IgG opsonized
bacterial cytokine induction (149). The low affinity inhibitory
FcgRIIb/CD32b but not the IgE receptor FceRIII/CD23 is
present in primary human airway smooth muscle cells (150).
Understanding non-neutralizing Fc effector functions mediated
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by non-immune cells in the airway lumen to Mtb could provide
insight into the factors that determine whether colonization or
deeper infection occurs.

FcRs Mediating Macrophage
Environments That Permit and
Restrict Mtb Growth
Macrophages represent a quintessential niche for Mtb where
bacteria grow and die. In the high dose aerosol murine infection
model, tissue resident, long-lived alveolarmacrophages act as initial
host cell targets forMtb (151) and contribute to the development of
immune conditions that permitMtb replication and dissemination
(151, 152). Bone marrow derived monocytes and macrophages are
subsequently recruited to join their embryonic tissue resident
counterparts. Further infection of these populations show
heterogeneity between and within the groups. Initial studies
suggested an M1 and M2 paradigm to describe macrophage
restrictiveness and permissiveness to Mtb (153). However, more
recent data from single cell mouse and human macrophage
transcriptomics suggest that the determinants of bacterial
outcomes are far more complex (154, 155). Whether or not FcR
mediated signaling contribute to the heterogeneity of macrophage
responses toMtb isnot known,but the combinatorial diversity from
engagement of the multiple low and high affinity receptors
expressed in this immune cell provides this potential.

Macrophages express a plethora of FcRs that enable
responsiveness to antibodies found in the blood and tissue,
including Mtb lesions such as granulomas (156). High affinity
FcgRI/CD64 and FcRN allow monomeric IgG to influence
macrophage phenotypes. The low affinity activating FcgRIIIa/
CD16a and FcgRIIa/CD32a permit further tuning with IgG
immune complexes, counterbalanced by the only inhibitory
receptor FcgRIIb/CD32b. In being the only immune cell other
than natural killer cells that expresses a significant level of
FcgRIIIa/CD16a which classically mediates ADCC, macrophages
have the potential to be both effector and target cells. In being like
all other immune cells where the cytosolic FcR TRIM21 is
expressed, antibodies may also enable the macrophage to target
intracellular Mtb. For tissue macrophages including alveolar
macrophages the activating low affinity FcgRIIIa/CD16 and high
affinity FcgRI/CD64 are particularly highly expressed when
compared to blood monocyte derived macrophages (157, 158).
Examining the link between FcRs and cell population specific
responses to Mtb could clarify how macrophages permit and
restrict bacterial replication.

Classic experiments show that extracellular Mtb uptake
mediated by live BCG immunized rabbit serum into mouse
peritoneal macrophages direct bacteria into phagosomes, though
the outcomes for the bacteria and host vary (159). Trafficking of
Mtb into the phagolysomal and autophagosomal compartments,
induction of pro- and anti- inflammatory cytokines and likely
multiple other cellular effector functions collaboratively determine
intracellular bacterial fate. Much of the literature has focused on
opsonophagocytosis. Thus, classical FcRs at the cell surface
involved in ADCP including FcgRI/CD64, FcgRII/CD32 and, to
a significantly lesser extent, FcgRIII/CD16a (47) play roles in
uptake of extracellular Mtb into monocytes and likely
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macrophages. For the intracellular bacteria Legionella (160), the
initial steps of FcR mediated entry into the macrophage govern
intracellular fate, but for Mtb this remains unknown.

As important as extracellular Mtb, in vitro data suggest that
antibodies can also impact intracellular bacteria, the predominant
state in infection. Addition of polyclonal IgG from latent compared
to active TB patients to macrophages already infected with Mtb
induce lower intracellular burden (16). That these antibodies have
higher affinity for FcgRIIIa/CD16a and induce higher ADCC in
vitro with natural killer cells that express FcgRIIIa/CD16a suggests
that a similar mechanism could be occurring with Mtb infected
macrophages as target and effector cells. An alternative and
complementary mechanism could be via the cytosolic E3
ubiquitin ligase TRIM21. This FcR is able to ubiquitinate
antibody bound intracellular viruses and bacteria such as
Salmonella for degradation (91), though for Mtb this is not yet
known. Thus, antibodies through surface and cytoplasmic FcRs can
impact intracellularMtb directly or indirectly to restrict growth.

Whether antibodies induce macrophages to restrict or permit
Mtb infection and replication likely results from the sum of
engaging multiple high and low affinity activating and inhibitory
FcRs, which could differ for extracellular and intracellular
bacteria. Additional immune cell signaling pathways could also
contribute. For example,Mtb components interact with Toll like
receptors (TLR) (161) to induce innate macrophage responses.
Cross talk between TLR and FcR signals on macrophages have
been described (162). Understanding the interactions of these
pathways for Mtb could highlight macrophage diversity in the
context of bacteria, antibodies and pathogen associated
molecular patterns (PAMPs) that exist in concert throughout
infection and disease.

FcR Mediated Neutrophil Inflammation
in TB
Like in macrophages, much of the literature on neutrophils in TB
have focused on inflammation in active TB (3, 163). Correlations
between blood transcriptional signatures with disease suggest that
neutrophils mediate or reflect pathogenic inflammation. While
expression levels of the high affinity FcgRI/CD64 is consistent
with this, additional low affinity receptors capable of binding to
IgG and IgA provide the potential for antibodymediated protective
effector functions via the peripheral blood and granuloma where
neutrophils surroundMtb infected macrophages.

Neutrophils have a partially overlapping FcR repertoire with
macrophages. Like macrophages, the low affinity activating
FcgRIIa/CD32a, and inhibitory FcgRIIIb/CD32b, as well as
high affinity FcRN and TRIM21 are constitutively expressed.
Unlike macrophages, high FcaR/CD89 expression characterizes
these granulocytes, permitting responses to IgA. The monomeric
isoform FcgRIIIb/CD16b is constitutively expressed instead of
the heterooligomeric FcgRIIIa/CD16a. FcgRI/CD64 expression is
not constitutive but rather induced by IFNg (164). Thus,
baseline and induced FcR permit a spectrum of neutrophil
phenotypes in Mtb infection.

Transcriptomics data show that FcgRI/CD64 expression and
neutrophil activation are correlates of TB disease progression
across multiple human cohorts (3, 165) and mouse and non-
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human primate models (68). However, despite bearing the same
names, murine and human CD64 differ in their binding abilities
and expression patterns such that they are not functional
homologues. Knockout in mice leads to a transient decrease in
pulmonary Mtb at 60 days along with decreased neutrophil but
not macrophage recruitment to the lungs, suggesting that FcgRI/
CD64 enhances disease (68). Though there are limitations to
extrapolating these mouse data to humans, increased FCGR1/
CD64 copy number in individuals with active disease shows
association with poorer outcomes (67). Neutrophil FcgRI/CD64
expression is a biomarker for sepsis in children and adults with
bacterial infections (166). As such, FcgRI/CD64 is likely similarly
a correlate of inflammation for TB.

In contrast, the expression of FcgRIIa/CD32a and FcgRIIIb/
CD16b on neutrophils suggests the potential existence of an IgG
mediated protective function. While ADCC is typically described
as a natural killer cell FcgRIIIa/CD16a function, neutrophils can
also be effector cells with FcgRIIa/CD32a being the activating
receptor, negatively regulated by FcgRIIIb/CD16b as shown in
tumor models (167). In TB, higher FCGR3B copy number in a
subpopulation of Ethiopians is associated with HIV-TB
compared to HIV alone (69), suggesting that decreased
neutrophil ADCC could be associated with more severe disease
in dually infected individuals.

Beyond IgG, studies using human FcaR CD89 transgenic mice
point towards the potential for IgA mediated FcR functions to
impactMtb. Opsonization of H37Rv with human monoclonal IgA
targeting the alpha crystallinMtb protein HspX prior to high dose
intranasal challenge of these mice leads to decreased pulmonary
bacterial burden early after infection compared to non-transgenic
littermates. Thus, beyond direct binding, IgA Fc mediated non-
neutralizing functions through FcaR/CD89 can impact events that
affect the development of adaptive immunity (168). Whether
protection occurs via neutrophils, monocytes/macrophages or
other immune cells, the durability of such protection and how
much can be translated into humans remain to be clarified (169).
Intriguingly, IgA monoclonals can also induce neutrophil-
mediated ADCC (170), providing a plausible mechanism by
which antibodies can inhibit Mtb. In contrast, there is evidence
that both IgA and IgG can induce neutrophil and monocyte
mediated trogocytosis (171, 172), a phagocyte nibbling process
which can contribute to the spread of intracellular organisms such
as Francisella tularensis and Salmonella from infected to uninfected
cells (173). Thus, some antibody induced neutrophil functions
could contribute to Mtb pathogenesis. Indeed, NETosis is
initiated by many receptors, amongst which FcgR (174, 175) and
FcaR (81) are members. As NET formation is detected in necrotic
lung lesions of TB patients which promote bacterial growth (163),
antibody mediated neutrophil activation can be as locally
pathologic as it is systemically.

FcRs Influencing Dendritic Cell
Antigen Presentation
Dendritic cells are the most efficient professional APCs that
prime T cells. As such, enhancement of dendritic cell functions in
the context of vaccination can in animal models produce
sterilizing protection for Mtb (176). Studies in other infectious
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disease and cancer models show that antibodies through FcR on
dendritic cells bridge the gap between innate and adaptive
responses, but how this can confer long lasting immune
memory for TB in a physiologically relevant setting continues
to be re-evaluated.

Similar to macrophages, dendritic cells express a plethora of
receptors that permit responsiveness to antibodies in the lung
upon recruitment in Mtb infection. Monocyte derived dendritic
cells and macrophages express baseline high levels of activating
FcgRs, and conventional and plasmacytoid dendritic cells can
also express the only inhibitory FcgR FcgRIIb/CD32b (177). By
engaging both activating FcgRIIa/CD32a and inhibitory FcgRIIb/
CD32b low affinity signaling, IgG can influence antigen uptake
and presentation, maturation and cytokine production. These
activities likely direct priming either at the primary pulmonary
site of Mtb infection or in the draining lymph nodes as adaptive
immunity develops (70, 87–89, 178). Moreover, in addition to its
recycling function, the high affinity FcRN in concert with
FcgRIIa/CD32a can regulate cross presentation of IgG immune
complexes (179). Exactly how this occurs in TB is unclear. FcRN
knockout mice have enhanced Mtb infected CD103+ dendritic
cells and CD4 T cell priming early at day 14 of infection, with
decreased Mtb burden on days 14 and 28. However, it appears
that this effect is transient, leading to similar pulmonary burdens
on day 56 (121).

An anti-tumor T cell “vaccinal effect” through engagement of
FcgRIIa/CD32a on dendritic cells can be induced in a human
FCGR transgenic mouse model with monoclonal antibodies. This
is in addition to the transient clearance of tumor cell targets by
macrophage FcgRIIIa/CD16a mediated ADCC (180). This
FcgRIIa/CD32a dendritic cell mediated effect is even more
pronounced in the context of influenza infection. Fc
engineered antibodies show that binding to FcgRIIa/CD32a on
dendritic cells increases CD40, CD80 and CD86 expression that
induces protective CD8 T cell activation while FcgRIIIa/CD16a
on macrophages had a limited role (181). A direct link between
antibody mediated effects on dendritic cell antigen presentation
and B and T cell maturation have yet to be shown for Mtb.
However, any protective in vitro effect of polyclonal IgG on
dendritic cells from humans highly exposed toMtb is dependent
on the presence of MHC-II and CD4 T cells in whole blood (49).
This suggests that the interaction is plausible in natural exposure
and could be leveraged by vaccines.

Regulation by the Inhibitory FcgRIIb/CD32b
Activating FcR mediated immune responses in the absence of
checks and balances lead to autoimmune induced pathology.
Though there are multiple regulatory points, FcgRIIb/CD32b is
the only inhibitory FcgR and is the only FcgR well conserved
between humans and mice (182). The high sequence similarity
between the extracellular domains of FCGRIIB/CD32B, FCGRIIA/
CD32A and FCGRIIC/CD32C and the paucity of specific
monoclonal antibody probes limit experimental designs.
However, the knockout mouse model has provided some hints
as to the importance of inhibitory FcgR regulation in TB.

In response to low dose Mtb aerosol infection, mice
genetically deficient in FcgRIIb/CD32b have increased CD4 T
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cell IFNg production, decreased bacterial burden in the lungs and
spleen, and decreased neutrophilic inflammation at day 30 (13).
Thus, in early infection, activating FcR signaling that enhance
CD4 T cells are protective. However, the implications for chronic
disease, which is more characteristic of human TB, are unclear as
the autoimmune phenotype of these knockout mice confound
the interpretation of Mtb survival experiments that last over
one year.

Because FcgRIIb/CD32b is detectable on dendritic cells and
subpopulations of monocytes, macrophages and neutrophils, it is
likely that the cumulative impact of the only inhibitory FcgR for
TB reflects functions from all of these immune cells. In human
(70) and mouse dendritic cells (88), FcgRIIb/CD32b counter
balances FcgRIIa/CD32a activation of maturation, secretion of
inflammatory cytokines and MHC-I and MHC-II antigen
presentation (87). Thus, loss of FcgRIIb/CD32b in dendritic cells
likely promotes the development of a Th1 response able to inhibit
Mtb. However, FcgRIIb/CD32b in follicular dendritic cells
counterintuitively enhances B cell activation by multimerizing
antigens to crosslink multiple B cell receptors (BCRs) (183). The
existence of this T cell independent mechanism of antibody
induction suggests stark differences within dendritic cell subsets
that could have implications for long lasting immunity. For
monocytes, macrophages and other granulocytes, the presence
of activating FcRs determine the impact of FcgRIIb/CD32b (74, 75,
156). This further argues that FcgRIIb/CD32b functions are likely
highlighted primarily in the context of stimulatory factors as
opposed to acting in isolation.

In B cells, FcgRIIb/CD32b negatively regulates BCR signaling,
expansion and plasma cell differentiation (184), suggesting that
antibody production is also inhibited. Thus, Mtb specific
antibodies generated in knockout mice could be higher when
compared to wildtype. Higher levels of IgG, IgM and IgA could
enhance immune cell effector functions, further contributing to
anti-Mtb activities in the absence of an inhibitory checkpoint.

Finally, there is emerging evidence from adoptive transfer
experiments that FcgRIIb/CD32b can act as a CD8 T cell
checkpoint inhibitor involved in anti-tumor immunity (185).
Extrapolation for Mtb would implicate an involvement of the
inhibitory FcR more directly in the regulation of cytotoxic T cell
functions that could be protective.
INFLUENCING ADAPTIVE IMMUNITY

Fc Receptors on T Cells
WhileMHC-I andMHC-II antigen presentation and expression of
co-stimulatory ligands by APCs and B cells represent the primary
paths through which CD4 and CD8 T cells are activated, there is
somedata to suggest that activating FcR canmore directly influence
T cells. T cell activation and differentiation has been associatedwith
expression of the low affinity FcR, FcgRII/CD32, including both
CD4 (186–188) and CD8 T cells (181, 189). On a small subset of
CD4 T cells from blood and lymphoid tissues of humans and
Rhesus macaques with and without HIV/SIV infection,
proliferation, differentiation and cytokine production could be
Frontiers in Immunology | www.frontiersin.org 11
enhanced by immune complex activation of FcgRIIa/CD32a (186,
187). Interestingly, IgM binding to the Fcm receptor on peripheral
humanT cells increasesT cell receptor (TCR) andCD28coreceptor
expression, thereby lowering the threshold for T cell activation
(190). Thus, high levels of IgM such as that induced by intravenous
BCG could provide co-stimulation through FcR binding and
enhance early T cell responses to lead to protection against Mtb
(32). Evaluation of these T cell subsets in TB would provide greater
clarity as to whether FcR binding could serve a co-stimulatory
function in vivo when T cells are activated naturally through TCR-
dependent mechanisms.
B Cells in Antigen Presentation to T Cells
The interactions between naïve T cells and APCs within the T
cell zones of secondary lymphoid organs determine the
repertoire of TCRs, which is governed by antigen availability
and TCR binding characteristics (191). B cells recognize and
respond to the structure of 3-dimensional antigens, including the
simultaneous binding of non-sequential, distant residues which
become juxtaposed upon protein folding. However, T cells
recognize sequential amino acids within short peptides only
when they are presented in the context of the MHC molecule.
Since antigens are bound to the BCR, endocytosed, processed
and presented as peptides, antibodies produced by differentiated
plasma cells might affect the activation of peptide-specific T cells
targeting the same Mtb protein. Thus, B cells could present
antigens for the purpose of activating conventional T cells in a
manner similar to their presentation of antigens to T follicular
helper (Tfh) cells (Figure 3B) (111).

The most well-characterized interactions between B cells and
T cells occurs in the context of B cell antigen presentation to Tfh
cells in secondary lymphoid organs. This facilitates B cell
activation and differentiation into antibody-producing plasma
cells. However, the professional antigen-presenting capacity of B
cells together with their strategic localization in and around sites
of T cell priming in secondary lymphoid organs, granulomas and
iBALT after Mtb infection suggests a broader role, including
participation in Mtb-specific T cell activation.

Classically, CD4 T cell priming in response to Mtb has been
shown to occur when T cells are activated by conventional
dendritic cells in lymph nodes after CCR2+ monocyte-derived
APCs transport live Mtb from the lung to the draining lymph
nodes (178, 192, 193). After priming, effector T cells traffick to
the lungs and secrete IFNg and cytokines in response to Mtb.
However, depletion studies in animal models identified a role for
B cell antigen presentation in supporting optimal T cell
responses in infectious disease and autoimmune models,
suggesting that this too could occur in the context of TB. In a
mouse model of adjuvanted peptide vaccination, B cell
presentation of peptides on MHC-II was found to be necessary
to enhance CD4 T cell expansion and IL2 production (106). B
cell depletion using an anti-CD20 monoclonal antibody in mice
significantly reduces total baseline numbers of naïve, effector,
and regulatory CD4 and CD8 T cells. In the context of
lymphocytic choriomeningitis virus (LCMV) Armstrong
infection, this leads to increased viral load, an effect which is
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rescued by infusion of LCMV-specific TCR transgenic CD8 T
cells (194). Similarly, B cell depletion prior to infection with
Trypanosoma cruzi reduces subsequent induction of total and
parasite-specific CD8 T cells (195), and B cells are critical in the
development of antigen-specific effector and memory CD4 T cell
responses to Listeria (196, 197) and Salmonella (198). Finally, at
least two studies have shown a supporting role for B cells in
priming autoreactive T cell responses in mouse models of
autoimmune diabetes, arthritis and lupus independent of
plasma cell differentiation and antibody production (197, 199).
These data indicate that B cells assist antimicrobial and
autoimmune T cell responses either directly or indirectly.

An indirect mechanism of antigen presentation to T cells by B
cells is secretion of MHC-II containing exosomes or extracellular
vesicles. In this scenario B cells activate T cells in an HLA-DR
dependent manner (200–202). T cell stimulation by extracellular
vesicles is dependent on expression of the costimulatory receptor
CD28 (203). This mechanism of antigen presentation is of
particular interest in TB as both extracellular microvesicles and
exosomes fromMtb infected macrophages and dendritic cells are
sources of antigen that can directly or indirectly activate antigen-
specific CD4 and CD8 T cells (204–208). Though not yet studied
in TB, B cell exosomes may serve a similar function to provide
alternative ways to activate T cells to compensate for Mtb
immune evasion in macrophages (209–211). It is also possible
that B cell exosomes provide a means of transferring units of
MHC class II-peptide complexes between different cells (212)
(Figure 3C). Thus, MHC-II provides multiple lines of B cell-T
cell communications.

In addition to T and B cells, tingible bodymacrophages (TBMs)
are found in thegerminal centers in lymphnodes, spleenand iBALT
from the non-human primate model of TB (213). TBMs are
specialized macrophages that engulf apoptotic B cells during
affinity maturation (214, 215). In this manner, TBMs prevent the
loading of self-antigens from cell debris immune complexes onto
follicular dendritic cells that present to B cells (216, 217).Moreover,
studies using ovalbumin-specific T cell hybridomas show that
antigen-laden TBMs suppress the ability of B cells to activate T
cells (215), thereby preventing autoimmune responses. In the
mouse model of TB, dendritic cells uptake extracellular vesicles
from apoptotic macrophages infected withMtb and stimulate CD8
T cell responses in an MHC-I or CD1-dependent manner (218).
These data imply a role for scavenger APCs in presenting Mtb
antigens to regulate T cell responses. Cross-priming of CD8 T cells
from APCs is likely important for the recognition and killing of
many pathogen infected cells. In TB, acquisition of antigens via
efferocytosis and uptake of extracellular vesicles enhances the
number of antigen specific CD8 T cells that recognize Mtb
infected macrophages (130, 219, 220). TBM mediated
efferocytosis and T cell cross-priming could explain the
association of B cell follicles with protection against active disease
in the non-human primate model of TB (213).

B Cell Follicle-Like Structures
Like a granuloma, the iBALT is a tertiary lymphoid structures that
enrich and facilitate interaction between myeloid cells, B cells, T
Frontiers in Immunology | www.frontiersin.org 12
cells and non-hematopoietic cells (107, 221). Adjacent to
granulomas, the iBALT is a pulmonary structure consisting of B
cell follicles and components of the lymph node including high
endothelial venules and connection the lymphatic drainage (93, 99,
107, 222–225). Induced early after infection, the follicles contain
IgD+ B cells clustered around a network of follicular dendritic cells.
These stromal cells produce IL1a, express the lymphotoxina (LTa)
receptor and secrete CXCL13 (225) to help recruit immune cells to
form the iBALT (226). The iBALT is associated with protection in
the setting of Mtb, serving as both a lymphoid organ and a lung-
resident source of locally-activated, antigen-specific T and B cells
primed for rapid responses (107, 213).

The iBALT is a feature of type 1 immune responses and is
reported to regulate type2 and type17 responses.A recent study ina
mouse model of asthma found that pre-existing iBALT delayed the
onset of Th2 trafficking and related inflammation (227). In amouse
model of influenza infection, the iBALT offers protection through
supporting antigen specific CD8T cells, humoral responses and the
formation of immunological memory even in the absence of spleen
and lymph nodes (228, 229). The iBALT has also been shown to
recruit dendritic cells harboring antigens and naïve T cells, leading
to co-localization and T cell priming (230). For TB, the association
of iBALT formation with protective phenotypes in human lung
tissue aswell as in themouse andnon-humanprimatemodels point
towards a protective feature against active disease (93, 213,
231, 232).

In TB, the extent of T and B cell priming in the iBALT versus
lung-draining lymph nodes has been incompletely explored. The
priming of naïve antigen specific CD8 T cells after non-
replicating viral vector infection has been demonstrated in
adoptive cell transfer models in mice (230). However, in the
mouse model of TB, priming of naïve T cells in the lung is
undetectable (178, 192, 233). Memory T cell priming in the lungs
has only been shown after the intratracheal transfer of antigen-
laden dendritic cells (234). Yet previously activated T and B cells
do traffick through the iBALT in other infectious models (229).
Tfh cells which are critical to germinal center formation and B
cell differentiation into antibody-producing plasma cells are
normally found in secondary lymphoid organs lymph node
and spleen and may have the same role in iBALT (107, 235). T
cells that express properties of both Th1 and Th17 cells, along
with Tfh cells are found in the lung, express CXCR5, produce
IFNg and/or IL17 and are associated with iBALT formation and
control ofMtb infection (93, 107). For protection against TB, Tfh
cells in the lung support germinal center responses involved in
(1) the development of memory B cells and differentiation into
antibody producing plasma cells, (2) the regulation of pathologic
immune responses such as neutrophilia and cavity formation, (3)
the classical priming of T cells locally, and (4) the non-classical
activation of CD8 and CD1-restricted T cells by cross-priming
and efferocytosis (130, 218, 219).

The formation of iBALT near bronchi or in the lung
interstitium is influenced by the infecting microbe and host
response (236, 237). The recruitment of dendritic cells,
macrophages, and innate lymphoid cells leads to cytokine and
chemokine production that enlists B and T cells (223, 230). More
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specifically, in early Mtb infection, type 3 innate lymphoid cells
(ILC3s) (223) and production of IL23, IL17, IL22 and CXCL13
direct B and T cells into the lung of the mouse model (238).
Within the iBALT, conventional dendritic cells and T cells
localize around B cell follicles into germinal center-like
structure. Over time distinct T cell and B cell zones are formed
(228, 230). Thus, lymphocytes expressing CCR7 and CXCR5
traffick to and organize the iBALT (93, 239). In addition, CCL19,
CCL21 and CXCL13 from follicular dendritic cells are critical to
establishing structure (228). These same axes (CCR7-CCL19/
CCL21 and CXCL13-CXCR5) are required for T and B cell
homing, antigen presentation, T cell activation, IFNg production
and control of Mtb growth (93, 222, 240). Finally, a recent
transposon mutagenesis screen in the non-human primate
model of TB identified gene associated with production of Mtb
cell wall lipids with the formation of iBALT (98). Together, these
studies show that the extent of protection offered by the iBALT
(241) is likely dependent on both the infecting organism and
the host.
COMPLEXITY OF IMMUNITY IN TB

Protection and Sterilizing Immunity
One goal of an effective TB vaccine is to prevent infection or
provide sterilizing immunity to the host. However, generating a
sufficiently robust and durable immune response that neutralizes
and eradicates Mtb could come at a survival cost to the host. To
this point, enhancement of CD4 T cell responses at the level of
immune checkpoints such as PD-1 counterintuitively enhances
disease and decreases survival in mouse studies (242). In some
patients, anti-PD-1 monoclonal antibodies used to treat cancer
precipitated reactivation TB from latently infected individuals
(242). Indeed, post-hoc analyses of the MVA85A clinical trials
demonstrate that higher frequency of HLA-DR+ activated CD4
T cells can be associated with increased risk of TB while higher
Ag85A IgG titers correlate with protection (243). Thus, strategies
that release the break on T cells unilaterally could provide more
harm than benefit. Nevertheless, a cytomegalovirus vectored
vaccine generating antigen-specific T cell but no antibody
responses prevented TB in nearly half of the Mtb-challenged
non-human primates (244). Elucidating how immune responses
can provide benefit with minimal cost will likely have broad
applicability to vaccines across many infectious diseases.

Most TB vaccines in clinical development now incorporate both
antibody and T cell responses, though which are correlates of
protection and which of disease remain to be fully clarified. These
vaccines include but are not limited to the M72-AS01e subunit
vaccine containing a recombinant fusion protein of Mtb32a and
Mtb39a (245) and BCG in multiple forms (246). While much has
been evaluated involving the classic intradermal delivery,
revaccination (247, 248) and the use of the recombinant VPM1002
expressing listerolysin-O to enhance CD8T cell responses (249, 250)
are variations currently in clinical trials. Inpre-clinicalmodels there is
attention paid to delivery route- intravenous (32, 251), intranasal,
aerosol, intratracheal and endobronchial (252). For both BCG and
MTBVAC, an attenuated Mtb strain lacking the phoP and fadD26
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virulence factors, antigen specific IgG are detected in pulmonary but
not intradermal vaccinated animals and facilitate Mtb
opsonophagocytosis in vitro (253). Thus, independent of what is
induced during natural infection and disease, vaccine strategies that
incorporate a greater breadth and depth of responses including B
cells, antibodies and trained innate immunity (254, 255) could
complement T cell responses to more effectively eradicate Mtb (32,
251, 256, 257).

Pathology and Disease
A second goal of an effective vaccine is to prevent TB disease and
lung pathology. This, notably, does not necessarily imply
eradication of the bacteria. In humans, there is increasing
recognition that latent TB may represent a protective state (2,
258). Indeed only 5-10% of individuals progress to active disease.
Yet the immune mechanisms by which the transition between
latent and active disease occurs in humans and the corollary of
how the remaining 90-95% of individuals maintain the
asymptomatic latent state – whether this be with dormant or
eradicated bacteria (2) – are not known. This phenotype has been
difficult to study in animal models. The classic murine model
recapitulates active TB but not latent infection. Furthermore,
there is a disconnect between Mtb burden, dissemination and
survival observed in passive antibody transfer studies of mice
(259, 260). Thus, mechanisms by which asymptomatic Mtb
latent infection is sustainably induced could be leveraged for
vaccine design. To this point, antibodies have the potential to
enhance disease whether directly through increased replication
such as in Dengue hemorrhagic fever and Leishmania or
indirectly through inducing a dysregulated immune response
such as in COVID-19 (261). Understanding whether and how
antibodies can enhance TB disease by mediating pathological
inflammation in immune reconstitution inflammatory syndrome
or simply supporting dissemination (262, 263) could provide
novel host directed therapeutic targets.

Several candidate subunit TB vaccines aim to prevent not
only initial infection but also pathology once infection has
occurred. These include, but are not limited, to H56:IC31 that
encompasses Ag85B, ESAT6 and Rv2660c (264), and the ID93 +
GLA-SE vaccine which contains a TLR4 agonist formulated with
a recombinant fusion protein of theMtb virulence factors (esxV/
Rv3619, esxW/Rv3620, PPE42/Rv2608) and Mtb latency
associated protein Rv1813 (256, 265, 266). Administration of
these vaccines in animal models induces robust antigen specific
immune responses that, when combined with antibiotics, is
linked to decreased bacterial burden and lung pathology in
comparison to antibiotics alone. The highly effective mRNA
vaccines BNT162b2 and mRNA-1273 successfully prevents
both infection and serious disease with spike specific T cell and
antibody responses against SARS-CoV2 (267, 268). As such,
mRNA platforms provide promising avenues for TB vaccines in
generating immune responses that both protect against Mtb
infection and prevent disease pathology.

Challenges in Modeling Tuberculosis
Inherent differences between the widely used inbredmousemodels
and humans are critical to acknowledge when extrapolating data
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(269). Antibody translocation and recycling functions of FcRN and
pIGR in humans are recapitulated in the murine model. Similarly,
the non-classical IgG binding TRIM21, the single IgM receptor
(FcmR), the two receptors for IgM and IgA (pIGR and Fca/mR/
CD351) and the two receptors that bind to IgE (FceRI and FceRII)
in humans are also found in mice. Unique to humans is FcaRI/
CD89which binds only IgA. For the classical IgG receptors (24), the
expression of the activating FcgRI/CD64 in mice is limited to
monocytes, macrophages and dendritic cells whereas in humans
the spectrumalso includes neutrophils.Conversely, FcgRIIIa/CD16
in humans is restricted to natural killer cells, monocytes and
macrophages while in mice the spectrum also includes
neutrophils, dendritic cells, basophils, eosinophils and mast cells.
The only inhibitory Fc receptor, FcgRIIb/CD32b, is detected
primarily on B cells and other myeloid lineage cells in mice but in
a more limited capacity in humans. The activating FcgRIIa/CD32a,
FcgRIIc/CD32c and FcgRIIIb/CD16b exist exclusively in humans
while FcgRIV/CD16.2 is unique to mice. In addition, there is no
clear equivalence between the FcR binding capacity of the human
subclasses IgG1, 2, 3 and 4 andmouse IgG1, 2a/c, 2b and 3. Finally,
themouse IgG glycome partially overlapswith that of humans, with
the functional implications of the differences not yet defined (36,
270). Mice with human FcR and signaling adaptors (271) as well as
immunoglobulin genes (272) provide paths towards bridging the
species gap.However, ensuring similarities in expressionpatterns to
recapitulate immune effector functions at baseline and during
infection remains to be fully flushed out as levels of each receptor
influence each other.

For TB, the widely used low dose aerosol inbred mouse model
does not recapitulate latent infection and poorly captures the
phenotypic heterogeneity observed in humans (9, 273). The
absence of some mechanisms of protection involved in latency
may be one reason why results from vaccines studies in mice do
not always directly translate to humans. For example, the
promising 1-2 fold log reduction in colony forming units in
the mouse model with BCG is reflected by reduction of
disseminated TB in the pediatric population and variable
impact on adult pulmonary TB, the most common form (274).
Whether the aforementioned differences in antibody responses
between mice and humans could be a factor in this gap is not
known. Questions to this point could be addressed with diverse
outbred mice and or new models of TB such as ultra-low dose
aerosol infection that have the potential to reflect latent infection
more closely than the current most widely used approach (275–
277). Nevertheless, the canonical (and tractable) inbred mouse
model has generated data that has formed the foundations of our
understanding of antibody Fc effector functions in autoimmunity
and monoclonal antibody fields. Building on this knowledge to
address specific questions in the context of Mtb that could be
orthogonally tested in non-human primates and or ex vivo work
with patient samples provide paths to dissect physiologically
relevant mechanisms of disease.

Challenges in Defining Human TB
The development and exploitation of robust imaging,
microbiology and immune correlates techniques to characterize
the spectrum of TB observed clinically has transformed the
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classic framework of uninfected, latent infection and active
disease. Now it is possible to begin to better identify
individuals with high exposure, initial infection, the quiescent
bacterial state, subclinical infection, chronic smoldering disease
that progresses and regresses, overt active disease, bacterial
persistence after treatment and bacterial cure (41, 278–283).

Beyond pulmonary TB, extrapulmonary disease involving
hematogenous dissemination to the central nervous system, bone
marrow and other organs characterize a subset of cases. The risk of
multiorgan involvement increases with immunosuppression.
However, the precise mechanisms by which these additional TB
states develop are largely unknown but likely involve both bacterial
and host protective and pathologic immune factors (284).

Notably, not all immunosuppression leads to TB. Over 90% of
TST+ individuals do not develop active TB after receiving anti-
TNFa therapy, solid organ or hematopoietic stem cell
transplantation (2). Clinical observations in heavily
immunosuppressed adults such as these, particularly in the
absence of routine antibiotic prophylaxis for TB, indicate that a
proportion had elicited sterilizing immunity and cleared the
infection. In neonates, accidental delivery of live virulent Mtb
contaminating the BCG vaccine in the pre-antibiotic era led to
death inonly 29%of the cases and the surviving 70%had significant
variation in clinical phenotypes (285). These observations
demonstrate that there are likely multiple paths to protection that
leverage a diverse array of innate and adaptive immune responses.
Thus, in addition to CD4 T cell production of IFNg, the distinct
presence of B cells in granulomas in theMtb infected lung as well as
B cell follicles and germinal centers in the adjacent iBALT raise the
possibility that their functions influence outcomes. Similarly, the
presence of antibodies amidst the FcR bearing monocytes,
macrophages, neutrophils, dendritic cells and T cells recruited to
anMtb lesion points towards Fab and Fc domainmediated effector
functions that locally coordinate host responses to bacteria. In
revisiting the paradigm of protection and disease, linking diverse
immune responses that include antibodies, B and T cells will enable
the re-examination of the heterogenous spectrum of human TB.
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