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Chemical Graph entropy plays a significant role to measure the complexity of chemical structures. It has explicit chemical uses in
chemistry, biology, and information sciences. A molecular structure of a compound consists of many atoms. Especially, the
hydrocarbons is a chemical compound that consists of carbon and hydrogen atoms. In this article, we discussed the concept of
subdivision of chemical graphs and their corresponding line chemical graphs. More preciously, we discuss the properties of
chemical graph entropies and then constructed the chemical structures namely triangular benzenoid, hexagonal parallelogram,
and zigzag edge coronoid fused with starphene. Also, we estimated the degree-based entropies with the help of line graphs of the

subdivision of above mentioned chemical graphs.

1. Introduction

Mathematical chemistry is a field of theoretical chemistry
that uses mathematical approaches to discuss molecular
structure without necessarily referring to quantum me-
chanics [1]. Chemical Graph Theory is a branch of
mathematical chemistry where a chemical phenomenon is
theoretically described using graph theory [2, 3]. The
growth of organic disciplines has been aided by Chemical
Graph Theory [4, 5]. In mathematical chemistry, graph
invariants or topological indices are numeric quantities
that describe various essential features of organic com-
ponents and are produced from an analogous molecular
graph [6, 7]. Degree-based indices are among the topo-
logical indices used to predict bioactivity, boiling point,
draining energy, stability, and physico-chemical properties
of certain chemical compounds [8, 9]. Due to their
chemical applications, these indices have significant role in
theoretical chemistry. Zhang et al. [10-12] discuss the

topological indices of generalized bridge molecular graphs,
Carbon Nanotubes and product of chemical graphs. Zhang
et al. [13-15] provided the physical analysis of heat for
formation and entropy of Ceria Oxide. For further study
about indices, see [16, 17].Shannon [18] originated the
conception of information entropy in communication
theory. However, it was later discovered as a quantity that
applied to all things with a set nature [19, 20], including
molecular graphs [21-23]. In chemistry, information en-
tropy is now used in two modes. Firstly, it is a structural
descriptor for assessing the complexity of chemical
structures [24]. Information entropy is useful in this regard
for connecting structural and physico-chemical features
[25], numerically distinguishing isomers of organic mol-
ecules [26], and classifying natural products and synthetic
chemicals [27, 28]. The physico-chemical sounding of in-
formation entropy is a different mode of application. As a
result, Terenteva and Kobozev demonstrated its utility in
analyzing physico-chemical processes that simulate
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information transmission [29]. Zhdanov [30] used entropy
values to study organic compound chemical processes. The
information entropy is defined as:

z N (limi) i

ENT,
In

(1)
1 1
= log (In) — i Z N;A(I;m;)log A (I;m;).
i=1

Here, the logarithm is considered to be with base e while
Fy , Fpand A(Im) represent the vertex set, the edge set
and the edge weight of the edge (Im) in A. Many graph
entropies have been calculated in the literature utilising
characteristic polynomials, vertices degree, and graph
order [31-34]. Graph entropies, which are based on in-
dependent sets, matchings, and the degree of vertices
[35], have been estimated in recent years. Dehmer and
Mowshowits proposed several graph complexity and
Hosoya entropy relationships [23, 32, 36, 37]. For further
study, see [19, 21, 38-42, 59, 60].The graph & is struc-
tured into ordered pairs, with one object being referred to
as avertex set (#,) and the other as an edge set (¥), and
these vertices and edges being connected. When two
vertices of & share an edge, they are said to be neigh-
boring. The sum of the degrees of all neighboring vertices
of | is denoted by A;, and the degree of a vertex [ is
represented by R(I). By replacing each of S(%)’s edges
with a path of length two, the subdivision graph S(&) is
formed. The line graph is denoted by the symbol L () in
which |V (L(%))| = |E(%)| and two vertices of L(%) are
adjacent iff their corresponding edges share a common
end points in &.

1.1. Randi¢ Entropy [43, 44]. If A(Im) = (R(I) x R (m))*,
with « = 1,-1,1/2,-1/2, then

Y Am) =

ImeF g

> ROXR@m) =R.

ImeF

!
Now (1) represent the Randic Entropy.

ENT; (%) =log(R,) - (R)Z > (RO x R(m))*|

i=1 lmegp

log[ (R (1) x R(m))*].
(3)

1.2. Atom Bond Connectivity Entropy [45]. If A(lm) =
VR (D) x R(m) - 2/R (1) x R (m), then

R() + R(m) -2

Y Alm)= Y

ImeF g ImeF g

Thus (1) is converted in the following form:
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ENT ,35- (%) =log (ABC)

R +R(m) -2
(ABC)EZ,,;,; [\j R() x R(m) ] (5)

-log

1.3. The Geometric Arithmetic Entropy [43, 44]. If

A(lm) = 29/R (1) x R(m)/R (I) + R (m), then
Z A - 3 24/R (1) x R (m) _

ImeF g ImeFy & (l) + & (m)

A(F). (6)

Now (1) takes the form as given below.

ENT g, (F) =1log (GA)

(GA) Z Z

i=1 lme?

: 2R (1) x R (m)
ogl————=—1|

R(I) + R(m)

R () + R (m)

24/R (1) x ﬁ(m):l
(7)

1.4. The Fourth Atom Bond Connectivity Entropy [35]. If

A(lm) = \[Aj+ A, -2/A/A,, then
A+ A,

Y A(m) = Z M T2 ABC,(F).  (8)
ImeE (F) ImeE(F Ay,

Now (1) converted in the following form as:

q
ENT yp¢, (F) =log (ABC,(F)) -
(ABC, (J') ;lmEE &)

(9)

A —
log| [ALFAn =2
Al Am

][m]}

1.5. The Fifth Geometric Arithmetic Entropy [35]. If

A(lm) = 2~/A/A,, /A + A, then
2+AA,,
> A(m) = a ZA = GA; (F). (10)
ImeE (F) ImeE(F) 11 +

Equation (1) is now changed to the following form,
which is known as fifth geometric arithmetic entropy.
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ENTgy (F) =log (GAs (F)) -

(GA (Jf)) Z Z

i=1 ImeE;(F)

2 JAA,, ]

24/ AJA [
log[_\/ ! m:| Al+Am

A+A,

(11)

See [35, 44] for further information on these entropy
measures.

2. Formation of Triangular
Benzenoid T, Vx € N

Triangular benzenoids are a group of benzenoid molecular
graphs and are denoted by T, where x characterizes the
number of hexagons at the bottom of the graph and 1/2x (x +
1) represents the total number of hexagons in T',.. Triangular
benzenoids are a generalization of the benzene molecule C4H,
with benzene rings forming a triangular shape. In physics,
chemistry, and nanosciences, the benzene molecule is a
common molecule. Synthesizing aromatic chemicals is quite
fruitful [46]. Raut [47] calculated some toplogical indices for
the triangular benzenoid system. Hussain et al. [48] discussed
the irregularity determinants of some benzenoid systems.

ENTy (¥

i=1 ImeE;(F)

=log(R,) - @ [ [4°(3x +9) x log(4”)] + [6" (6x — 6) x log(67)] +

!
By putting a = 1,-1,1/2,-1/2, in (3), we get the Randic
entropies as given below:

12(x + 3) x log[4]

Kwun [49] calculated degree-based indices by using M poly-
nomials. For further details, see [50, 51]. The hexagons are
placed in rows, with each row increasing by one hexagon. For
T, there are only one type of edges e, = (2,2) and |e,| = 6.
Therefore, V(T,) =6 and E(T,) = 6 while three kinds of
edges are there in T, eg. e; = (2,2), e, = (2,3), e; = (3,3)
and le,| = 6, |e,| = 6, |e;| = 3. Therefore, V(T —2) = 13 and
E(T,) = 15. Continuing in this way, [V (T,)| = x* + 4x + 1
and |[E(T,)| = 3/2x (x + 3). The subdivision graph of T, and
its line graph are demonstrated in Figure 1. It is to be noted that
[V(L(S(T )| =3x(x+3) and
|E(L(S(T)))| =3/2(3x* + 7x - 2).

Let & = L(S(T,)). i-e. & is the line graph of the subdi-
vision graph of triangular benzenoid T',. We will use the edge
partition and vertices counting technique to compute our
abstracted indices and entropies. The degree of each edge’s
terminal vertices is used in the edge partitioning of &. It is easy
to see that there are only three types of edges shown in Table 1.

2.1. Entropy Measure for L(S(T,)). We'll calculate the en-
tropies of & = L(S(T,)) in this section.

! !
2.1.1. Randic Entropy of L(S(T,)). The Randic index and
entropy for a = 1, -1, 1/2,-1/2, with the help of Table 1, and
equation (3) is:

= log(R,) - (R)Z > [(RO) x R(m)*Jlog[ (R (1) x R(m))*]

(12)

(2a+1)

(3x" + x - 4) xlog(9“)] ]

36(x - 1) xlog[6]  27/2 (3x% + x — 4) x log[9]’

3
ENTy (F) = log(E (27x% + 41x - 52)) -

(3/2(27x2 +41x - 52)) - (3/2(27x% + 41x - 52))

3/4(x + 3) x log[4]

(3/2(27x2 + 41x — 52))

(x - 1) x log[6] 1/6(3x” + x — 4) x log[9]

ENTy (%)= 10g< (6x° +23x + 7))

(1/12(6x* +23x + 7)) i (1/12(6x* +23x + 7))

6(x + 3) xlog[2]

(1/12(6x" +23x + 7)) ’

616 (x — 1) x log[V/6]

ENTy (F) = log< (9x +(7 +4V6)x - 4\/—)>

9/2(3x” + x — 4) x log[3]
(3295 + (7 + 4V6)x - 4V6))’

3/2(x + 3) x log[2]

(3/2(9x* + (7 +4V6)x —4V6))  (3/2(9x* + (7 + 4V6)x — 46 )

V6(x —1) x log[V/6]

ENTy ,(F) =log (1/2(3»x2 +2(2+V6)x + 5)) +

1/2(3)62 +x- 4) x log[3]
’ (12(3x* +2(2+ V6)x +5))

(1/2(3x2 +2(2+V6)x + 5)) " (1/2(3x2 +2(2+V6)x + 5))

(13)
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(a) (b) ()

FiGure 1: (a) Triangular benzenoid T's, (b) Subdivision of T, (c) The line graph of subdivision graph of T'.

TaBLE 1: Edge partition of L(S(T,)).

(R (1), R (m)) N; Set of Edges
(2,2) 2(x +3) E,
(2,3) 6(x—1) E,
(3,3) 3/2(3x% + x — 4) E,

2.1.2. The ABC Entropy of L(S(T,)). The ABC index and
entropy measure with the help of Table 1 and equation (5) is:

9 3
ABC(F)=3x"+| = +1|x+—=—4,
=3 4( 1 ey

3
ENT . (%) = log (ABC) — ﬁ Z D

i=1 ImeE;(F

"R % R(m) VRO xR(m) (14)

[ }&(l)+&(m)—z]lo [ &(l)+&(m)—z]
)

-1lo (3x2+<i +1>X+i —4)+ 1/V2(9x + 3) x log[ V2] (32 +x - 4) x log [2/3]
o (3x* + (V2 + Dx +3/V2 -4) (35 +(9/VZ + Dx +3/V2 - 4)

2.1.3. The Geometric Arithmetic Entropy of L(S(T,)).  The GA index and entropy measure with the help of Table 1
and equation (7) is:

GA(F) = gxz +i—’; (86 +15) —g (46 - 5),

3 R() xR R(D) xR
ENTg, (F) = log (GA) - 1 y [2 () x (m)]log[z () x (m)]

GA) &, & | RM+Rom) R()+ R(m) (15)
_lo <2x2 +<24x/€ + 45)x . 15— 12\/3> ~ 12/6/5(x — 1) x log [2+/6 /5]
- 82 10 5 (9/2x% + (246 +45/10)x + 15 - 12V6/5)
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TaBLE 2: Edge partition of L(S(T,)).

(AL A,) N; Set of Edges
(4,4) 9 Fr,
(4,5) 6 Fr,
(5,5) 3(x—2) Fr,
(5.8) 6(y-1) Fr,
(8.8) 3(x-1) Fr.
(8,9) 6(x—1) Fr,
(9,9) 3/2(3x% +2 - 5x) Fs

2.1.4. The ABC, Entropy of L(S(T,)). The edge partition of
the graph L(S(T,)) is grounded on the degree addition of

terminal vertices of every edge, as shown in Table 2.

After simple calculations, by using Table 2 subject to the
condition that x # 1, we get

ABC4(9)=¥+%+¥(X—2)
3V11 314 /15
+(m gt ﬁ)(x—l) (16)

+§(3x2 —5x + 2).

By using (9), the ABC, entropy as follows:

7
o A+ A, A + 4,
ENT ypc, (F) = log (ABC,) - ABC4 Zl N [\/ A :|log[\/ AA ]
o _ [3v6/2]log [V6 /4]  [3V7 /5 ]log [V7/2V5]
ENTABC4 (J) - log (ABC4) - (ABC4) - (ABC4) (17)
[6v2/5] (x — Dlog [2v/2/5]  [3+/11/+/10](x - 1)log [v11/2+/10]
- (ABC,) - (ABC,)
_ [3VT4/8] (x - Dlog [VTA/8]  [VT5/v2](x - Dlog [VI5/6v2] 2/3(3x — 5x +2)log [4/9]
(ABC,) (ABC,) (ABC,) '
85 24410 7242
If we consider x =1, Then ABC,(%)=96/4, and GAs(F)=3 +T\/_+ 3x+( ;/3_ +1—\7/—+ 3>(x -1)
ENT ypc, (F) = 2.1972.
+ % (3x2 -5n+ 2).
2.1.5. The GA; Entropy of L(S(T,)). After some simple (18)

calculations, the GA; index may be calculated using Table 2
under the constraint that x # 1.

Therefore, (11), with Table 2 converted in the form:

7
A
ENTg, (F) = log (GAs) - Z 2 H IZA
i:I ImeE, (%) 1A
(8+/5 /3]log [4+/5 /9]

ENTgy (F) = log (GA;) -

)

_ [24V10/13] (x - D)log [4V10/13]

(7272 /17] (x - 1)log [12{/17

(GAs)

3. Formation of Hexagonal Parallelogram
Nanotubes H (x, y), Vx, y € N

Hexagonal parallelogram nanotubes are formed by
arranging hexagons in a parallelogram fashion. Baig et al.
[52] computed counting polynomials of benzoid carbon
nanotubes. Also, see [53]. We will denote this structure by
H (x, y)Vx, y € N, in which x and y represent the quantity
of hexagons in any row and column respectively. Also, the
order and size of H(x, y) is 2(x + y + xy) and 3xy + 2x +

(GAs) (GAs)

(19)

2y — 1 respectively. The subdivision graph of H (x, y) and its
line graph is shown in Figure 2, see [46]. Let
F =L(S(H(x, y))), then |F| =2(3xy +2x+2y—1) and
|F gl =9xy + 4x + 4y — 5. To compute our results, we will
use edge partition technique which is grounded on the
degree of terminal vertices of every edge. It is to be noted
that there are only three types of edges, see Figure 2. The
edge partition of chemical graph L(S(H (x, y))) depend-
ing on the degree of terminal vertices is presented in
Table 3.
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(a) (b)

FIGURE 2: (a) Hexagonal parallelogram H (x, y), (b) Subdivision of H (x, y), (c) The line graph of subdivision graph of H (x, ).

!
TasLe 3: Edge partition of L(S(H (x, ¥))). 3.1.1. Randi¢ Entropy of %. The Randic index for
(RO, R (m) N, Kinds of Edges a =1,-1,1/2,-1/2, by using Table 3 is:
(2,2) 2(4+y+x) Fr, R (F) =2(x+y+4)x (4" +4(x+y-2)x(6)" (20)
(2,3) 4(2+y+x) PFEZ _ _ _ a
(3.3) Oy — 2m— 2m— 5 7 +(9xy —2x -2y —5)x(9)".

!
So the (3) with Table 3 gives the Randic entropy and is

3.1. Entropy Measure for L(S(H (x, y))). We will enumerate converted in the form

the entropies of # = L(S(H (x, y))) in this section.

ENTy (F)=log(R Z [(R(1)x R (m))*]log[ (R (1) xR (m))"]

(R i=1 ImeE, (%)

=log(R,) - (11 )[[4"‘(2x+2y+8)xlog(4"‘)]+t[6"‘(4x+4y—8)xlog(6“)]n+q[9“(9xy—2x—2y—5)xlog(9“)]].
(21)

Ngw substitute & = 1,-1,1/2,-1/2, in (20), we get the
Randic entropies as given below:

8(x+y+4)x[4] B 24(x+y—-2)xlog[6] _9(9xy—2x—2y—5)><log[9]
(8lxy+14(x+y)—-61) (8lxy+14(x+y)-61) (81xy+14(x+y)—61)

ENTp (#)=log (81xy+14(x+y)-61)—

1/2(x+ y+4)x[4] N 2/3(x+y—2)xlog[6]
(xy+17/18(x+y)+1/9) (xy+17/18(x+y)+1/9)

ENTy, (J)—log(xy+ (x+y)+ —)

1/9(9xy —2x—-2y—-5) xlog[9]

(xy+17/18(x+y)+1/9)
_ B _ B 4(x+y+4)x[2]
ENTy (%) =log (27xy+(4V6 —2) (x + )+ 1-8V6) @7y + (NG ~2) (e 1 y) £ 1-8VE)
B 4/6 (x+y—2)xlog[V6] B 93 (9xy—2x-2y—5)xlog[3]
(27xy+(4V6 =2) (x+y)+1-8v6) (27xy+(4V6 —2)(x+y)+1-8+6)’
B 1 7 8 (x+y+4)xlog[2]
ENTw.,, (%)= l°g<3xy+( +\F>(x+y)+3 \/€> (3xy+(1/3+4/\6) (x+y)+7/3-8//6)
4//6 (x+y—2)xlog[/6] 1/3(9xy—2x—-2y—5) xlog[9]

" (3xy+(1/3+4/\/3)(x+y)+7/3—8/\/3)+ (Bxy+(1/3+4/V6) (x+y)+7/3-8//6)
(22)
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3.1.2. The ABC Entropy of . With the use of Table 3 and
equation (5), we can calculate the ABC index and entropy
measure as follows:

9V2 -4 10
ABC(F})=6xy+< \/—3 )(x+y)—?. (23)
Therefore, the equation (5), with Table 3 becomes as
following and is called the atom bond connectivity
entropy.
ENT 43c (¥) =log (ABC)

3
G %, L

€E; (

’N(l)+N(m)
R() x R (m)

. R() + R(m) -2
S8\ RO xRm) [

= log (6xy +(9\/§3 _4>(x+y) —?)

V2(x+y+4)x[V2]
(6xy +(9V2 —4/3) (x + y) — 10/3)

2V2(x+y—2) xlog[V6]
(6xy +(9V2 —4/3) (x + y) — 10/3)

B 2/3(9xy —2x — 2y - 5) x log [2/3]
(6xy +(9V2 —4/3) (x + y) — 10/3)
(24)

3.1.3. The Geometric Arithmetic Entropy of . We can
calculate the GA index and entropy measure using Table 3
and equation (7) as follows:

GA(.‘}«“):é(45xy+8\/€ (x+y)+15-16V6),

ENTgs (F) :loge (45xy +8V6 (x+y)+15— 16\/E)>

B 8V6/5(x+y—2)xlog [2V/6/5]
(1/5(45xy +8+/6 (x+y) +15-16/6))°
(25)

3.1.4. The ABC, Entropy of F

Case 1. when x>1, y#1
The edge partition of L (S(H (x, y))) is shown in Table 4.
Therefore, the ABC, index and entropy measure with the
help of Table 4 and equation (9) yield as:

TasLE 4: Edge partition of L(S(H (x, y))).

(A, A,,) N; Kinds of edges
(4,4) 8 Fr
(4,5) 8 Fr,
(5,5) 2(-4+y+x) 9E3
(5,8) 4(-2+y+x) 9754
(8,8) 2(2+x+y) F,
(8,9) 2(-2+x+y) Fr,
(9,9) 9xy - 8x—-8y+7 Fi
442 2411 14 30 32
ABC,(F) = + + + + -—
+(F) ( 5 V10 4 39
47 16V2 4411
+y)+2 —
(x+y)+2V6+ 75 Ty
V14 2\/_ 28
2 3 9

(26)

Since & has seven kinds of edges, So (9) by using Table 4
is converted in the form:

ENT spc, (F) = log (ABC,)

2+/6log [V/6 /4]
(ABC4)

~ 4~/7//5log [\7 12+/5]
(ABC4)

ENT ypc,(F) = log (ABC,) -

B 4+/2/5(x + y — 4)log [2V/2 /5]
(ABC4)

~ 2V/11/4/10 (x + y — 2)log [V11/2+/10]
(ABC4)

B V14/4(x + y - 2)log [\14 /8]
(ABC,)

2V15/3V2(x + y - 2)log [V15/6V2]
(ABC,)

4/9(9xy 8x — 8y + 7)log [4/9]
(ABC4)

(27)

Case 2. when x =1, y#1
By using the same process, we get the closed expressions
for the ABC, index and ABC, entropy as:



BC,(F) = )y 20
C4()(5+m+4+3+9

2
L2V7 8V2 2VIT V30 V149
V5 5 V100 3 4 T4

5v6/2log [/6 /4]
(ABC,)

442 211 V14 30 4>y+5\/€

ENT spc, (F) = log (ABC,) -

2/7/\/5log [V7 12+/5 ]
T (ac)

_4V2/5(y - 2)log [2v2/5]
(ABC,)

2V11/¥10(y - Dlog [V11/2V10]
- (ABC,)

_ V14/4(y - Dlog [V14/8]
(ABC,)

 29/I5/3v2(y - Dlog [V15/6v2]
(ABC4)

B 4/9 (y — 1log [4/9]
(ABC,)

(28)

3.1.5. The Fifth Geometric Arithmetic Entropy of F

Case 3. when x>1, y#1The fifth geometric arithmetic
entropy can be estimated by using (11), and Table 4 in the
following manner:

16+/10 48\/_
3 —17 —4)( +y)+3

GAs (F) = 9xy (
(29)

+32\/§_32\/E_96\/7

9 13 17

So the (11), with Table 4 can be written as:

ENTg, (F) = log (GAs) - (GA)Z >

i=1 ImeE;(F)

.[’A1+Am— ] [’AI’LA ]

\J AlAm V Al

32/5/91og [4+/5 /9] (30)
(GAs)

= log (GAs) -

_16V10/13(x + y - 2)log [41/10/13]
(GA;)

~ 48+2/17 (x + y — 2)log [12V2 /17]
(GAs) '
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TaBLE 5: Edge partition of L(S(H (x, y))), for x = 1.

(AL A,,) N; Kinds of edges
(4,4) 10 Fr,
(4,5) 4 F,
(5,5) 2(y-2) Fr,
(5,8) 4(y-1) Fr,
(8) 8) 2()’ - 1) gES
(8,9) 2(y-1) Fr,
(9:9) y-1 i

Case 4. when x = 1, y # 1By using Table 5 and using (11) we
get the closed expressions for the GA; index and GA; en-
tropy as:

16V10 48+?2 165
GA5(9)=(5+ \/_+—\/_)y+3+T\/—

13 17

164/10 4842 16410
13 17 13

16+/5/91og [4+/5 /9]
(GAY) e

>

ENTgy (F) = log (GA;) -

_ 16V10/13(y - 1)log [4V10/13]
(GA;)

_ 48V2/17(y — 1)log [12\/‘/17]
(GA;)

4. Formation from Fusion of Zigzag-Edge
Coronoid with Starphene
ZCS(x, y,z) Nanotubes

If a zigzag-edge coronoid ZC (x, y, z) is fused with a star-
phene St (x, y,z), then we will obtain a composite benze-
noid. It is to b noted that [V (ZCS(x, y,z))| = 36x — 54 and
|E(ZCS(x, y,2))| = =63+ 15(z + y + x). The subdivision
graph of ZCS(x, y,z) and its line graph are illustrated in
Figure 3. We can see from figures that the order and the size
in the line graph of the subdivision graph of ZCS(x, y, z) are
—-126 +30(z + y + x) and —153 + 39(z + y + x) respectively
[46]. Let &% represents the subdivision graph of
ZCS(x, y,z)’s line graph. The edge division is determined by
the degree of each edge’s terminal vertices. Table 6 illustrates
this.

4.1. Entropy Measure for L(S (ZCS (x, y,z))). We'll calculate
the entropies of & = L(S(ZCS(x, y,z))) in this section.

!
4.1.1. Randic Entropy of %. For a=1
Randic index with the help of Table 1 is

R, (F)

,—1,1/2,-1/2, the

=6(x+y+z-5)xD)"+12(x+y+z-7)

(32)
X (6)" +(21x + 21y + 21z — 39) x (9)*.
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(a) (b)

FiGURre 3: (a) ZCS(4,4,4), (b) subdivision of ZCS(4,4,4), (c) L(S(ZCS(4,4,4))).

TaBLE 6: Edge partition of L(S(ZCS)).

(R (1), R(m)) N; Kinds of Edges
(2,2) 6(-5+z+y+x) Fr,
(2,3) 12(-7+z+ y+x) F,
(3,3) -39+21(z+y+x) Fg,

!
Using (3) Randic entropy is:

3
ENTy () =log(R,) - (; ] Y (R x Rm)*]log [(R (1) x R(m)*]
«/ i=1 lmeE; (F)

1 (33)
=log(R,) "R’ [[4"(6(x+ y+2z-5)) xlog(4")] +[6"(12(x + y + z = 7)) x log (6")]
+[(21(x + y +z) - 39) x log (9)]]]-
!
By putting & = 1, -1, 1/2,-1/2, in (32), we get the Randic
entropies as given below:
24 (- log[4 2 - 1
ENT, (F) = log (<975 + 285 (z + y + x)) - o+ 2+ y+x) xlogld] 72(x+y+z-7) xlogle]
1 (=975 +285(z + y + x)) (=975 +285(z + y + x))
_ 189(z +tyn +qx) - t351) x log[9]
(=975 +285(z + y + x))
ENT, (%) =log<—g+3—5(z+y+x)> +3/2(—5+z+y+x) x log[4] . 2(-7+z+ y+x) xlog[6]
-1 6 6 (-131/6 +35/6 (z + y + x))  (-131/6 +35/6(z + y + x))
1/3(-13+7(z + y + x)) x log[9]
(=131/6 + 35/6 (z + y + x))
(34)

12(x + y +z —5) xlog[2]
(3+12V6) (x + y +2) — 177 — 84/6)

ENTg (F)=log ((3+12V6)(x+y+2) - 177 - 846) -

~ 6V6(x+y+z-7)xlog[V6] ~ 9(7(x+ y+2z)-13) x log[3]
(B+12V6) (x + y+2) - 177 - 84+/6) ((3+12V6)(x+ y +2) — 177 — 84/6)’

3(x+ y+2z-5)xlog[2]

ENTRM(‘%”)=log((10+2\/3)(x+y+z)—28—14\/g)+((10+2\/€)(x+y+z)_28_14\/6)

N 2V6(x+y+z-7) xlog[V6] . (7(x + y +z) — 13) x log[3]
((10+2V6)(x+y+2) —28-14v6)  ((10+2v6)(x+y+2)—28-14V6)
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4.1.2. The ABC Entropy of . The ABC index and entropy
measure with the help of Table 6 and equation (5) are:

ABC(ZF) = (14 +9V2) (x + y + 2) — 26 - 57V2,

ENT ypc (F) =log (14 +9V2) (x + y + 2) — 26 — 57V2)

. 3vV2(3(x + y +2) — 19) x log[V2]
(14 +9V2) (x + y +2) — 26 - 57/2)

B (14 (x + y + z) — 26)log [2/3]
(14 +9V2)(x + y +2) —26-57v2)"
(35)

GA(F) = (x+ y+2) (27 + 246 /5) -

ENT g, (F) =log((x + y +2) (27 + 24V6 /5) — 69 — 1686 /5) —

4.1.4. The ABC, entropy of #. Table 7 shows the graph
L(S(ZCS(x, y,2)))’s edge partition, which is based on the
degree addition of each edge’s terminal vertices.

4 1242

69 — 168V6/5,

3414 6411

ABC4(97)=(x+y+Z)<\/% -+

35+4+\/E)5\/_

Computational Intelligence and Neuroscience

TaBLE 7: Edge partition of L(S(ZCS(x, y,z))) established on
degree sum of terminal vertices, for every x = y = z>4

(A A,,) N; Kinds of Edges
(4,4) 6 F,
(4,5) 12 Fr,
(5,5) 6(x+y+z-8) F,
(5,8) R(x+y+z-7) Fr,
(8,8) 6(x+y+z-9) Fp,
(8,9) 12(x+y+z-5) 956
9,9) 3(x+y+z+25) Fy

4.1.3. The Geometric Arithmetic Entropy of . The GA index
and corresponding entropy with the help of Table 6 and
equation (7) are:

24/6/5(x + y +z —7) x log [21/6 /5] (36)

(x+y+2)(27 +246/5) — 69 — 168/6/5°

After simple calculations, the ABC, index and entropy
measure with the help of Table 7 and equation (9) subject to

the condition that x = y = z>41

100 96\/_ 27\/_4 42+/11 3\/_+6\/_
5 4 V10 2 V5’

A+ A, -2 A +A, -2
ENT gy, (F) = log (ABC,) - ABC4) Z; lme;( )[ RV :|10g|: AA ]
o (36 /2]log [V6/4] [12v/2/5](x + y + z — 8)log [2V/2 /5]
ENT y4pc,(F) = log (ABC,) - (ABC,) - (ABC,)
~ [6V11//10](x + y +z — 7)log [V11/2+/10] _3\/11/4(x+y+x—9)log [V14/8]
(ABC,) (ABC,)
~ V30(x + y +z - 5)log [V15/6V2] _4/3(x+y+z+25)log [4/9] (67 /4/5 1log [\/7 12+/5]
(ABC,) (ABC,) (ABC,) '

(37)
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TaBLE 8: Comparison of randic entropies for L(S(T,)).

[x] ENTy, ENTy ENTy , ENTy ,
[46] 0.4055 2.5590 2.4849 2.6263
[52] 3.1863 3.0463 3.5667 3.5970
[25] 4.0316 3.6767 4.2203 4.2280
[26] 4.5797 4.2928 4.6981 4.6991
[24] 4.9945 4.8714 5.0779 5.0764
[23] 5.3312 5.4107 5.3942 5.3918
[27] 5.6159 59131 5.6658 5.6631
[2] 5.8632 6.3820 5.9041 5.9013
[56] 6.0820 6.8208 6.1164 6.1136
[31] 6.2785 7.2325 6.3080 6.3053

TasLe 9: Comparison of ENT 4pc, ENTgy, ENT g, and ENTg,, for L(S(T ).

x] ENT ypc ENTg, ENT 4y, ENTg,,
(46] 23116 2.4849 21972 0
(52] 3.5239 3.5835 3.5749 3.5835
(25] 42025 42341 42263 42341
(26] 46897 47095 47028 47095
(24] 5.0739 5.0876 5.0817 5.0876
(23] 5.3926 5.4027 5.3975 5.4026
(27] 5.6655 5.6733 5.6687 5.6733
2] 5.9046 5.91087 5.9066 5.9108
(56] 61174 61225 6.1187 61225
(31] 6.3093 6.3135 6.3100 6.3135
7 8
6 7
5 3 S
g g3
s s o
(1) ENT_RI (L(S(T_x))) (1) ENT_R2 (L(S(T_)))
W @ Bl @ 5l 6 7 8 9 (o] W @ 6B @ 6 6 7 8 o (0]
[x] [x]

(a) (b)

FIGURE 4: (a) R, entropy, (b) R_; entropy.

7 7
6 6
g 5 g 5
g c
= 4 s 4
) m
S 3 B 3
Z Z
S s
1 1
ENT_R3 (L(S(T_x))) ENT_R4 (L(S(T_x)))
0 0
(11 21 381 4 [51 el (71 (8] [9] [10] [ [ 3 (4 (51 [el (71 [8] [91 [10]
[x] [x]

(a) (b)

FIGURE 5: (a) Ry, entropy, (b) R_,,, entropy.
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7 7
6 6
g5 £ s
2 g
= 4 = 4
=) =
B 3 T 3
2 22
S S
! ENT_ABC (L(S(T_x))) ! ENT_GA (L(S(T_x)))
0 0
(] 2] B [ ] (6] (71 (8] [9] [10] (1) 21 3] 4 [50 [e] (7] (8] [9] [10]
[x] [x]
(@ (®)
FIGURE 6: (a) The ABC entropy, (b) The GA entropy.
7 7
6 6
£ s £ s
2 g
= 4 = 4
=) =]
S 3 %3
£, 2o
S S
1 ENT_ABC4 (L(S(T_x))) 1 ENT_GAS5 (L(S(T_x)))
0 0
(] 2] B [ ] (6] (71 (8] [9] [10] (1) 21 3] 4 (50 [e] (7] (8] [9] [10]
[x] [x]
(a) (b)
FIGUre 7: (a) The ABC, entropy, (b) The GA;, entropy.
TaBLE 10: Comparison of randic entropies for L(S(H (x, y))). TasLe 12: Comparison of ENT 4pc, and ENTg, Entropies for
L(S(H (x, ,x>1and 1.
[x, y] ENT, ENT, ENT, ENT, (S(H(x 7)), x>1 and y #
1 —1 1/2 -1/2
[1,1] 2.4849 2.4849 2.4849 2.4849 [x, y] ENT apc, ENTgy,
[2,2] 3.7917 3.7830 3.8344 3.8332 (2,2] 3.7879 3.4822
[3,3] 4.5635 4.5428 4.5933 4.5906 (3,3] 4.5387 2.2596
(4,4] 5.1096 5.0872 5.1323 5.1294 (4,4] 5.0783 4.8387
[5,5] 5.5345 5.5129 5.5530 5.5502 [5,5] 5.5018 5.2952
[6,6] 5.8833 5.8630 5.8988 5.8962 [6,6] 5.8509 5.6704
[7,7] 6.1794 6.1615 6.1928 6.1904 [7,7] 6.1481 5.9882
(8,8] 6.4368 6.4194 6.4486 6.4464 (8,8] 6.4068 6.2636
[9,9] 6.6646 6.6483 6.6751 6.6731 [9,9] 6.6360 6.5064
[10,10] 6.8688 6.5370 6.8783 6.8822 [10,10] 6.8417 6.7234

TaBLE 11: Comparison of ENT,p- and ENT, entropies for TasLe 13: Comparison of ENT 5 and ENTg, entropies for

L(S(H (x, y))). L(S(H(x,»))), x=1and y#1.

[x, y] ENT ,pc ENTg, ] ENT g, ENTg,,
(1,1] 2.4849 2.4849 [52] 3.1846 3.2958
(2,2] 3.8497 3.8501 [25] 3.5933 3.6888
3,3] 4.6048 4.6051 [26] 3.8884 3.9702
(4, 4] 5.1413 5.1416 [24] 41184 4.1896
(5,5] 5.5604 5.5607 [23] 4.3064 4.3694
[6,6] 5.9051 5.9053 [27] 4.4653 4.5217
(7,7] 6.1982 6.1985 [2] 4.6027 4.6539
(8,8] 6.4534 6.4536 [56] 4.7238 4.7706
[9,9] 6.6794 6.6796 [31] 4.8319 4.8751
(10, 10] 6.8822 6.8824
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TaBLE 14: Comparison of randic entropies for L(S(ZCS(x, y,z))).

[x, y, 2] ENTy, ENTy | ENTy , ENTy ,
(4,4, 4] 5.7200 5.70060 5.7432 5.7407
(5,5,5] 6.0342 6.0165 6.0587 6.0565
[6,6,6] 6.2730 6.2564 6.2982 6.2961
(7,7,7] 6.4657 6.4497 6.4913 6.4893
(8,8,8] 6.6272 6.6117 6.6531 6.6511
[9,9,9] 6.7662 6.7511 6.7923 6.7904
(10,10, 10] 6.8883 6.8734 6.9145 6.9126

ENT_R1 (L(S(H(x, ¥)))) ENT_R2 (L(S(H(x, y))))

Values of Entropies

S = N W e U NN
Values of Entropies

S = N W e U NN

[1,1] [2,2] [3,3] [4,4] [55] [6,6] [7,7] [8,8] [9,9] [10,10] [1,1] [2,2] [3,3] [4,4] [5,5] [6,6] [7,7] [8,8] [9,9] [10,10]
[xy] [xv]
(a) (b)

FIGURE 8: (a)R, entropy, (b)R_; entropy.

ENT_R4 (L(S(H(x, y))))

ENT_R3 (L(S(H(x, y))))

Values of Entropies

O = N W R U NN
Values of Entropies

O = N W e Ul NN

[1,1] [2,2] [3,3] [44] [55] [66] [7,7] [8,8] [9 9] [10,10] [1,1] [2,2] [3,3] [44] [55] [66] [7,7] [88] [9,9] [10,10]
[x vl [xv]
() (b)

FIGURE 9: (a)R,,, entropy, (b)R_,,, entropy.

ENT_ABC (L(S(H(x, y)))) ENT_GA (L(S(H(x, ¥))))

Values of Entropies

S = N W R Ul NN
Values of Entropies

S = N W s Ul NN

[1,1] [2,2] [3,3] [4,4] [55] [6,6] [7,7] [8,8] [9,9] [10,10] [1,1] [2,2] [3,3] [4,4] [5,5] [6,6] [7,7] [8,8] [9,9] [10,10]
[xy] [xv]
(a) (b)

FIGURE 10: (a) The ABC entropy, (b) The GA, entropy.
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Values of Entropies

Values of Entropies

Values of Entropies

Values of Entropies

O = N W R U NN ® S = N W R U N

S = N W s NN
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LS
/o/./‘/’/‘/‘_’—‘/* EL 4 /A/./""/’
=
=3
=]
R
s 1
ENT_ABC4 (L(S(H(x, y)))) ENT_GAS5 (L(S(H(x, ¥))))
0
(2] [3] [4] (5] [6] [7] [8] [9]  [10] [2] [3] [4] [5] (6] [7] [8] (9] [10]
[xy] [xy]
() (b)
FiGure 11: (a) The ABC, entropy, (b) The GA; entropy, x>1, y# 1.
8
7
36
£ s
=
24
=]
2 3
=1
g 2
ENT_ABC4 (L(S(H(x, Y)))) 1 ENT_GAS5 (L(S(H(x, y))))
0
2,2] [3,3] [44] [55] [66 [77] [88] [9,9] [10,10] 2,2] [3,3] [44] [55] [66] [7.7] [88] [99] [10,10]
[xy] [x ]
(a) (b)
FIGURE 12: (a) The ABC, entropy, (b) The GA; entropy x =1, y # 1.
8
7
./'/4%’ g ./'/./*’,.—’—0?/’
s
=
=g
=]
g 3
=}
=2
ENT_RI (L(S(ZCS(x, y; 2)))) 1 ENT_R2 (L(S(ZCS(x, ¥, 2))))
0
[4,4,4] [555] [666] [7,7,7] [88,8 [9,99] [10,10,10] [4,4,4] [555] [666] [7,7,7] [88,8 [9,99] [10,10,10]
[x v, 2] [y, 2]
() (b)
FIGURE 13: (a)R; entropy, (b)R_, entropy.
38
7
"/4’/4/.,——0—/*/4 46 .’/‘./*/*,4’/0’/4
£ s
=t
Hog
=]
2 3
=
g 2
ENT_R3 (L(S(ZCS(x, y; 2)))) 1 ENT_R4 (L(S(ZCS(x, ; 2))))
0
[4,4,4] [555] [666] [7,7,7] [88,8 [9,99] [10,10,10] [4,4,4) [555] [666] [7.7,7] [88,8 [9,99] [10,10,10]
[x,y, 2] [x, v, 2]
(a) (b)

FIGURE 14: (a)R,,, entropy, (b)R,,, entropy.
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8 8
7 7
% 6 ./&/M/./. S ././”**/-0/’
& &
= 5 = 5
a =)
£ o4 Hoy
=} o
g 3 g 3
2 =
R S 2
1 ENT_ABC (L(S(ZCS(x, y; 2)))) 1 ENT_GA (L(S(ZCS(x, y; 2))))
0 0
4,44 [555] (666 [7.7,7] [888 [9,99] [10,10,10] [4.4.4] [555] (666 [77.7] (888 [999] [10,10,10]
[xyz] xyzl
(a) (b)
FiGURre 15: (a)ABC entropy, (b)The GA, entropy.
8 8
7 7
26 ././_/"/,'/0”4.”4 56 .//*/.//f/4/0—/‘
o =3
g 5 g s
= =
£ o4 Hoyg
=} =]
g 3 g 3
El ki
s 2 S 2
1 ENT_ABC4 (L(S(ZCS(x, ¥, 2)))) 1 ENT_GAS5 (L(S(ZCS(x, Y, 2))))
0 0
[4.4,4 [555] (666 [7.7,7] [888 [9,99] [10,10,10] [4.4,4] [555] (666 [77.7] (888 [9,99] [10,10,10]
[xyz] xyzl
@ (b)
FiGure 16: (a)ABC, entropy, (b)GA; entropy.
4.1.5. The GA; Entropy of &. After some simple calcula-
tions, the GA; index and corresponding entropy measure
with the help of Table 7 and equation (11) subject to the
condition that x = y = z>4.
48+/10 144+2 16v5 336v10 720V2
GA;(F)=(x+y+2)| 15+ + V2 +3+ \/—— - \/—,
13 17 3 13 17
1 < A+ A, -2 A+ 4, -2
ENTg, (F) =log (GAs) ———~ > Y [ m__~ log m_Z |,
’ (GAS) i=1 ImeE; (F) V AlA, \J AA,, (38)

[16V5/3]log [4V/5/9] ~ [4810/13] (x + y + 2 — 7)log [4/10/13]

ENTgy () = log (GA;) - GA)

(GAs)

_ [144V2/17])(x + y + z = 5)log [12v2/17]

(GAs)

5. Concluding remarks for Computed Results

The applications of information-theoretic framework in
many disciplines of study, such as biology, physics, en-
gineering, and social sciences, have grown exponentially
in the recent two decades. This phenomenal increase has
been particularly impressive in the fields of soft com-
puting, molecular biology, and information technology.
As a result, the scientists may find our numerical and

graphical results useful [54, 55]. The entropy function is
monotonic, which means that as the size of a chemical
structure increases, so does the entropy measure, and as
the entropy of a system increases, so does the uncertainty
regarding its reaction.

For L(S(T,)), the numerical and graphical results are
shown in Tables 8 and 9 and Figures 4-7. In Table 9, the fifth
arithmetic geometric entropy is zero which shows that the
process is deterministic for x =1. When the chemical
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structure L(S(T,)) expands, the Randic entropy for a = 1/2
develops more quickly than gther entropy measurements of
L(S(T,)), whereas the Randic entropy for a = —1/2 develops
more slowly. This demonstrates that different topologies
have varied entropy characteristics. For L(S(H (x, y))), the
numerical and graphical results are shown in Tables 10-13
and Figures 8-12. When the chemical structure
L(S(H (x, y))) expands, the geometric arithmetic entropy
develops more quickly than other entropy measurements of
L(S(H(x, y))), whereas the ABC, entropy develops more
slowly. Finally, for L(S(ZCS(x, y,z))), the numerical and
graphical results are shown in Table 14 and Figures 13-16.
When the chemical structure L(S(ZCS(x, y,z))) expands,
the geometric arithmetic entropy develops more quickly
than other entropy,measurements of L(S(ZCS(x, y,z))),
whereas the Randic entropy for a =-1 develops more
slowly.

The novelty of this article is that entropies are computed
for three types of benzenoid systems. These entropy mea-
sures are useful in estimating the heat of formation and
many Physico-chemical properties. In statistical analysis of
benzene structures, entropy measures showed more sig-
nificant results as compared to topological indices. There-
fore, we can say that the entropy measure is a newly
introduced topological descriptor.

6. Conclusion

Using Shanon’s entropy and Chen et al. [31] entropy defi-
nitions, we generated graph entropies associated to a new
information function in this research. Between indices and
information entropies, a relationship is created. Using the
line graph of the subdivision of these graphs, we estimated
the entropies for triangular benzenoids T, hexagonal
parallelogram H (x, y) nanotubes, and ZCS(x, y, z). Ther-
modynamic entropy of enzyme-substrate complexions
[57, 58] and configuration entropy of glass-forming liquids
[56] are two examples of thermodynamic entropy employed
in molecular dynamics studies of complex chemical systems.
Similarly, using information entropy as a crucial structural
criterion could be a new step in this direction.
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