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Abstract

We propose in this paper a model for accounting for the increase in long-range correlations observed in asynchrony series
in syncopation tapping, as compared with synchronization tapping. Our model is an extension of the linear phase correction
model for synchronization tapping. We suppose that the timekeeper represents a fractal source in the system, and that a
process of estimation of the half-period of the metronome, obeying a random-walk dynamics, combines with the linear
phase correction process. Comparing experimental and simulated series, we show that our model allows accounting for the
experimentally observed pattern of serial dependence. This model complete previous modeling solutions proposed for self-
paced and synchronization tapping, for a unifying framework of event-based timing.
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Introduction

Finger tapping has been for a long time studied to elucidate the

timing processes that underlie the production of rhythmic behavior.

The most popular model for self-paced tapping was proposed by

Wing and Kristofferson [1]. This model supposes that timing is

controlled by an internal timekeeper that provides periodic events

that trigger motor responses (taps). Each tap is performed after a

motor delay, and the series of intervals produced by the timekeeper,

as well as the successive motor delays are both considered as

uncorrelated white noises. This simple model supports a set of easily

testable hypotheses: (1) the timekeeper variance should present a

Weberian increase with target interval length, (2) motor variance

should be independent on target interval length, and (3) inter-tap

interval series should present a negative lag-one autocorrelation,

bounded to 20.5. These hypotheses were successfully tested in

experiments during which participants produced series of 30–50

successive taps following different initially prescribed tempi [1,2].

Vorberg and Wing [3] proposed to extend the initial model to

account for tapping in synchronization with a periodic metro-

nome. Their model supposes the existence of an auto-regressive

correction process, correcting the current interval produced by the

timekeeper by a fraction of the preceding asynchrony. This so-

called linear phase correction model received empirical support from

experiments where participants tapped in synchrony with a

metronome for 30 to 50 successive taps.

Recently, a set of studies focusing on the analysis of longer series (i.e.

hundreds of successive taps) provided new insights about the true

nature of timing. Gilden, Thornton and Mallon [4] showed that series

of intervals produced in self-paced tapping contained long-range

correlations, close to 1/f noise (see also [5]). Gilden et al. [4] concluded

that the central timekeeper should be considered a 1/f source, rather

than white noise as postulated by Wing and Kristofferson [1]. Chen,

Ding, and Kelso [6] showed that in synchronization tapping, the

pattern of correlation in interval series was completely modified: in this

task the series of intervals presented anti-persistent correlations, and in

contrast persistent long-range correlations were found in the series of

asynchronies to the metronome. Torre and Delignières [7] showed

that incorporating a fractal source in the timekeeper component of the

Vorberg and Wing [3]’s model allowed generating simulated series of

asynchronies and inter-tap intervals that reproduced the experimen-

tally observed dynamical signatures.

In another experiment, Chen et al. [8] analyzed serial

dependence in synchronization (on the beat) and in syncopation

(off the beat) tasks. They found persistent long-range dependence

in asynchrony series in both conditions, but the strength of

correlations was significantly higher in syncopation. Our aim in

the present paper was to show that a simple extension of the

original linear phase correction model [3] allows to account for the

results obtained in syncopation, and especially for the increase in

long-range correlation. We first describe in details the models

proposed for accounting for self-paced and synchronization

tapping, before presenting an extension for syncopation.

The model proposed by Wing and Kristofferson [1] supposes that

the production of each interval is based on two independent processes:

an internal clock, which provides a series of temporal intervals Ci, and a

motor component, responsible for the execution of the tap i at the

expiration of the interval Ci. This motor component does not operate

instantaneously, and all taps have an assigned motor delay Mi. The

observed period Ii then depends on both components

Ii~ Ciz Mi{ Mi{1 ð1Þ

The combination of the components of the model is illustrated

in Figure 1.
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The activation-threshold model [9] represents the simplest way

for conceiving such an internal timekeeper. In this model an

activation level is supposed to increase linearly in time. The

attainment of a particular threshold determines a first event, and

resets the activation level. The iteration of this simple process

produces a succession of periodic events, regularly spaced in time.

Wagenmakers, Farrell and Ratcliff [10] introduced a ‘shifting-

strategy model’, which seemed able to generate 1/f fluctuations.

This model assumes that the threshold level could evolve in time,

as a consequence of the successive adoption of different strategies

for controlling interval duration. Each strategy is characterized by

a particular threshold that can be modeled by sampling uniformly

from an interval centered on a baseline level. These successive

strategies are employed during a limited and variable period of

time (i.e., number of produced events). This shifting in strategy is

modeled by sampling from a uniform distribution of usage times,

bounded by a minimal (dmin) and a maximal (dmax) usage duration.

Each iteration of the activation process is then realized until the

reaching of a threshold Ti:

Ti~ T0z ð2Þ

where T0 represent the baseline threshold, and the deviation

from this baseline, sampled from a uniform distribution of range R.

These strategy shifts produce local plateaus in performance.

It is further assumed that the speed v with which activation

grows over time is variable from one interval to the other,

following an auto-regressive process of order one:

vi~ v0z vi{1{ v0ð Þ z mei ð3Þ

where v0 represents the baseline speed, Q is the auto-regressive

parameter, and ei a centered white noise with unit variance. The

time interval Ci produced by iteration i is then simply given by

Ci~ Ti=vi ð4Þ

Delignières, Torre and Lemoine [11] showed that incorporating

the shifting–strategy model in the C component of the Wing and

Kristofferson model allowed to generate inter-tap interval series

with similar short- and long-range correlation properties than

experimentally observed. Note that the relative weight of the

motor component in the Wing and Kristofferson model is

controlled by multiplying motor delay terms by a constant l.

The model proposed by Vorberg and Wing [3] for synchroni-

zation tapping is a little bit more complex. They started from a

basic property of this kind of task, illustrated in Figure 2: each

inter-tap interval (Ii) corresponds to the difference between its

previous and next asynchronies (Ai-1 and Ai), plus the period (t)

imposed by the metronome:

Ii~ Ai{ Ai{1z t ð5Þ

The main assumption of the model is that the preceding

asynchrony is taken into account by a linear phase correction: The

interval produced by the timekeeper is corrected by a fraction of

the preceding asynchrony:

C�i ~ Ci{ aAi{1 ð6Þ

According to the Wing-Kristofferson model, the produced

interval results from the combination of this corrected cognitive

interval and the two successive motor delays:

Ii~ C�i z l Mi{ Mi{1ð Þ ð7Þ

Combining Eq. (5), (6) and (7) leads to the following expression

for current asynchrony:

Ai~ 1{ að ÞAi{1z Ciz l Mi{Mi{1ð Þ{ t , ð8Þ

Torre and Delignières [7] showed that providing the timekeeper

component (Ci) of Eq. 8 using the shifting-strategy model allowed

generating simulated series of asynchronies and inter-tap intervals

presenting short- and long-range correlation similar to that

experimentally observed.

Let us try to extend Vorberg and Wing’s model to account for

syncopation. The main components of the proposed model are

illustrated in Figure 3. We suppose that syncopation is based on a

similar auto-regressive phase correction process as synchroniza-

tion. Nevertheless, perceived asynchrony in this case is not, as

previously, the time delay between the onset of the metronome

and the effective tap, but, rather, the time between tap and an

estimation of the duration of the half-period of the metronome.

Figure 1. The Wing-Kristofferson model for self-paced tapping. Ci: interval produced by the timekeeper, Mi: motor delay, Ii: effective interval
produced by tapping. We suppose in the present paper that Ci presents fractal fluctuations.
doi:10.1371/journal.pone.0007822.g001

Fractal Correlation in Tapping
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Let Di represent this estimation, for the tap completing the interval

Ii, and A*
i the corresponding perceived asynchrony.

A�i ~Ai{1{Di{1 ð9Þ

Ai corresponding as previously to the ‘objective’ asynchrony

between tap and metronome. The linear phase correction thus

takes the following form:

C�i ~ Ci{ a Ai{1{ Di{1ð Þ ð10Þ

We assume that Di fluctuates around a baseline value (t/2).

Considering that Di represents the main innovation in this model,

as compared with the previous synchronization model, we suppose

that its successive fluctuations present a correlated structure. We

argue that each estimation conserves the memory of the previous

one, and as such we conceive the successive deviations (di) from the

baseline value as a random walk:

Di~ t=2ð Þz di~ t=2ð Þz di{1z ei ð11Þ

where ei is an uncorrelated white noise process. A simplest

expression could be given by:

Di~ t=2ð Þz Wi ð12Þ

where Wi is ordinary Brownian motion. This modeling solution,

however, suggests that Di is unbounded, which appears implau-

Figure 3. The model for syncopation tapping. Ci: interval produced by the timekeeper, C*i: interval adjusted by the linear phase correction
process, Mi: motor delay, Di: estimated metronome half-period, Ai: asynchrony to the metronome, Ii: effective interval produced by tapping, t: fixed
period of the metronome. We suppose in the present paper that Ci presents fractal fluctuations.
doi:10.1371/journal.pone.0007822.g003

Figure 2. The Vorberg and Wing (1996)’s model for synchronization tapping. Ci: interval produced by the timekeeper, C*i: interval adjusted
by the linear phase correction process, Mi: motor delay, Ai: asynchrony to the metronome, Ii: effective interval produced by tapping, t: fixed period of
the metronome. We suppose in the present paper that Ci presents fractal fluctuations.
doi:10.1371/journal.pone.0007822.g002

Fractal Correlation in Tapping
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sible. For correcting this problem we propose to bound Wi within

two limits (+b and 2b). This bounding is likely to represent a kind

of intermittent control of the estimation of the half-period, in order

to maintain Di in an acceptable range. Combining Eq. (7), (10),

and (12) leads to the following expression for asynchrony:

Ai~ 1{að ÞAi{1zCi{at=2zaWi{1zl Mi{Mi{1ð Þ{t ð13Þ

Additionally, we provide Ci with fractal properties by means of

the shifting-strategy model.

The aim of the present work was then to collect series of

asynchronies and inter-tap interval in synchronization and in

syncopation conditions, and to check whether the linear phase

correction model (Eq. 8) and the present syncopation model (Eq.

13), both enriched by providing the timekeeper with fractal

properties, were able to account for the correlation properties

computed from empirical series. A basic requirement for this

demonstration is obviously to use identical values for the set of

parameters shared by the two models.

Methods

Eleven participants (6 men and 5 women, mean age 30.867.1)

took part in the experiment. None of them had extensive practice

in music. They declared no particular competence involving

specific coordination between the upper limbs, and no neurolog-

ical injury or recent upper limb injury. They signed an informed

consent form, and were not paid for their participation. The

experimental protocol was approved by the Scientific Committee

of the Faculty of Sport Science of University Montpellier I.

Participants were seated comfortably, their forearm, hand palm

and other fingers resting on the table so that only the index finger

of the dominant hand moved. Auditory signal were delivered at a

constant frequency of 1.25 Hz. In the synchronization condition

participants were instructed to keep the taps on the beep, and in

the syncopation task to tap in between two adjacent beeps. In both

case they were instructed to minimize the contact duration on the

surface. Participants performed series of about 600 taps,

corresponding to 8 minutes trials. Each participant performed

two trials in each condition, and the order of the two conditions

was counterbalanced within participants.

The auditory signals were generated by a PC-driven metronome.

The taps were performed on a flat rectangular (4 cm64 cm) pressure

sensor fixed on a table and adjusted to the participants’ comfort. The

pressure data and metronome sequences were recorded with a

sampling frequency of 300 Hz, using LabJack U12 device.

Analyses focused on asynchronies series. The times of the taps

and the auditory signals were identified as the reaching of a

threshold at each signal onset. Asynchronies were defined as the

difference between the tap and the corresponding auditory signal.

Simulation
The parameters of the shifting-strategy model were set as follows:

T0 = 1600, R = 20, dmin = 1, dmax = 100, v0 = 2, Q = 0.28, and m = 0.09.

The parameter controlling the weight of the motor component was

set to l = 1.5. The additional parameters of the synchronization and

syncopation models were set to a = 0.85 and t = 800. Finally the

bounding parameter for Wi was b = 50. For both synchronization and

syncopation, 100 series of 512 data points were simulated.

2.2 Data analysis
We first applied ARFIMA/ARMA modeling [10,12] in order to

evaluate the statistical evidence for the presence of genuine long-

range correlations in experimental and simulated series. This

method consists in fitting 18 models to the studied series: nine are

ARMA (p,q) models, p and q varying systematically from 0 to 2,

and the other nine are the corresponding ARFIMA (p,d,q) models,

where d is the fractional integration parameter. The best model is

selected using a goodness-of-fit statistic that is based on a trade-off

between accuracy and parsimony. We used the Bayes Information

Criterion (BIC) that was proven to give the best results in the

detection of long-range dependence [12]. The ARFIMA/ARMA

procedure provides two complementary criteria. The first one is

the percentage of series that are better fitted by an ARFIMA

model. The second is based on a transformation of the raw BIC

values into weights (i.e. the probability that this model is the best

over the set of candidate models; see [13]). We then computed the

sum of the weights captured by the nine ARFIMA models,

considering that the weights of all tested model sum to one.

In order to obtain an accurate assessment of long-range

correlations in the series, we combined two methods: the

Detrended Fluctuation Analysis in the time domain, and the

Power Spectral Density method in the frequency domain. DFA

[14] is based on the analysis of the relationship between the mean

magnitude of fluctuations in the series and the length of the

intervals over which these fluctuations are observed. The

algorithm of DFA consists first in integrating the series x(t), and

calculating for every t the cumulated sum of the deviations of the

mean. This integrated series is then divided in non-overlapping

intervals of length n. In each interval, a least squares line is fit to

the data (representing the trend in the interval). The series is then

locally detrended by subtracting to all values the theoretical value

given by the regression. For each interval length n, the mean

standard deviation [F(n)] of these integrated and detrended series

is computed. For fractal series, a power law is expected, as F(n) /
na, a being the scaling exponent. a is estimated by the slope of the

graph representing F(n) as a function of n, in log-log coordinates.

In the frequency domain we applied lowPSDwe [15], an

improved version of the classical spectral analysis, including some

preprocessing operations before the application of the Fast Fourier

Transform (for details, see [15]). As proposed by the authors, we

estimated the long-range behavior of series by computing the slope

of the log-log power spectrum in the low-frequency region (f,1/8

of maximal frequency). We also assessed the sport-term behavior

of series by computing the slopes in the high-frequency region

(f.1/2 of maximal frequency).

We first analyzed the variability of experimental series by a two-way

repeated measures ANOVA 2 (condition) X 2 (trial), in order to check

whether results obtained in the two trials could be averaged in further

analyses. DFA exponents and PSD slopes were then compared

between conditions by means of one-way repeated measure

ANOVAs. Finally experimental and simulated series were compared,

for each variable and each condition, by one-way ANOVAs.

Results

One participant was unable to adequately perform syncopation,

and was excluded from analyses. Mean results, for experimental

and simulated series, and for each condition, are presented in

Table 1. The averaged diffusion plots (DFA) and power spectra

(PSD) are reported in Figure 4.

Experimental asynchronies presented a mean of 287 ms (660)

in synchronization, and 367 ms (659) in syncopation. Variability

was not significantly different between conditions (F(1,8) = 0.34,

p = 0.576) and did not differ between the two successive trials

(F(1,8) = 01.47, p = 0.260). The interaction was not significant

(F(1,8) = 3.80, p = 0.087).

Fractal Correlation in Tapping
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Table 1. Numerical results of time series analyses for experimental and simulated series.

Series Condition Standard deviation a DFA PSD low frequency slope PSD high frequency slope

Experimental (N = 10) Synchronization 44.45 (614.63) 0.73 (60.10) 20.60 (60.69) 20.90 (60.64)

Syncopation 48.25 (619.56) 0.85 (60.09) 20.84 (60.77) 20.96 (60.70)

Simulated (N = 100) Synchronization 42.61 (61.95) 0.75 (60.08) 20.73 (60.57) 20.91 (60.52)

Syncopation 49.47 (63.88) 0.89 (60.13) 21.05 (60.69) 21.09 (60.63)

Mean standard deviation of series, a exponent obtained from Detrended Fluctuation Analysis, low-frequency and high-frequency slopes obtained from Power Spectral
Density analysis. Standard deviations in parentheses.
doi:10.1371/journal.pone.0007822.t001

Figure 4. Times series analysis of asynchrony series. Upper panel: Detrended Fluctuation Analysis. Left: experimental series (averaged diffusion
plot obtained by point-by-point averaging over the 10 participants; right: simulated series (averaged diffusion plots obtained by point-by-point
averaging over 10 randomly selected simulated series). Lower panel: Power Spectral Density analysis: Left: experimental series (averaged log-log
power spectra obtained by point-by-point averaging over the 10 participants; right: simulated series (averaged log-log power spectra obtained by
point-by-point averaging over 10 randomly selected simulated series).
doi:10.1371/journal.pone.0007822.g004
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ARFIMA/ARMA modeling detected long-range correlation in

16 series over 18 in synchronization, and in 17 series over 18 in

syncopation. The mean sum of ARFIMA weights was 0.89 in

synchronization, and 0.95 in syncopation. These results attested

for the effective presence of long-range dependence in asynchrony

series, in both experimental conditions.

The mean a DFA exponent was significantly higher in

syncopation than in synchronization (F(1,8) = 18.52, p = 0.003).

This result confirms that reported by Chen et al. [8]. Accordingly,

the mean low-frequency slope of PSD was significantly lower in

syncopation than in synchronization (F(1,8) = 6.62, p = 0.033).

There was no difference between conditions for the mean high-

frequency slopes (F(1,8) = 0.58, p = 0.467).

Simulated asynchrony series presented a mean of 2 ms (65) in

synchronization, and 406 ms (625) in syncopation. Note that

mean asynchrony presented a lower variability in simulated than

in experimental series. This was due to the fact that all simulated

series were generated by the same set of parameters, in order to

reproduce the mean features of experimental series. Considering

series variability, simulated and experimental series presented

similar mean standard deviations in the two conditions (synchro-

nization: F(1,107) = 1.53, p = 0.220; syncopation = F(1,107) =

0.329, p = 0.567).

ARFIMA/ARMA modeling detected long-range correlations in

92 series over 100 in synchronization, and in 92 series over 100 in

syncopation. The mean weight sum of ARFIMA weights was 0.89

in synchronization, and 0.95 in syncopation. These results, as

previously, attested for the presence of genuine long-range

dependence in simulated series.

Finally there was no difference in mean a DFA exponents

between experimental and simulated series (synchronization:

F(1,107) = 0.44, p = 0.507; syncopation = F(1,107) = 0.08, p =

0.776). There was as well no difference in mean low-frequency

PSD slopes (synchronization: F(1,107) = 0.42, p = 0.521; syncopa-

tion = F(1,107) = 0.049, p = 0.824), nor in high-frequency slopes

(synchronization: F(1,107) = 0.11, p = 0.743; syncopation =

F(1,107) = 1.641, p = 0.203).

Discussion

Our experimental results clearly replicated those of Chen et al.

[8], with stronger correlations in syncopation than in synchroni-

zation asynchrony series. This result was attested by both DFA

and PSD. We further showed by ARFIMA/ARMA modeling that

in both cases series contained genuine long-range correlation.

The family of models presented in the introduction proposed a

unifying framework for self-paced, synchronization and syncopa-

tion tapping. This modeling proposition is based on the now well-

established distinction between event-based and emergent timing.

This distinction has been supported by a number of studies,

assessing performance variability [16,17,18], serial dependence

[11,19], neural correlates [20,21,22], or more theoretical perspec-

tives [23,24]. Event-based and emergent timing are supposed to be

associated to the performance of discontinuous movements like

tapping, and continuous movements like oscillations or circle

drawing, respectively. While emergent timing is assumed to arise

from the continuous regulation of non-temporal parameters (as

oscillator stiffness) that determine movement frequency without

needing any explicit representation of time, event-based timing is

thought to involve an internal, explicit representation of temporal

goals that is prescribed to the effectors independently of the motor

execution itself. The models presented in this paper, involving a

timekeeper entity, are representative of this event-based timing

framework.

As expected, the synchronization model was able to generate

asynchrony series reproducing the correlation properties of the

corresponding experimental series, with a set of parameters similar

to that used by Torre and Delignières [7]. ARFIMA modeling

showed that these series contained long-range dependence. As

pointed out by Torre and Delignières [7] and in accordance with

the basic assumptions of the original model by Vorberg and Wing

[3], this result strongly suggests the timekeeper that underlies the

self-paced production of time intervals is still at work during

synchronization to external signals.

We show in the present work that the addition of a simple

process of estimation of the half-period of the metronome allows

generating asynchrony series presenting the increase in serial

correlations observed in syncopation experimental series. This

rather psychologically plausible process adds a source of persistent

correlation that combines with the previous one and seems

sufficient to explain the observed difference in correlation strength.

The examination of diffusion plots and power spectra shows that

beyond the statistical equivalence of scaling exponents and slopes,

experimental and simulated series share similar diffusion proper-

ties and frequency compositions.

We observed in the experimental series the typical negative

mean asynchrony in synchronization (and correspondingly in

syncopation a mean asynchrony inferior to the semi-period of the

metronome). This anticipation tendency was already described in

a number of experiments (for a review, see [25,26]), and shows

that taps are not performed in reaction to auditory signals, but

rather as the result of internal prospective processes. The

explanation of this anticipation tendency remains subject to

debate [26], and our models are unable to reproduce this negative

mean asynchrony [3,7]. Chen et al. [8] proposed a model for

synchronization tapping, composed of a hybrid oscillator coupled

to a sine function modulated by a delayed version of actual

movement that seemed able to generate this anticipation tendency.

This model, nevertheless, remains focused on the synchronization

condition, without any perspective of extension to self-paced or

syncopation conditions. Moreover, it based on an oscillatory

perspective, possessing a clear relevance in the case of emergent

timing [11], but which has been clearly dismissed in the case of

event-based timing, especially in tapping tasks [27]. Further efforts

are needed, however, to account for the anticipation tendency in

the present modeling framework.

The three present models share the presence of a timekeeping

entity, considered a 1/f noise source. Note that the exact way we

modeled this timekeeper (i.e. the shifting-strategy model) is not of

central interest here. A number of mathematical solutions exist for

generating this specific pattern of correlation that could have been

used alternatively in the present context. The most important is

that the same 1/f noise source, associated with motor delays, and if

necessary of phase correction processes, could account for self-

paced, synchronized or syncopated tapping performance [7].

The origin of fractal fluctuations in motor or cognitive

performance is currently subject to debate, between the propo-

nents of a so-called nomothetic approach, which conceive 1/f

fluctuations as reflecting, at the macroscopic level, the complexity

of the system that produced performance [28], and a mechanistic

approach that suggests that 1/f fluctuations could arise from

specific, local sources within the system [29]. The present models

clearly support the second approach, with the presence of a fractal

source (the timekeeper), that remains invariant across conditions

and combines with others processes for producing the final sets of

correlations in performance series.

Note that this timekeeping hypothesis should not be conceived

as a claim for the existence of a single unit, within the central

Fractal Correlation in Tapping
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nervous system, in charge of time representation. The fractal

fluctuations of the output of this timekeeper suggest rather that it

represents a complex, distributed network within the CNS

(Spencer, Zelaznik, Diedrichsen and Ivry [22] showed that the

cerebellum plays an essential role in this network). In other words,

our models claim for a statistical localization of the timekeeping

process (i.e., its independence from implementation and phase

correction processes), rather than for a structural localization in the

brain.
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