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A B S T R A C T   

Background: Particulate air pollution and residential greenness are associated with sleep quality in 
the general population; however, their influence on maternal sleep quality during pregnancy has 
not been assessed. 
Objective: This cross-sectional study investigated the individual and interactive effects of exposure 
to particulate matter (PM) air pollution and residential greenness on sleep quality in pregnant 
women. 
Methods: Pregnant women (n = 4933) enrolled in the Korean Children’s Environmental Health 
Study with sleep quality information and residential address were included. Sleep quality was 
assessed using the Pittsburgh Sleep Quality Index (PSQI). The average concentrations of PM 
(PM2.5 and PM10) during pregnancy were estimated through land use regression, and residential 
greenness in a 1000 m buffer area around participants’ residences was estimated using the 
Normalized Difference Vegetation Index (NDVI1000-m). Modified Poisson regression models were 
used to estimate the associations between PM and NDVI and poor sleep quality (PSQI >5) after 
controlling for a range of covariates. A four-way mediation analysis was conducted to examine 
the mediating effects of PM. 
Results: After adjusting for confounders, each 10 μg/m3 increase in PM2.5 and PM10 exposure was 
associated with a higher risk of poor sleep quality (relative risk [RR]: 1.06; 95% confidence in-
terval [CI]: 1.01, 1.11; and RR: 1.09; 95% CI: 1.06, 1.13, respectively), and each 0.1-unit increase 
in NDVI1000-m was associated with a lower risk of poor sleep quality (RR: 0.97; 95% CI: 0.95, 
0.99). Mediation analysis showed that PM mediated approximately 37%–56% of the association 
between residential greenness and poor sleep quality. 
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Conclusions: This study identified a positive association between residential greenness and sleep 
quality. Furthermore, these associations are mediated by a reduction in exposure to particulate air 
pollution and highlight the link between green areas, air pollution control, and human health.   

1. Introduction 

Poor sleep is a common complaint during pregnancy [1], and approximately 46% of pregnant women experience poor sleep 
quality, as measured by the Pittsburgh Sleep Quality Index (PSQI) [2]. Moreover, poor sleep quality is associated with adverse out-
comes in mothers and fetuses, such as prolonged labor [3], gestational diabetes [4], preterm birth [5], and low birth weight [3]. 
Furthermore, poor sleep quality can affect memory and the ability to concentrate in pregnant women [6], leading to poor quality of life 
[7] and mental health problems [8]. In South Korea, the estimated prevalence of poor sleep quality in pregnant women is 72.5% [9], 
whereas another study reported that 80.7% of pregnant women experienced poor sleep [10]. To provide potential prevention and 
therapy, modifiable risk factors for poor sleep quality must be identified. 

Previous studies have found that poor socioeconomic status, an unhealthy lifestyle, heavy work pressure, and poor health are 
associated with poor sleep quality [11–13]. Additionally, recent studies have suggested that environmental factors, such as air 
pollution and greenness, could also be associated with poor sleep quality [14,15]. According to a multicenter cohort study conducted 
in the United States, an interquartile range (IQR) increase in ambient particulate matter (PM) with aerodynamic diameters of ≤10 μm 
(PM10) was significantly associated with decreased sleep efficiency in adults [16]. In addition, a study conducted on rural residents 
aged 18–79 years in China reported that long-term exposures to PM10 and PM with aerodynamic diameters ≤2.5 μm (PM2.5) were 
associated with poor sleep quality, as defined by a global PSQI score of >5 [17]. Similar results were observed in a community-level 
longitudinal study in South Korea, which found that higher levels of PM10 were associated with shorter sleep duration in adults aged 
≥19 years [18]. Recent reviews have concluded that exposure to air pollution is generally associated with poor sleep quality in a wide 
range of study populations, including young children and older adults [14,19]. 

A growing number of reports have suggested that living in greener areas is associated with a lower risk of poor sleep quality [20], 
but results vary. A study among adults in rural China reported that higher residential greenness (as assessed by the Normalized Dif-
ference Vegetation Index [NDVI] and Enhanced Vegetation Index) was associated with better sleep quality [15], whereas no 
convincing evidence of a link between greenspace exposure and sleep quality has been found among children and adolescents in 
Australia and Germany [21]. Unlike literature on air pollution-sleep association, overall findings from literature on greenness-sleep are 
less generalizable due to a small number of studies and exposure assessment, study design and population, and geographic scale 
differences. 

One of the potential mechanisms responsible for greenness-sleep association is that greenness is associated with reductions in 
exposure to air pollution [22], which is regarded as a risk factor for poor sleep quality [23]. Greenness can interact with exposure to air 
pollutants [24], and previous studies have shown that substantial air quality improvements can be achieved through green infra-
structure [25,26]. However, studies on the interaction between air pollution and greenness and the mediating effects of air pollution on 
the association between greenness and sleep quality in pregnant women are lacking. Here, we conducted a cross-sectional study to 
investigate the association between residential environment (residential NDVI and PM) and sleep quality among pregnant women, 

Abbreviations 

BMI body mass index 
CDE controlled direct effect 
CES-D: center for epidemiologic studies-depression 
INTREF reference interaction 
IQR interquartile range 
INTMED mediated interaction 
Ko-CHENS Korean children’s environmental health study 
LUR land-use regression 
NDVI normalized difference vegetation index 
NIR near-infrared radiation 
PM2.5 particulate matter with an aerodynamic diameter ≤2.5 μm 
PM10 particulate matter with an aerodynamic diameter ≤10 μm 
PIE pure indirect effect 
PSG polysomnography 
PSQI Pittsburgh sleep quality index 
RERI relative excess risk due to interaction 
SD standard deviation  
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who are particularly vulnerable to air pollution due to their high oxygen requirements for developing fetuses and decreased 
oxygen-binding capacity [27]. Previous studies indicated that air pollution, psychological stress, and physical activity influence the 
relationship between greenness and sleep [22,28,29]. Additionally, we explored the PM-greenness interaction and mediating effect of 
PM on the association between residential greenness and sleep quality. 

2. Methods 

2.1. Study population 

We used data from the Korean Children’s Environmental Health Study (Ko-CHENS), designed to investigate environmental in-
fluences on health outcomes. The details of the study design have been reported elsewhere [30]. Briefly, participants were selected 
from 12 regional centers in South Korea. The distribution of participants’ residences is shown in Fig. 1; most (90.6%) of the participants 

Fig. 1. Location of the study participants in Ko-CHENS.  
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resided in urban areas. Trained personnel collected data on sociodemographic information, health behaviors, disease history, mental 
health status, and sleep quality. Initially, 5458 pregnant women were recruited between 2015 and 2019. After excluding women with a 
lack of exposure (NDVI and PM) information and sleep quality data, data of 4933 women were analyzed (Fig. S1). Characteristics of the 
excluded participants did not differ significantly from those of the study population, except for parity, smoking, chronic diseases, and 
sociodemographic variables (education, income, and occupation) (Table S1). All study participants provided written informed consent 
before enrollment. The Institutional Review Boards (IRB) of the National Institute of Environmental Research (NIER) provided consent 
for the Ko-CHENS (approval no. NIER-2015-BR-005-01, 15 May 2015), and the present study was approved by the IRB of the Inha 
University Hospital (approval no. 2021-10-023). 

2.2. Outcome assessment 

Sleep quality during pregnancy was assessed using the PSQI scale [31], which has been widely used to assess sleep quality and 
patterns in various patient and research populations, including pregnant women [10,32]. The timing of PSQI administration during 
pregnancy varied across participants (1–30 weeks of gestation). The PSQI contains 19 items in seven subscales. Each subscale is scored 
between 0 and 3, and the seven subscales are summed to produce total scores ranging between 0 and 21, with a higher score rep-
resenting poorer sleep quality. The Korean version of the PSQI has been validated and shown to have high specificity and sensitivity 
[33]. Previous studies of the Korean version of the PSQI have used a cut-point of 5 to define good (≤5) and poor (>5) sleep quality [34, 
35], and we also applied this definition. Cronbach’s alpha for the Korean version of the PSQI was 0.69 [36]. In this study, the internal 
consistency of the PSQI was adequate, with a Cronbach’s alpha of 0.64. 

2.3. PM and residential greenness assessment 

A land use regression (LUR) model was used to estimate PM2.5 and PM10 concentrations during pregnancy using maternal resi-
dential addresses at delivery. The standard LUR modeling procedure has been described elsewhere [37]. Briefly, we obtained PM2.5 
and PM10 concentrations from the AirKorea National Air quality Monitoring Station between 2015 and 2020 (472 stations in 2020). 
Daily 24-h average PM2.5 and PM10 concentrations were measured at each monitoring station. The LUR models were developed for 
individual pollutants, and it included several potential predictors, including variables related to land use, industry-related variables, 
demographic characteristics, traffic-related variables, and amounts discharged to the atmosphere. Details of the data sources are 
provided in the Supplementary Material (Table S2). The LUR models were applied to each geocoded address where the participants 
resided to estimate the pollutant concentrations. We included all potential predictor variables as independent variables after assigning 
the direction of the effect to PM concentration. Model construction started with the variable with the expected regression slope and the 
highest explained variance by univariate analysis. The remaining variables were only added to this model if they satisfied all of the 
following criteria: (a) the gain of adjusted R2 was no less than 1%; (b) the p-value was <0.1; (c) variables already included in the model 
retained the same direction of effect; and (d) the variance inflation factor was <3. This procedure was repeated until none of the 
variables meet the criteria. Cross-validation indicated that the R2 values and root mean squared errors for PM2.5 and PM10 were 73.4% 
and 0.39 μg/m3 and 51.6% and 1.7 μg/m3, respectively (Table S3). 

To assess long-term exposure for each participant during pregnancy, we determined PM2.5 and PM10 concentrations for three 
trimesters of pregnancy. Hourly pollutant concentrations were aggregated to daily levels, and daily concentrations were averaged 
across trimesters (first trimester: 0–12 weeks, second trimester: 12–27 weeks, and third trimester: 27–40 weeks of gestational age). 
Gestational age in weeks was estimated using prenatal ultrasonography. 

Residential greenness levels of the participants were determined using the NDVI, which has been widely used to estimate the effects 
of green vegetation on mental health including sleep quality [15,38]. The NDVI values were derived from the Moderate Resolution 
Imaging Spectroradiometer of the National Aeronautics and Space Administration’s Terra satellite images, which were produced at 
16-day intervals with a spatial resolution of up to 500 m [39]. Normalized Difference Vegetation Index is defined as the ratio of the 
difference between near-infrared radiation (NIR) and visible red (RED) and the sum of these two measures, according to the formula: 
NDVI = (NIR – RED)/(NIR + RED); NDVI values range from − 1 to +1. Negative NDVI values close to − 1 represent blue space or water 
and area without vegetation, whereas positive values close to 1 indicate dense green vegetation [40]. Negative NDVI values were 
coerced as zero in the analysis. Residential greenness was estimated as the mean of the NDVI values in zones at 100 m (NDVI100-m), 200 
m (NDVI200-m), 500 m (NDVI500-m), 1000 m (NDVI1000-m), and 2000 m (NDVI2000-m) around the participant residences. In the present 
study, we used NDVI1000-m values in the main analysis to indicate a broader scale of the neighborhood, which has also been applied in 
previous studies on mental health and sleep quality [15,41,42]. 

2.4. Covariates 

We used the directed acyclic graph (DAG) to select the potential confounders (Fig. S2) and also included the covariates that only 
influence the exposure or outcome that were not identified by DAG [15,43]. A range of demographic, behavioral, and socioeconomic 
covariates was selected, namely, age (<30, 30–34, ≥35), education (high school, college, and graduate school), occupation during 
pregnancy (yes vs. no), parity (multiparity vs. primiparity), pre-pregnancy body mass index (BMI) (kg/m2), frequency of physical 
activity (none, 1–2/week, 3–4/week, 5–6/week, and everyday), smoking history (>5 packs in a lifetime), exposure to secondhand 
smoke (yes vs. no), household income (<2,000, 2000–3,999, and ≥4000 USD/month), center for epidemiologic studies-depression 
(CES-D) scores, chronic diseases (yes vs. no), and season. Age was calculated from delivery and self-reported birth dates, which 
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were verified using identification cards. We divided pre-pregnancy BMI into four categories based on the World Health Organization 
Asia-specific standards: underweight (BMI <18.5 kg/m2), normal (18.5≤ BMI <23 kg/m2), overweight (23≤ BMI <25 kg/m2), and 
obese (≥25 kg/m2) [44]. Data on gestational age (in weeks) were obtained from medical records at delivery. We assessed prenatal 
depression using a 10-item CES-D scale [45]: a score of ≥12 was used to define depressive symptoms [46]. The internal consistency of 
the CES-D indicated excellent reliability in our study (Cronbach’s alpha = 0.82). Chronic diseases were assessed by considering a 
history of nine diseases: stroke, arthritis, osteoporosis, malignant tumors, asthma, chronic bronchitis, chronic hepatitis, diabetes, and 
chronic nephritis. The season in which the PSQI information was collected was used to address seasonal variations in sleep quality 
during pregnancy. Years were divided into four seasons according to weather patterns in Korea: spring (March to May), summer (June 
to August), autumn (September to November), and winter (December to February). 

2.5. Statistical analysis 

Frequency distributions, means, and standard deviations (SD) were used to describe the sample, and the chi-square test was used to 
compare the population characteristics. Correlations between the exposures were evaluated using Pearson’s correlation analysis. 

To estimate the relative risk (RR) and 95% confidence interval (CI) of poor sleep quality associated with the residential envi-
ronment, we used the modified Poisson regression with a robust error variance approach [47]. Separate models were created to 
examine the independent effects of the residential NDVI, PM, and their interactions. Model 1 was used to determine the main effect of 
each 0.1-unit increase in NDVI on poor sleep quality, whereas model 2 was constructed to show the main effect of each 10 μg/m3 

increase in PM on poor sleep quality. Model 3 was a two-exposure model in which the NDVI and PM were regressed on poor sleep 
quality. In Model 4, we added the product term of centered NDVI and PM to assess multiplicative interactions between 0.1-unit in-
creases in NDVI and 10 μg/m3 increases in PM on poor sleep quality. Additionally, we assessed additive interactions by calculating 
relative excess risks due to interactions (RERIs) [48]. All the models were adjusted for age, education level, smoking history, exposure 
to secondhand smoke, gestational age, parity, occupation, family income, and season. Pre-pregnancy BMI, physical activity, chronic 
diseases, and depression were considered potential mediators of the association between residential environment and health outcomes 
[15,49]; thus, they were not adjusted for in the main analysis. Considering the mediating role of PM between greenness and mental 
health [50], we also evaluated whether the greenness-sleep quality association was mediated by PM. The four-way counterfactual 
approach was used to evaluate the mediation effects [51]. The user-written med4way command in Stata was used to test the mediation 
and interaction of the total effect of residential greenness on sleep quality [52]. This command generated five models to decompose the 
total effect of residential greenness on sleep quality: (1) total excess RR (TE: the overall effect of residential greenness on sleep quality); 
(2) excess RR due to controlled direct effects (CDE: the direct effect of residential greenness on sleep quality that was not explained by 
PM); (3) excess RR due to reference interaction (INTREF: the effect of residential greenness due to the interaction with PM); (4) excess 
RR due to mediated interaction (INTMED: the effect of residential greenness due to both mediation and interaction with PM); and (5) 
excess RR due to pure indirect effects (PIE: the effect of residential greenness that was transferred through PM). The statistical sig-
nificance of the PIE indicates a potential mediating effect of the pathway variable. A description of this counterfactual concept is 
provided in the Supplementary Table S4. 

The exposure-response relationship between the residential environment and poor sleep quality was investigated using restricted 
cubic spline models with three knots positioned according to the Harrell’s recommended percentiles [53]. Nonlinearity was deter-
mined by testing the regression coefficient of the second spline variable equal to zero [54]. Additionally, we plotted exposure-response 
curves for poor sleep quality using the NDVI and PM quantiles. 

For sensitivity analyses, we 1) examined associations between poor sleep quality and PM and NDVI1000-m individually and jointly 
using different PSQI cut-offs (PSQI >7 and PSQI ≥8.5) [33,55]; 2) considered sleep quality as a continuous variable rather than a 
binary measure; 3) performed analysis using PM2.5 and PM10 exposures during different time windows (the three trimesters of 
pregnancy); 4) included NDVI within the 100-, 200-, 500-, and 2000-m buffer in the models to assess the potential effect of buffer size; 
and 5) used logistic regression to compute odds ratios (ORs) and compare the ORs of main results with RRs computed using modified 
Poisson regression models. Stratified analyses were conducted to investigate the effect modification by selected maternal character-
istics (age, BMI, education, income, smoking, physical activity, depression, chronic diseases, season, and timing of sleep assessment). 
The significance of effect modifications was evaluated using two-sample z-tests [56]. 

Stata software (version 17.0) was used to conduct statistical analysis, and ArcGIS version 10.8 was used for mapping and devel-
oping the LUR models. Statistical significance was defined as p < 0.05. 

3. Results 

Table 1 summarizes the characteristics of the study population. Mean participant age was 32.9 years (SD = 3.8), and 1467 (29.7%) 
of the participants were ≥35 years old. Most of the participants had a college or higher degree (88.5%), were primiparous (70.3%), and 
had not smoked during pregnancy (88.7%). The mean PSQI score of all the participants was 6.3 (SD = 2.2), and 58.4% of them had 
poor sleep quality (PSQI >5). The mean NDVI1000-m was 0.4 (SD = 0.1), and PM2.5 and PM10 were 26.0 (SD = 5.4) and 47.2 (SD = 7.5) 
μg/m3, respectively (Table 2). A negative correlation was observed between NDVI1000-m and PM (Table 2). Women with poor sleep 
quality were more likely to be primiparous, have a lower income (<2000 USD/month), be obese (BMI ≥25 kg/m2), smoke, be 
depressed (CES-D ≥12), and more likely to be exposed to secondhand smoke than women with good sleep quality (PSQI ≤5) 
(Table S5). 

Table 3 shows the association between residential environment and poor sleep quality. According to the adjusted model, NDVI1000- 

D.K. Lamichhane et al.                                                                                                                                                                                               



Heliyon 10 (2024) e26742

6

m exposure was significantly associated with poor sleep quality, with an RR of 0.97 (95% CI: 0.95, 0.99) per 0.1-unit increase in 
NDVI1000-m (model 1). PM2.5 and PM10 were significantly associated with poor sleep quality (RR: 1.06; 95% CI: 1.01, 1.11; and RR: 
1.09; 95% CI: 1.06, 1.13, respectively, per 10 μg/m3 increase in PM2.5 or PM10) (model 2). The results of the single-exposure model 
(models 1 and 2) also persisted in the two-exposure model (model 3). Multiplicative interactions between PM2.5 and NDVI1000-m were 
observed for poor sleep quality (RR: 0.94; 95% CI: 0.89, 0.98; p = 0.011 (model 4). The RERI estimates indicated no additive in-
teractions between PM and NDVI1000-m (Table S6). The results of the crude models were consistent with those of the adjusted models 
(Table 3). Exposure-response curves of the associations between sleep quality and PM and NDVI1000-m did not suggest a nonlinear 
relationship (PM2.5: p-overall = 0.035, p-nonlinear = 0.935; PM10: p-overall = <0.001, p-nonlinear = 0.791; NDVI1000-m: p-overall =
0.015, p-nonlinear = 0.052; Fig. S3). 

We compared the greenness-sleep quality association in different quartiles of the PM; the association was significant only among 

Table 1 
Characteristics of the study participants (N = 4933).  

Characteristics Mean (SD) n (%) 

Age (years) 32.9 (3.8)  
Age group 

< 30  1055 (21.4) 
30–34  2411 (48.9) 
≥ 35  1467 (29.7) 

Education 
High school  561 (11.4) 
College  3753 (76.1) 
Graduate school  619 (12.6) 

Parity 
Primiparity  3477 (70.5) 
Multiparity  1456 (29.5) 

Gestational age (weeks) 38.8 (1.8)  
Family income (US$/month) 
<2000  314 (6.4) 

2000–3999  2447 (49.6) 
≥ 4000  2172 (44.0) 

Occupation 
No  1666 (33.8) 
Yes  3267 (66.2) 

Physical activity 
None  4226 (85.7) 
1–2/week  253 (5.1) 
3–4/week  313 (6.4) 
5–6/week  100 (2.0) 
Everyday  41 (0.8) 

Body mass index (kg/m2) 
< 18.5  564 (11.4) 
18.5–22.9  2936 (59.5) 
23–24.9  663 (13.4) 
≥ 25  770 (15.6) 

Smoking status 
No  4304 (87.2) 
Yes  629 (12.8) 

SHS exposure 
No  4130 (83.7) 
Yes  803 (16.3) 

Chronic diseases   
No  4596 (93.2) 
Yes  337 (6.8) 

Season 
Spring  1267 (25.7) 
Summer  1126 (22.8) 
Autumn  1227 (24.9) 
Winter  1313 (26.6) 

CES-D scores 4.6 (4.3)  
CES-D group 

CES-D < 12  45,068 (92.6) 
CES-D ≥ 12  365 (7.4) 

PSQI scores 6.3 (2.2)  
PSQI group 

PSQI ≤5  2053 (41.6) 
PSQI >5  2880 (58.4) 

Abbreviations: Standard deviation: SD; secondhand smoke: SHS; Center for Epidemiologic Studies- 
Depression Scale: CES-D; Pittsburgh Sleep Quality Index: PSQI. 
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participants exposed to PM2.5 in the fourth quantile (Table 4). We did not find a monotonic trend in the association between greenness 
and sleep quality within the different PM quartiles. Additionally, we compared the association between PM and poor sleep quality 
within the different quartiles of greenness (Table S7). We found that greater greenness attenuated the risk of poor sleep quality; 
however, we did not observe a monotonic trend in this association. This finding was also apparent in the spline analysis (Fig. 2). The 
spline model results showed that in the NDVI1000-m quartiles, the risk of PM2.5-related poor sleep quality increased in the middle 
quartiles (Q2 and Q3), whereas in the upper quartile (Q4), greater greenness substantially flattened the risk (Fig. 2A). Additionally, for 
the PM2.5 quartiles, RRs of NDVI1000-m-related poor sleep quality were substantially lower in the upper quartile (Q4), whereas in the 
lower quartile (Q1), higher PM2.5 substantially increased the risk (Fig. 2B). 

The four-way mediation analysis showed that the pure indirect effects of PM2.5 and PM10 on the NDVI1000-m-sleep quality rela-
tionship for the adjusted model were significant, and the mediated proportions were 36.9% and 55.7%, respectively (Table 5). The 
mediated interactions (effects due to mediation and interaction) were significant for PM2.5, but not for PM10. Furthermore, we found 
no evidence of mediation and interaction by physical activity, pre-pregnancy BMI, chronic diseases, or depression on the association 
between residential environment and sleep quality (Table S8). 

Sensitivity analyses showed that when the association between residential environment and poor sleep quality was examined by 
changing the PSQI cut-off scores; significant associations for NDVI1000-m, PM2.5, and PM10 were observed at a cut-off of >7, and the 
association for PM10 was significant at a higher cut-off score (≥8.5) (Table S9). For continuous outcomes, the relationships between 
residential environment and PSQI scores were similar to the main results (Table S10). The results did not change substantially when 
examining the association using trimester-specific PM concentrations, and significant interaction terms were found between NDVI1000- 

m and PM2.5 exposure during the second and third trimesters (Table S11). Additionally, we found significant positive associations of 
PM2.5 during the first and third trimesters and PM10 in all three trimesters with poor sleep quality. Furthermore, sensitivity analysis 
using NDVI2000-m showed independent and interactive effects of PM2.5 and residential greenness on poor sleep quality was similar to 

Table 2 
Summary of residential greenness and particulate matter levels.   

Mean SD Min Quantiles Max Pearson’s correlation coefficients 

Q25 Q50 Q75 NDVI1000-m PM2.5 PM10 

NDVI1000-m 0.4 0.1 0.0 0.3 0.3 0.4 0.8 1.0   
PM2.5 26.0 5.4 11.8 22.3 25.4 28.7 47.3 − 0.2 1.0  
PM10 47.2 7.5 24.5 41.8 45.7 51.5 91.6 − 0.2 0.7 1.0 

Abbreviations: Standard deviation: SD; normalized difference vegetation index: NDVI; particulate matter with aerodynamic diameters of ≤2.5 μm: 
PM2.5; particulate matter with aerodynamic diameters of ≤10 μm: PM10. 

Table 3 
Associations between sleep quality and residential greenness and particulate matter levels.   

Model 1 Model 2 Model 3 Model 4  

RR (95% CI) RR (95% CI) RR (95% CI) RR (95% CI) p value 

NDVI1000-m 

Crude model 0.97 (0.95, 0.99)     
Adjusted model 0.97 (0.95, 0.99)     

PM2.5 

Crude model  1.05 (1.00, 1.09)    
Adjusted model  1.06 (1.01, 1.11)    

PM10 

Crude model  1.07 (1.04, 1.11)    
Adjusted model  1.09 (1.06, 1.13)    

PM2.5 and NDVI1000-m 

NDVI1000-m   0.98 (0.95, 1.00) 0.97 (0.95, 0.99)  
PM2.5   1.05 (1.01, 1.10) 1.05 (1.01, 1.10)  
NDVI1000-m × PM2.5    0.94 (0.89, 0.98) 0.011 

PM10 and NDVI1000-m 

NDVI1000-m   0.99 (0.96, 1.01) 0.99 (0.96, 1.01)  
PM10   1.09 (1.05, 1.12) 1.09 (1.05, 1.12)  
NDVI1000-m × PM10    0.99 (0.96, 1.02) 0.568 

Abbreviations: Relative risk: RR; normalized difference vegetation index: NDVI; particulate matter with aerodynamic diameters ≤2.5 μm: PM2.5; 
particulate matter with aerodynamic diameters ≤10 μm: PM10. 
Note: Model 1 showed the main effect of 0.1-unit increases in NDVI on poor sleep quality; model 2 showed the main effect of 10 μg/m3 increases in 
PM2.5 or PM10 on poor sleep quality; model 3 showed the main effects of 0.1-unit increases in NDVI and 10 μg/m3 increases in PM2.5 or PM10 on poor 
sleep quality; and model 4 showed the interaction between 0.1-unit increases in NDVI and 10 μg/m3 increases in PM2.5 or PM10 on poor sleep quality.. 
The adjusted models and Models 3 and 4 were controlled for maternal age, history of smoking, exposure to secondhand smoke, maternal education, 
gestational age, parity, occupation, family income, and season.. 
p values are for the interaction between 0.1-unit increases in NDVI and 10 μg/m3 increases in PM2.5 or PM10.. 
Bold values denote statistical significance at p < 0.05. 
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the main results (Table S12). Interactive effects of PM2.5 and NDVI500-m on poor sleep quality were also found; however, these results 
were inconsistent with the NDVI100-m and NDVI200-m analyses. Furthermore, sensitivity analysis using logistic regression conformed to 
the Poisson regression results (Table S13). Finally, we did not observe statistically significant subgroup differences according to 
maternal characteristics, including age, education, income, smoking, physical activity, depression, chronic diseases, and season, for 
the association between residential environment and poor sleep quality (p for subgroup difference >0.05) (Fig. 3, S4, and S5). 
Additionally, the associations between PM2.5 and PM10 with sleep quality were significant in both subgroups stratified by the timing of 

Table 4 
Associations between residential greenness (0.1-unit increases in NDVI1000-m) 
and poor sleep quality, modified by particulate matter.   

RR (95% CI) 

PM2.5 (μg/m3) 
1st quartile (range 11.8–22.3) 1.04 (0.99, 1.09) 
2nd quartile (range 22.3–25.4) 0.97 (0.92, 1.01) 
3rd quartile (range 25.4–28.7) 0.98 (0.94, 1.03) 
4th quartile (range 28.7–47.3) 0.93 (0.88, 0.98) 

PM10 (μg/m3) 
1st quartile (range 24.5–41.8) 0.99 (0.95, 1.04) 
2nd quartile (range 41.8–45.7) 0.97 (0.92, 1.02) 
3rd quartile (range 45.7–51.5) 1.01 (0.96, 1.06) 
4th quartile (range 51.5–91.6) 0.98 (0.94, 1.03) 

Abbreviations: Relative risk: RR; normalized difference vegetation index: 
NDVI; particulate matter with aerodynamic diameters of ≤2.5 μm: PM2.5; 
particulate matter with aerodynamic diameters of ≤10 μm: PM10. 
Note: Adjusted for maternal age, history of smoking, exposure to secondhand 
smoke, maternal education, gestational age, parity, occupation, family in-
come, and season. 
Bold values denote statistical significance at p < 0.05. 

Fig. 2. Association between poor sleep quality and PM2.5 for different NDVI1000-m quantiles (A) and NDVI1000-m for different PM2.5 quantiles (B). 
Abbreviations: Relative risk: RR; normalized difference vegetation Index: NDVI; particulate matter with aerodynamic diameters of ≤2.5 μm: PM2.5; 
particulate matter with aerodynamic diameters of ≤10 μm: PM10. Note: All the models were adjusted for maternal age, history of smoking, exposure 
to secondhand smoke, maternal education, gestational age, parity, occupation, family income, and season. 
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PSQI administration during pregnancy (weeks of gestation), and we found no statistically significant differences (Table S14). 

4. Discussion 

In this nationwide cohort of pregnant women, higher PM2.5 and PM10 levels were significantly associated with poor sleep quality 
(PSQI >5), whereas higher residential greenness was associated with better sleep quality. Furthermore, this association remained 
consistent across the subgroups, with no evidence of effect modification by participant characteristics. This study showed that PM 
mediated 37–56% of the effects on the association between residential greenness and sleep quality. Additionally, ambient PM2.5 
potentially interacts with greenness and mediates the relationship between greenness and sleep quality. 

Growing evidence suggests that air pollution is associated with sleep quality [14,16,17]. A multicenter cohort study of 3030 US 

Table 5 
Four-way mediation analysis of residential greenness (NDVI1000-m), particulate matter, and poor sleep quality.  

Mediator/ 
moderator 

TE CDE INTREF INTMED PIE Mediation 
proportion 

β (95% CI) β (95% CI) β (95% CI) β (95% CI)  

PM2.5 ¡0.090 (–0.179, 
–0.001) 

¡0.077 (–0.147, 
–0.006) 

− 0.008 (− 0.072, 
0.055) 

0.028 (0.007, 
0.049) 

¡0.033 (–0.053, 
–0.013) 

36.9% 

PM10 ¡0.074 (–0.145, 
–0.002) 

− 0.042 (− 0.115, 
0.032) 

0.001 (− 0.019, 
0.021) 

0.008 (− 0.010, 
0.026) 

− 0.041 (–0.059, 
–0.023) 

55.7% 

Abbreviations: Total effect: TE; controlled direct effect: CDE; reference interaction: INTREF; mediated interaction: INTMED; pure indirect effect: PIE. 
Note: Logistic regression models were used with poor sleep quality as the outcome and residential greenness as the main exposure. Linear regression 
models for each mediator/moderator (PM2.5 and PM10) were used, and the mediator was allowed to interact with the main exposure. All models were 
adjusted for maternal age, smoking history, exposure to secondhand smoke, maternal education, gestational age, parity, family income, occupation, 
and season. 
Bold values denote statistical significance at p < 0.05. 

Fig. 3. Stratified analyses of the association between PM2.5 (per 10 μg/m3 increment) and risk of poor sleep quality. Abbreviations: Relative risk: 
RR; body mass index: BMI; Center for Epidemiologic Studies-Depression: CES-D. Note: The RRs were adjusted for maternal age, history of smoking, 
exposure to secondhand smoke, maternal education, gestational age, parity, occupation, family income, and season. For each stratified analysis, the 
stratification variable was omitted from the model. 
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adults aged >39 years (mean age, 63 years), with objectively measured sleep quality assessed by polysomnography (PSG), reported 
that an IQR increase in short-term PM10 in the summer was positively associated with sleep disorders [16]. Another study conducted in 
the US consisting of 1974 adults (mean age, 68 years), revealed an association between PM2.5 and sleep disorder, as assessed by PSG 
[57]. A Mexican study of 397 mother-child pairs reported that PM2.5 exposure during pregnancy was associated with a reduction in 
sleep efficiency (assessed objectively using actigraphy) in children [58]. We retrieved only three studies that investigated the asso-
ciation between PM and sleep quality using PSQI in adults [17,59,60]. A Chinese study of 27,417 adults (aged 18–79 years) found that 
long-term exposure to PM2.5 and PM10 (per IQR increase) was associated with poor sleep quality (PSQI >5) (OR: 1.15; 95% CI: 1.03, 
1.29; and OR: 1.11; 95% CI: 1.02, 1.21, respectively) [17]. Another Chinese study reported that PM2.5 and PM10 were associated with 
reduced sleep duration [60] and prolonged sleep latency [59]. It is difficult to compare the effect sizes of the current evidence 
regarding the associations between PM and sleep quality with those of previous studies due to differences in study populations, air 
pollutants, and sleep measure. Nevertheless, consistent with other studies [17], we observed a significant association between PM and 
poor sleep quality (PSQI score >5) in pregnant women. 

However, there is insufficient evidence linking residential greenness to sleep quality. Only five relevant studies have examined the 
association between objective greenspace measurements and self-reported sleep quality [15,23,61–63], and only one of these studies 
used the PSQI scale to measure poor sleep quality [15]. For example, a recent prospective study of 21,878 participants (aged ≥45 
years) in China showed that each 0.1 increase in NDVI was significantly associated with a 9% (OR: 0.91; 95% CI: 0.86, 0.96) decrease 
in the odds of poor sleep quality, which was defined as the combination of short sleep duration (<7 h per night) and a feeling of unrest 
for >3 nights per week [23]. Another study based on 27,654 rural residents in the Henan Province reported that higher residential 
greenness was associated with better sleep quality, as assessed using the PSQI [15]. Additionally, a systematic review concluded that 
greenspace exposure is positively associated with sleep quality [20]. 

In the present study, we did not find monotonic trends in the association between PM and sleep quality at different levels of 
greenness exposure. Our restricted cubic spline models showed a pattern of decreasing risks of poor sleep quality associated with 
exposure to elevated PM2.5 among women living in the greenest quantile. This indicates that a certain level of residential greenness is 
required to reduce air pollution. We also noted that the distribution of PM2.5 was fairly similar across NDVI1000-m quintiles (e.g., 
ranging between 15.4 and 45.8 μg/m3 in the lowest quintile and between 12.5 and 44.7 μg/m3 in the highest). These results indicate 
that greenness may modify the relationship between exposure to PM2.5 and sleep quality. In our interaction model, the RR of a 0.1-unit 
increase in NDVI1000-m and 10 μg/m3 increase in PM2.5 was 0.94 (p = 0.011), which suggests that decreasing air pollution and 
increasing residential greenness have a synergistic effect on sleep quality. Previous studies have provided evidence on the effects of 
greenness and air pollution interactions on other health outcomes [24,64], supporting our findings to some extent. A Chinese Lon-
gitudinal Healthy Longevity Survey found that elderly individuals (≥65 years) living in areas with higher greenness levels were 
associated with lower risks of air pollution-related mortality [24]. One plausible explanation for the interaction between exposure to 
PM2.5 and residential greenness is that greenspace filters out PM aerodynamically [65], thereby reducing the oxidative stress caused by 
PM2.5 exposure [66], which can reduce the adverse effects of exposure to PM2.5 on sleep. 

Several potential mechanisms have been proposed to explain the association between greenness and sleep quality, including 
reducing the harmful effects of environmental exposure, providing spaces for outdoor and social activities, and reducing psychological 
stress [22,28,29]. We found that greenness affects sleep quality in pregnant women through the mediating effect of particulate air 
pollution. A Spanish cross-sectional study in adults (n = 958) reported that PM2.5 mediated 14% of the association between sur-
rounding greenness and poor mental health [67], and a prospective cohort study in China (n = 31,176) reported that the mediation 
proportions of PM2.5 and PM10 on the association between greenness (NDVI250-m) and poor mental health were approximately 53% and 
39%, respectively [50]. However, no studies have reported the mediating effect of air pollutants on the association between greenness 
and sleep quality. Greenness may attenuate the adverse effects of air pollution exposure and remove PM [68], and residential greenness 
may improve mental health [29] and help to improve sleep quality. Our findings suggest that particulate air pollution may explain the 
association between greenness and sleep quality. A previous study suggested that several pathways, including physical activity and 
mental stress, explained the association between greenness and health [22]. However, the present study did not support the mediating 
effects of physical activity and depression on the association between greenness and sleep quality. Further studies are needed to 
investigate the potential mechanisms, preferably through the inclusion of multiple mediators, of greenness-sleep quality association 
among pregnant women. 

The strengths of our study are that it examined associations at a national level with a relatively large sample size, and included 
multiple sensitivity analyses. We included detailed demographic and psychosocial behavioral information, which enabled us to 
conduct a stratified analysis of these risk factors. To our knowledge, this is the first study to investigate exposure to air pollution, 
greenness, and sleep quality among pregnant women. 

This study has several limitations. First, exposure to particulate air pollution during pregnancy was based on maternal residential 
addresses at delivery, as predicted by the LUR model, and this model did not consider exposure at the work address or during 
transportation, which may have led to exposure misclassification. However, studies have shown that maternal mobility during 
pregnancy is generally restricted to short distances, and exposure levels remain homogenous within a community [69,70]. Hence, we 
believe that this shortcoming had a minor impact on our exposure estimates and is unlikely to have changed our findings. Second, 
although several studies have used the NDVI to assess individual residential greenness [15,71], it does not provide information on 
specific types of vegetation. Third, sleep quality was assessed only once during pregnancy using the PSQI scale, and we did not confirm 
it by clinical examinations, such as PSG, which is the gold standard for diagnosing sleep disorders [72]. Fourth, although our analyses 
controlled several confounders, residual confounding remains possible. For example, we did not consider the use of a partial-body 
heating system while sleeping in a cold indoor environment, which may be related to changes in sleep quality over time [73]. The 
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effects of PM on sleep quality may also be confounded by ambient temperature, relative humidity, artificial light at night, and noise 
[74,75], which were not measured in this study and may be estimated in future studies. Fifth, we did not consider multiple pollutants 
that may have had confounding or modifying effects on our analysis. Finally, longitudinal studies are required to validate the causal 
relationships between air pollution and greenness and sleep quality in pregnant women. 

5. Conclusions 

Our study provides evidence that increases in PM2.5 and PM10 concentrations are related to the risk of poor sleep quality (PSQI >5) 
in pregnant women. Furthermore, a higher level of residential greenness is associated with better sleep quality, and greenness and 
PM2.5 interact with sleep quality. Additionally, PM mediated approximately 37–56% of the association between greenness and poor 
sleep quality. These findings suggest that greenness may be significant in reducing PM concentrations, and is subsequently linked to a 
lower risk of poor sleep quality. Our findings provide evidence for urban planners, as improvements in residential greenness could be a 
protective measure in areas with high air pollution. The protection and restoration of greenspace may decrease PM concentrations and 
help improve maternal and fetal health. Future studies are required to investigate the role of mental stress on the relationship between 
the residential environment and sleep quality, and to explore the underlying biological mechanisms. 
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