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The killer-cell immunoglobulin-like receptor (KIR) genes regulate natural killer cell activity,

influencing predisposition to immune mediated disease, and affecting hematopoietic

stem cell transplantation (HSCT) outcome. Owing to the complexity of the KIR locus,

with extensive gene copy number variation (CNV) and allelic diversity, high-resolution

characterization of KIR has so far been applied only to relatively small cohorts. Here,

we present a comprehensive high-throughput KIR genotyping approach based on next

generation sequencing. Through PCR amplification of specific exons, our approach

delivers both copy numbers of the individual genes and allelic information for every KIR

gene. Ten-fold replicate analysis of a set of 190 samples revealed a precision of 99.9%.

Genotyping of an independent set of 360 samples resulted in an accuracy of more than

99% taking into account consistent copy number prediction. We applied the workflow

to genotype 1.8 million stem cell donor registry samples. We report on the observed

KIR allele diversity and relative abundance of alleles based on a subset of more than

300,000 samples. Furthermore, we identified more than 2,000 previously unreported KIR

variants repeatedly in independent samples, underscoring the large diversity of the KIR

region that awaits discovery. This cost-efficient high-resolution KIR genotyping approach

is now applied to samples of volunteers registering as potential donors for HSCT. This will

facilitate the utilization of KIR as additional selection criterion to improve unrelated donor

stem cell transplantation outcome. In addition, the approach may serve studies requiring

high-resolution KIR genotyping, like population genetics and disease association studies.

Keywords: next generation sequencing, NGS, KIR genotyping, KIR, killer cell immunoglobulin-like receptors,

allele-level resolution, high-throughput
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INTRODUCTION

The human killer cell immunoglobulin-like receptor (KIR) gene
family resides on the long arm of human chromosome 19 in a
region that varies between 100 and 200 kb in size. This region
is characterized by highly diverse haplotypes, that differ both
in gene content and copy number of the KIR genes (1–5). KIR
genes encode transmembrane glycoproteins, expressed on the
surface of natural killer (NK) cells (6, 7), which are an important
component of the innate immune system and provide a first line
of defense against infectious agents and tumor cells (8). KIR are
key modulators of NK cell activity with activating and inhibiting
family members. Activating KIR induce target cell killing upon
receptor stimulation, and inhibitory KIR counteract NK cell
activation thereby playing an important part in the detection of
HLA downregulation: a commonmechanism of immune evasion
of virally infected cells or tumor cells (9, 10).

The importance of the interactions between KIR and HLA
molecules has been well established: KIR and HLA class I
have been found to be actively co-evolving (11, 12). KIR
binding specificity and affinity to HLA class I molecules, and
consequently patterns of resistance to specific diseases are
influenced by complex interactions of allelic polymorphisms of
both KIR and HLA class I genes (13–18).

Successful allogeneic hematopoietic stem cell transplantation
(HSCT) crucially depends on a close match of HLA class I
and class II alleles between donor and recipient (19), and HLA
matching remains the most important criterion for unrelated
donor selection (20). Yet, consideration of additional factors such
as KIR may further improve transplantation outcome. Several
studies reported an influence of donor KIR genotype on long-
term survival after transplantation (21–27). Owing to the fact
that KIR and HLA genes reside on different chromosomes,
unrelated donors and recipients who are HLA-matched rarely
share identical KIR genes. Genotyping the KIR genes of potential
stem cell donors at high resolution upon registration and
providing this information in addition to the HLA genotypes
would thus be beneficial for optimizing the unrelated donor
selection process (28, 29).

Due to the complexity of the human KIR region, high-
resolution genotyping is not straightforward. There are 15 KIR
genes and two KIR pseudogenes named (30). In this study we
will refer to this classical KIR gene nomenclature, even though
KIR3DL1/KIR3DS1 and likewise KIR2DL2/KIR2DL3 constitute
alleles of the same gene (31). On the other hand, we treat
KIR2DL5A and KIR2DL5B, which are highly homologous genes
allocated to clearly distinct genomic locations (32), as a single
gene. Six KIR genes (KIR2DL1, KIR2DL2/3, KIR2DL5, KIR3DL1,
KIR3DL2, KIR3DL3) encode inhibitory glycoproteins with long
(L) cytoplasmic tails, while six genes encode glycoproteins with
short (S) cytoplasmic tails that induce activation (KIR2DS1,
KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, KIR3DS1). KIR2DL4
exhibits both activating and inhibitory functions (33). Two

Abbreviations: ECN, Exon sequence Copy Number; EAG, Exon Allele
Group; GCN, Gene Copy Number; EAGC, EAG Combination; KIR, Killer-cell
Immunoglobulin-like Receptor.

pseudogenes are not expressed as proteins (KIR2DP1, KIR3DP1).
Four genes are present in most of the common haplotypes and
have been designated “framework” genes (KIR3DL3, KIR3DP1,
KIR2DL4, KIR3DL2). They mark the centromeric and telomeric
boundaries of the KIR region (2, 11). The KIR region shows
extensive genetic diversity at three distinct levels (2, 5, 11).
First, KIR haplotypes vary with respect to gene content, i.e.,
the presence or absence of specific KIR genes on a haplotype
(2, 11). Next, some KIR genes are subject to copy number
variation (CNV), having up to four copies on a single haplotype
(5). Finally, individual KIR genes show extensive sequence
polymorphism with currently 907 alleles being described in total
(IPD-KIR Database, Release 2.7.1) (30). Allelic diversity across
genes ranges from 16 alleles for KIR2DS3 and KIR2DS1 to 158
alleles for KIR3DL2.

Established KIR genotyping methods focus on assessing KIR
gene content, i.e., patterns of presence or absence for individual
KIR genes (34, 35).Methods that report CNVor allelic differences
have been developed (5, 31, 36), but they are mostly designed to
serve the needs of the research community and do not support
the cost and scale requirements for high-volume stem cell donor
registry typing.

DKMS registers volunteers for stem cell donation across
Germany, Poland, the USA, the UK, and Chile. Since 2013,
the high-throughput genotyping facility of DKMS (DKMS
Life Science Lab, Dresden, Germany) has been applying
next generation sequencing (NGS) for high-throughput HLA
genotyping (37, 38). After initially developing this NGS-based
workflow for sixHLA genes we extended the donor typing profile
by adding CCR5 and the blood groups ABO and RHD (38–
40). Here, we describe the workflow and the algorithm used
to provide cost-effective high-volume KIR genotyping at allelic
resolution.We compare the results to establishedKIR genotyping
methods and present an analysis of KIR allele frequencies based
on a subset of more than 300,000 samples.

MATERIALS AND METHODS

Aim
Our short-amplicon-based NGS workflow for HLA genotyping
achieves extreme cost efficiency for high-throughput genotyping
by omitting the classical NGS library preparation steps.
Instead, short amplicons are designed to match the instrument
sequencing length. Upon pooling all targeted loci, molecular
indexes and adapters required for sequencing are added using a
second PCR reaction. Here, we describe the workflow and the
algorithm used to provide KIR genotypes at allelic resolution.
The output gives full gene presence/absence, copy number and
allele data represented in the GL string format (41), which is a
standard that enables communication of results among clinics
and researchers (42).

Samples and Consent to Participate
Volunteers from Germany, Poland, USA, and UK provided
samples to DKMS for registration as potential HSCT donors.
HLA and KIR genotyping was performed on these samples
between October 2016 and August 2018. All subjects gave written
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informed consent for HLA and KIR genotyping in accordance
with the Declaration of Helsinki. The described genotyping is
within the scope of the consent forms signed at recruitment and
performed as a genotyping service. UCSF sample collection with
written informed consent (accuracy assessment based on 360
samples) was approved by the Institutional Review Board of the
University.

DNA Isolation and Quantification
DNA was isolated from 150 µl whole blood or a single
nylon “FLOQSwab TM hDNA free” (Copan Italia Spa, Brescia,
Italy) using the magnetic-bead-based “chemagic DNA Blood
Kit special” or “chemagic DNA Buccal Swab kit special”
(Perkin Elmer, Baesweiler, Germany), respectively. DNA was
eluted in 100 µl elution buffer (10mM Tris-HCl pH8.0). DNA
concentrations were measured by fluorescence (SYBR Green,
Biozym, Hessisch Oldendorf, Germany) using the TECAN
infinite 200 Pro (Tecan, Männedorf, Switzerland) plate reader.
Samples with DNA concentrations of <2 ng/µl were excluded
from KIR genotyping.

Reference Samples With KIR Genotyping
Information
We obtained genomic DNA from a panel of 93 International
Histocompatibility Working Group (IHWG) cell lines (43).
The samples were diluted to a concentration of 20 ng/µl. An
additional set of 360 reference samples were derived from a
collection of healthy individuals stored in the UCSF multiple
sclerosis biorepository. Both sample sets had been previously
genotyped for KIR at allelic resolution (31).

Amplicon Design and PCR Amplification
Primers were designed to target KIR exons 3, 4, 5, 7, 8, and 9.
As exon 8 is very short (53 bp) and close to exon 9 a combined
amplicon was designed for these two exons. Primer mixes
contained 10–14 primers per amplicon to cover all KIR genes
in a multiplexed assay. Amplicon sizes varied between 249 and
448 bp. Four separate PCR reactions (exon 4, exon 5, exons
3, and 7 multiplexed, one amplicon spanning exons 8 and 9)
were performed in 10 µl volume using 384-well plates with
FastStartTM Taq DNA Polymerase (Roche, Basel, Switzerland)
and the associated buffer system (38). For each sample, the four
PCR reactions were pooled using volumes appropriate to obtain
balanced read coverage for each KIR exon. A secondary PCR was
performed on the pool to elongate the amplicons with indexes
and sequencing adapters for Illumina sequencing as described
before (38). Target-specific primers and index primers were
obtained from Metabion (metabion international AG, Planegg,
Germany).

Library Preparation and Sequencing
After the indexing PCR, 384 barcoded samples were pooled
together. Pooled PCR products were purified with SPRIselect
beads (BeckmanCoulter, Brea, USA) with a ratio of 0.6:1
beads to DNA and subsequently quantified by qPCR using
the Library Quant Illumina Kit (KAPA Biosystems, Boston,
USA). Commonly, 10 purified and quantified KIR amplicon
pools were combined with 10 amplicon pools targeting the

HLA, blood group and CCR5 genes as described previously
(38). Denaturation and dilution of the sequencing library were
executed as recommended by Illumina (MiSeq Reagent Kit
v2-Reagent Preparation Guide). Libraries usually consisting of
3,840 samples were loaded at 12.5 pM onto HiSeq flow cells with
10% PhiX spiked in. Paired-end sequencing was performed for
2 times 249 cycles with HiSeq Rapid SBS Kits v2 (500 Cycles) on
HiSeq2500 (Illumina, San Diego, USA) instruments.

Nextype for KIR
The general design of the neXtype software for KIR allele-level
genotyping follows the design of neXtype for HLA genotyping
as described previously (37). However, there are two major
challenges for short-amplicon-based KIR genotyping: First, gene
content varies depending on the haplotypes. Second, some KIR
genes show very high sequence homology either partially or
completely with other KIR genes. Therefore, particular exonic
sequences may not only be shared across alleles of the same KIR
gene but also across two or more distinct KIR genes. Hence, some
fundamental assumptions of our established HLA genotyping
algorithm do not hold true: For KIR genotyping we cannot
assume that one (homozygous) or two (heterozygous) sequences
are identified for each amplified locus. Instead, the number of
distinct sequence features per exon varies from sample to sample.

These circumstances increase the algorithmic challenge to
distinguish between original sample sequences, and PCR or
sequencing artifacts. The most abundant sequencing artifacts
are PCR-crossover products and single base errors. In HLA
genotyping, these can easily be identified by their reduced read
coverage compared to at most two original allele sequences. In
KIR genotyping, however, the natural spread of read coverage
and the variation in sequence features present require a different
strategy. To deal with this and other challenges (described
below), we determine the genomic copy number (ECN, Exon-
sequence Copy Number) of individual sequence features by
taking advantage of the multiplexed amplification of all KIR
genes in a single PCR reaction per amplicon. This allows
calculating the read count of each individual sequence feature
in reference to the read count of other sequences, after
correcting for preferential amplification (see below). Applying
this normalization algorithm, artifacts are clearly separated from
single copy sequences (Figure 1). ECN estimation becomes less
accurate with increasing copy numbers (Figure 1). However, only
one and two copies per haplotype are common, whereas three
and more copies are rather rare (5). The ECN estimation is used
for four purposes:

1) Identification of artifacts. The ECN estimation outperforms
simple absolute or relative thresholds because of the
underlying calibration algorithm.

2) Restriction of the result space. The ECN estimation
decreases the number of valid combinations of exonic
sequences, particularly for sequences shared across several
KIR genes. In these cases the number of theoretically valid
exon combinations is often very high. By incorporating
the ECN estimations many of these combinations can be
eliminated.
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3) Determination of gene copy number. Based on the ECNs
the copy number of KIR genes can be determined even if the
same allele is present in several copies.

4) Calculation of a quality score. For every KIR gene a quality
score is calculated based on the deviation of the calculated
copy numbers from the allocated copy numbers (copy
number used) for this solution across all exons. This quality
score was identified as the most effective means for the
identification of erroneous results in our experiments.

Taken together, the determination of the ECNs and their
incorporation into the algorithm reduce the result space and
improve accuracy for allele-level KIR genotyping.

neXtype analyses the sequencing data in seven consecutive
steps:

Step1: Amplicon Assignment
Based on the primer sequences each read is assigned to one of the
five KIR amplicon groups (exon3, exon4, exon5, exon7, exon8/9)
as described before (37).

Step2: Allele Matching
Using the extant IPD-KIR Database information, the sequences
of alleles that are indistinguishable at a given exon are gathered
into Exon Allele Groups (EAGs). The allele assignment for this
study was based on the IPD-KIR Database, Releases 2.6.1 and
2.7.1 (44). For each exon, these EAG sequences are assembled
into a decision tree (37).

The exon-assigned reads are mapped to their corresponding
decision trees allowing mismatches. After mapping all reads, the
algorithm delivers a set of EAGs and the number of readsmapped
to each EAG. We term those EAGs that share their sequence
across different genes as “bridging” EAGs. Bridging EAGs cannot
be assigned a priori to a single gene.

FIGURE 1 | Exon Sequence Copy Number (ECN) calculation based on relative

read coverage. Distribution of the calculated ECNs of all exon sequences of

1,000 randomly selected samples (A) and 93 reference samples with known

KIR genotypes (B). The ECNs were calculated for all detected exon

sequences and plotted as events in histograms with a bin size of 0.02. For

(B) the events were separated and color coded based on the known ECNs

according to the reference genotypes with ECN = 0 (green, inlay), ECN = 1

(red), ECN = 2 (blue), ECN = 3 (black, inlay), and ECN = 4 (pink, inlay).

Step3: EAG Classification
After all reads are matched, EAGs are classified based on read
counts, patterns of sequence mismatches and other statistical
properties (Table 1). EAGs identified at this point as artifacts are
flagged and eliminated from subsequent analyses.

Step4: Copy Number Calculation
Applying calibration parameters experimentally derived for each
batch of PCR primers (see below), the copy number calculation
converts the read count for each EAG to an exon sequence copy
number (ECNc). The gene copy number (GCNc) is calculated
from the average of the (non-bridging) ECNc over the exons.
Note that ECNc and GCNc are rational numbers and used
without rounding in the following calculations.

Step5: Exon Combination
In this step, KIR alleles are called by “exon combination.” In
this process gene-specific EAGs are combined and compared
to the known IPD-KIR Database allele sequences. Only EAG
combinations (EAGCs) corresponding to an allele in the IPD-
KIR Database are accepted. EAGCs are further combined into
EAGC sets, which represent all the potential combinations of
alleles present in the genotype. The number of EAGCs (alleles)
in a valid EAGC set is constrained by the rounded calculated
gene copy number (GCN). To allow for uncertainty in GCN
estimation, EAGC sets based on GCN± 1 are considered.

The decision on which of the EAGC sets represents the final
result for a gene is based on least squares scores. This score
incorporates the relative difference between the used (ECNu) and
calculated (ECNc) exon copy numbers per EAGC set. Each set is
allocated a score S which is defined as

S =
1

∑EAGn
i=EAG1

ECNi
c

EAGn
∑

i=EAG1

(

ECNi
u − ECNi

c

)2

ECNi
u

TABLE 1 | Classification of detected sequence features (EAGs).

Classification Description Used in copy number

calculation (“Result

EAG”)

Actual result Bona fide result not otherwise

classified

Yes

Potential new allele The majority of matched reads

deviates from the reference

sequence in at least one position

Yes

Statistical noise Using a binomial distribution an

EAG with few associated reads

can be identified as noise of an

EAG with more reads

No

Potential

crossover artifact

The EAG may potentially have

been arisen as crossover artifact

of two EAGs with more reads

Yes

Crossover artifact Negligible crossover artifact with

low number of matched reads

No

Artifact EAG was identified as a known

artifact

No
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where EAG1 to EAGn comprise all member EAGs of an EAGC
set and, in addition, EAGs detected but not part of the evaluated
EAGC set. Consequently, unused EAGs (ECNu = 0) increase the
score because the sum over the squares comprises these EAGs
(ECNu in the denominator is set equal to 1 in that case). For
normalization, the squared error is divided by the sum of all
detected ECNc which equals approximately the GCN multiplied
by the number of exons analyzed. The set with the smallest score
is identified as the best result. In some cases several results have
identical scores. Such ambiguities are reported in the GL string
and we refer to them as phasing ambiguities.

In the case of bridging EAGs, we consider the respective genes
jointly when building EAGC sets. A simplified example is shown
in Figure 2. The bridging set with the lowest overall score is
chosen as the final result.

Step6: Result Rating
The exon combination results are subjected to the following
sanity checks:

1) Is a pre-defined minimum read number obtained for each
exon?

2) Are all framework genes present?
Results not passing checks 1 or 2 are blocked and flagged for
repeated experimental analysis but may be approved in step 7
after analyst review.

3) Is the copy number of each of the framework genes equal to
2?

4) Are the GCNs of the best results identical?
Results not passing checks 3 or 4 are flagged for manual
verification.

5) Is the score S of each EAGC set < = 0.1?
6) Are all EAGs with an ECNc > 0.6 included in the result set?
7) Is no EAG with ECNc < 0.4 included in the result set?
8) Is ECNc-ECNu < 0.4 for the majority of used EAGs?
9) Is no potential new allele included in the result set?

Results not passing checks 5–9 trigger fallback to
presence/absence (POS/NEG) calling of the corresponding
gene. To report presence/absence of a gene, the GCNc is
evaluated: For GCNc > 0.5 the gene is reported as present,
otherwise as absent.

The final result is represented in terms of a genotype list (GL)
string (41) for each gene, for example:

KIR2DL4∗00502+ KIR2DL4∗013|KIR2DL4∗0010201/

KIR2DL4∗0010202+ KIR2DL4∗011.

This GL string for the geneKIR2DL4 represents a copy number of
two with two possible realizations (genotype ambiguity, denoted
by “|”). In one realization one copy has an allele ambiguity
(denoted by “/”). To report presence or absence of a gene, “POS”
or “NEG” are used in the GL string.

Step7: User Interaction
neXtype allows the user to orchestrate the result if required. All
classified EAGs not included in one of the EAGC are displayed in
addition to the results. The user can add one of those EAGs or flag
an EAG as artifact and start a recalculation. It is also possible to

exclude a complete exon from the calculation, which may yield a
higher level of ambiguities. In addition, the GCNs can be changed
manually.

Determination of the KIR Calibration Parameters
We derive the ECNcs from the relative read count of an
individual EAG vs. all reads of the exon. However, certain
sequences, representing particular genes or alleles, are amplified
more efficiently than others. To account for EAG, gene
and batch-dependent amplification differences, we introduce
three calibration parameters FACTOR_AI, FACTOR_1, and
FACTOR_2. For each new reagent batch these parameters are
empirically determined by processing at least 1,000 samples
(calibration set) including the 93 IHWG samples with knownKIR
genotype.

As described above the reads are assigned to EAGs. As a first
calibration step, read counts per EAG are normalized by the total
number of reads identified for the respective exons.

To these normalized read counts, FACTOR_AI is applied
to compensate for amplification imbalances between EAGs of
the same gene and exon. This calibration parameter is derived
for each EAG by empirically determining the peak density
corresponding to ECN= 1 based on plots of the normalized read
counts of the calibration set.

Next, FACTOR_1 is applied to compensate for amplification
imbalances between genes and exons. This calibration parameter
is derived for each gene and exon (with the calibration set) by
applying k-means clustering (45) to the read counts, normalized
by the previous two steps. FACTOR_1 is then derived from the
centroid coordinates of the cluster, empirically determined to
correspond to ECN= 1.

Finally, to fine-tune calculated ECNs, FACTOR_2 is applied.
To derive FACTOR_2 during parameter determination, ECNs
are estimated for each EAG based on reads counts normalized
by the previous three steps. These estimates are clustered by
applying k-means clustering. FACTOR_2 is then derived from
the centroid coordinates of the clusters, empirically determined
to correspond to ECN= 1 for each locus and exon.

The performance of the calibration parameters is reviewed by
manual inspection of density plots derived from the final ECN
estimates. Here, the presence of one to two peaks per EAG that
correspond to either ECN = 1 or ECN = 2 is verified. Further,
the accuracy of typing results of samples with known genotype
is another criterion for the approval of a set of calibration
parameters for routine typing.

Characterization of Novel Alleles
To characterize novel alleles for submission to KIR-IPD
we applied a redundant full-gene sequencing workflow
as previously described for the characterization of novel
HLA alleles (46). Briefly, the novel allele was amplified
in two independent KIR gene specific long-range PCRs
covering the gene from UTR to UTR using PrimeSTAR
GXL DNA Polymerase (Takara, Kyoto, Japan). One PCR
product was sequenced on Illumina MiSeq instruments after
fragmentation and library preparation. The other PCR product
was sequenced on PacBio Sequel instruments as unfragmented
long amplicon product. The DR2S software (https://github.
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FIGURE 2 | Evaluation of result sets based on the calculation of the result set score S. The result set score S is calculated to evaluate potential results and identify the

most likely one. Each result set is composed of different combinations of detected exon sequences (EAGs). This example depicts three exons of two genes sharing in

exon 3 the same sequence (bridging EAG). (A) EAGs identified in each exon with associated Exon Sequence Copy Numbers (ECNcs). The ECNcs are derived from

the number of detected reads by applying several normalization and correction factors. The gene copy number (GCNc) is estimated for each gene by first building the

sum of the ECNcs of all EAGs in each exon and then averaging the sums over the exons (ignoring exons with bridging EAGs). (B) Based on the detected EAGs

neXtype calculates result sets (EAGC sets) consisting of EAG combinations (EAGCs) which correspond to named alleles. In this example EAGC sets with one or two

copies per gene are evaluated because the calculated gene copy number (GCNc) is close to 1 for both genes. The EAGC set with one copy of each gene yields the

lowest score of 0.02 and is therefore selected as final result.

com/DKMS-LSL/DR2S) was applied to derive fully phased
high-quality error-corrected sequences, incorporating both
long-read and short-read data (47). The final sequence
was submitted to ENA and subsequently KIR-IPD using
Typeloader (48).

RESULTS

Validation, Precision, Accuracy
Given the complexity of KIR genotyping at the allelic level,
thorough verification of the workflow and algorithm is essential.
A major hurdle is the lack of reference material genotyped
to the same depth and breadth. During setup, testing,
validation, and optimization of the workflow and algorithm
we extensively took advantage of 93 IHWG reference samples
that had been previously genotyped for all KIR genes at allelic
resolution (31). To estimate the precision, we experimentally
analyzed a random set of 190 samples 10 times. Finally,
we estimated the accuracy of our KIR typing approach by
analyzing a further set of 360 samples genotyped at KIR allele-
level.

Initial Validation on 93 IHWG Reference Samples
For initial validation of the workflow and algorithm, we analyzed
93 reference samples with predetermined allelic KIR genotypes

(31). Analysis was performed blinded. Given 16 analyzed KIR
genes, those 93 samples equal 1,488 genotypes on the level of
the individual KIR genes that could feature none, one, or several
alleles for each gene. KIR genes not present in the respective
samples according to the reference data were correctly flagged
as absent in 413 cases. In 224 cases (15%) genes were correctly
flagged as present, but no allele level was reported (The analysis
software reports presence instead of allele-level results if novel
alleles are identified or results do not meet all quality criteria).
Eight hundred fifty-one genotypes were reported at the allelic
level: 848 were in concordance with the pre-typing or have
been confirmed after revisiting the reference data. Concordance
criteria were: (a) identical alleles called or, in case of not fully
resolved alleles, overlap in the allele sets reported in the GL
string; (b) identical copy numbers of the alleles called. The three
discordant results (0.2%) were due to two cases of KIR2DL4 with
incorrect allele calls and one discrepancy in the copy number
of KIR2DL5: three copies of an allele were erroneously called
instead of two in a homozygous sample. The two KIR2DL4
cases resulted from a noise filter that disregarded true sequences
in rare circumstances, resulting in incorrect allele calls. This
filter, inherited from the HLA analysis, was found to be not
required due to the quantitative approach of the KIR algorithm.
It was relaxed in the subsequent release to exclude this error
source.
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Assessment of Precision Based on 10-Fold Repeated

Analysis of 190 Samples
To assess the precision of workflow and algorithm, we randomly
selected 190 samples and performed the KIR genotyping analysis
ten times with this sample cohort, varying instruments, and
reagent batches (using KIR-IPD 2.6.1 as reference). Based on
the manually curated consensus results we determined the gene
copy numbers (Figure 3A). In 6% (12 out of 190) of the
samples, at least one of the KIR genes was present in three
copies, underscoring the need for algorithms able to cope with
that complexity. Overall, we obtained results passing quality
filters for 1,752 analyses corresponding to 28,032 KIR genotypes
considering 16 KIR genes. (For technical reasons we distinguish
in Figure 3 between the expressed and non-expressed variants

of KIR2DS4, but refer to it jointly as one KIR2DS4 genotyping
result.) Within those 28,032 KIR genotypes there were only 19
(0.07%) with discordant results (Figure 3B). Of these, 15 were
due to discrepancies in the copy number of the reported alleles,
mostly (13/15) discrepancies regarding copy numbers of two or
three. In two cases, discrepant alleles were called either instead of
the correct allele (KIR3DP1) or in addition (KIR2DS4). In two
further cases an absent KIR gene was falsely called as present
(KIR2DL1 and KIR2DS2).

Novel alleles were identified in 5.3% (160 of 3,040) of
the consensus genotyping results on the individual gene level
(Figure 3C). However, this average is inflated by the two
pseudogenes KIR2DP1 and KIR3DP1 having several rather
frequent alleles not contained in KIR-IPD 2.6.1. Not considering

FIGURE 3 | Assessment of precision and accuracy. (A–C) Precision set: 10-fold analysis of 190 samples. (D–F) Accuracy set: analysis of 360 samples with

independent KIR genotyping data. (A,D) Gene copy numbers (GCN) based on the established consensus genotypes (A) and the corrected results (D). In very few

cases the GCN could not be determined unambiguously (gray), partly due to the presence of hybrid genes. (B,E) Genotyping errors based on discrepancies between

individual replicates and the manually curated consensus genotypes (B) or the ground truth reference genotypes (E). Discrepancies are labeled as “questionable” (E) if

the reference genotypes are not plausible based on manual inspection of neXtype data. (C,F) Rate of allele-level results and novel alleles: to avoid spurious results the

algorithm reports only the presence of individual KIR genes instead of the exact alleles if certain quality criteria are not met (positive). For the accuracy set (D–F),

presence calls were largely improved to allele-level genotypes after manual inspection of the data.
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these genes, 2.1% (57 of 2,660) of the genotyping results included
novel alleles.

To prevent erroneous calls, neXtype software reports the
presence of a gene (positive) instead of distinct alleles if
certain quality criteria are not met. The rate of allele level
calls was similar for most genes with KIR2DL4 and KIR3DL3
being the exceptions (Figure 3C). A particular common
artifact in exon 7 was identified as chief cause for KIR2DL4
underperformance. KIR3DL3 presence calls were mostly due
to a neXtype reference data issue due to missing intron
information.

Taken together, we obtained 99.9% concordant KIR
genotyping results. The data further suggests that the KIR-
IPD database currently is far from covering the alleles present in
this cohort of 190 samples comprehensively.

Assessment of Accuracy Based on the Analysis of

360 Samples
In March 2017 we received an independent set of 360
samples previously analyzed for KIR allele-level genotype
with the PING software pipeline (31). Validation and precision
estimation were set up to mimic high-throughput operations
with largely automated analysis. In contrast, these samples
were analyzed meticulously as appropriate for clinical
samples or clinical research studies. Therefore, samples
were processed twice and neXtype results were manually
curated. In particular, all neXtype presence calls were reverted
to allele-level results with the exception of two cases of
KIR3DP1 (Figure 3F). Data analysis was performed blinded,
i.e., without knowledge of PING genotyping data. After data
exchange, we worked closely together to define a ground
truth based on in-depth inspection of discordant KIR typing
results.

Overall, copy number distribution in this sample set
resembled the 190 sample set data, with 6% of samples harboring
three or four copies of specific KIR genes (Figure 3D). The
frequency of novel alleles was found to be similar to the precision
set: Averaging over all KIR genes, novel alleles were identified in
5.6% of the results (324 of 5,760). Excluding the two pseudogenes
KIR2DP1 and KIR3DP1, novel alleles were identified in 2.0% of
the results (101 of 5,040).

The dataset included 360 samples corresponding to 5,760
genotyping results, considering 16 KIR genes. However, no
reference data was available for KIR3DP1 (all samples), KIR2DS2
(all samples), KIR2DL3 (147 samples) and specific other genes
(21 samples) reducing the data set to 4,872 results with PING
data. The neXtype genotypes were in concordance with PING
genotypes in 99.3% of the cases (Figure 3E). In 11 cases (0.2%)
neXtype genotyping errors were identified, including 6 cases of
GCN discrepancies and 5 cases of miscalled alleles. In addition,
in 21 cases (0.4%) we were not able to establish a ground truth
as the two genotyping workflows delivered conflicting results
that could not be resolved. In conclusion, this analysis of an
independent sample set underlines the potential of the method
for high accuracy studies: In this setting it delivered 99.9% allele-
level genotypes, including the report of novel alleles, with an
accuracy exceeding 99%.

KIR Genotyping of a Large Cohort
Between October 2016 and August 2018 we generated allele-
level KIR genotyping data for 1.8 million potential HSCT donor
samples fromGermany (1.08M), Poland (0.38M), USA (0.20M),
and UK (0.17M). Here we report on some characteristic features
of a subset of 337,387 samples of this predominantly European
cohort analyzed using the most recent KIR-IPD database version
(2.7.1) as the reference allele set.

We further took advantage of the unprecedented cohort size
with respect to KIR allele-level typing and determined allele
frequencies for all detected KIR genes. The individual genes
differed markedly with regard to the number of alleles present
in the data set, as well as their relative allele frequencies. As
reported previously (49), limited allelic diversity was found in the
activating KIR genes (KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4,
KIR2DS5, KIR3DS1) with currently (KIR-IPD 2.7.1) around a
dozen (7 to 22) alleles per gene known at the allotype level
(Figure 4). In addition to the limited overall diversity, the allele
distribution in activating KIR genes was heavily skewed: The
single most abundant allele of the activating KIR genes (with the
exception of KIR2DS4) accounted for at least 60% (KIR2DS1)
and up to 97% (KIR2DS5) of the sample set. For KIR2DS4
five common alleles were found at largely similar frequencies.
In contrast, the inhibiting KIR genes generally displayed more
diversity (Figure 5). In particular, for the genes with three
Ig-domains (KIR3DL1, KIR3DL2, KIR3DL3) many different
alleles were identified at rather evenly distributed frequencies.
Among genes with two Ig domains, KIR2DL1 and KIR2DL4
demonstrated rather broad allele frequency distributions, while
KIR2DL2, KIR2DL3, KIR2DL5 were each dominated by two
common alleles having a combined frequency of∼90%.

Owing to the large cohort size we can report allele frequencies
for over two thirds (69%) of the alleles described in IPD-
KIR 2.7.1 at the protein (allotype) level (Figure 6). For another
16% we can only report the frequency of allele groups which
cannot be distinguished by our approach as the differentiating
polymorphism lies outside the targeted regions (i.e., in exon
1 or exon 6). However, despite the large cohort size, 15%
of the alleles described in IPD-KIR 2.7.1 were not detected.
This likely indicates population-specific alleles not represented
in our predominantly European cohort, particularly for alleles
first identified in samples of African or Asian origin. On the
other hand, this may be due to sequencing errors in the
original submission. For example, the allele KIR2DS5∗001 was
not detected in our cohort. It differs from KIR2DS5∗002 (97%
frequency) in three positions in exon 4 which are conserved
across all other KIR2DS5 alleles. Likewise, the undetected
KIR2DS1∗001 allele differs from KIR2DS1∗003 (63% frequency)
in one position in exon 3, again conserved across all other
KIR2DS1 alleles.

In conclusion, this analysis provides a comprehensive
overview of the alleles and their frequencies to be expected in a
European sample set.

Detection of Novel Alleles
To estimate the diversity and frequencies of novel allele variants,
we analyzed in more detail a subset of 185,170 samples
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FIGURE 4 | Allele frequencies of inhibiting KIR genes. Allele frequencies (at 3-digit resolution) of inhibiting KIR genes based on a dataset of 337,387 samples and

KIR-IPD database release 2.7.1. Alleles not resolvable based on the targeted exons are separated by “/.” Due to silent mutations, two 5-digit alleles may separate into

distinct 3-digit allele groups with different levels of ambiguities (e.g., KIR2DL3*001 and KIR2DL3*001/003). Alleles with frequencies below 0.005 are plotted in an inlay.

that were acquired using the IPD-KIR Database Release 2.6
(44) as reference. Considering only sequences which could
be assigned to a specific KIR gene with high confidence,
we identified 5,203 distinct sequences with variations from
reported alleles (Figure 7A, Supplementary File 1). We have
begun independent validation of these allele sequences using full-
gene characterization, for submission to the IPD-KIR Database
(ENA accession numbers of the first 376 full-length sequences,
Supplementary File 2). However, given the large number of
samples yet to process, detailed results from this effort will
be reported in a future study. More than 2,000 of the novel
sequences were identified in at least two individuals, minimizing
the risk of spurious calls. About half of the novel sequences
identified encode for novel protein sequences (Figure 7B). Even
when considering only the sequences identified in at least five
individuals, the number of novel sequences (427) approaches
the number of currently named alleles on the protein level (481,
IPD-KIR Database Release 2.7) (44). Overall, the number of
novel sequences identified for each KIR gene reflects the diversity

pattern currently reported in the IPD-KIR Database with the
inhibiting KIR genes (red, Figures 7A,B) displaying a higher
variability than the activating KIR genes (green, Figures 7A,B).
However, in particular for the activating genes, the genetic
variability seems to be far greater than currently reported:
Considering only sequences observed at least twice, we identified
(averaged over all activating KIR genes) more than four times as
many different protein coding sequences as currently reported.
The diversity of KIR2DL1 and KIR2DL2 seems underreported as
well: While we detected, for example, only 10 of the 13 KIR2DL2
sequences known at the protein level, we observed 46 distinct so
far unreported KIR2DL2 sequences in at least two independent
samples.

All KIR genes have in common that the few novel sequences
observedmore than ten times collectively comprisemore samples
than the high number of singletons (Figure 7C). The 11 most
abundant novel sequences each occur at population frequencies
of above 1%. This group included two alleles of the non-expressed
genes KIR2DP1 and KIR3DP1 with frequencies exceeding 10%,
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FIGURE 5 | Allele frequencies of activating KIR genes. Allele frequencies (at 3-digit resolution) of activating KIR genes based on a dataset of 337,387 samples and

KIR-IPD database release 2.7.1. Alleles not resolvable based on the targeted exons are separated by “/.” Due to silent mutations, two 5-digit alleles may separate into

distinct 3-digit allele groups with different levels of ambiguities (e.g., KIR2DS2*001 and KIR2DS2*001/002). Alleles with frequencies below 0.005 are plotted in an inlay.

presumably reflecting their limited biological relevance and the
concurrently reduced research focus.

In addition to the sequence variations reported above,
we frequently encountered samples with novel combinations
of known exonic sequences. In other cases, one or several
exonic sequences could not be detected. This may partly reflect
technical limitations like variations in the primer binding region
impeding amplification or insertions/deletions interfering with
recognition. However, this may also reflect novel alleles, fusion
genes or other genomic reorganizations. Given the quantitative
algorithm applied, those special cases were readily detected
and flagged. However, the exact description of those sequences
requires full gene sequencing and exceeds the capabilities of the
described high-throughput workflow.

Taken together, this study confirms that the most abundant
alleles are adequately reflected in the database with exception of
the pseudogenes harboring undescribed alleles in more than 1/5
individuals. Further, the data sheds light on the high diversity
of the KIR genes that has only been touched at the surface so
far. After integration of the herein described alleles, the IPD-KIR
Database should better reflect at least the diversity found in the
European population.

DISCUSSION

The regulation of NK cell activity by the KIR gene family is
orchestrated by a complex interplay of haplotypes including
variation in gene and allele content, NK cell activation (licensing)
or inactivation and interaction with HLA molecules, or other
unknown ligands. A diverse set of methods has been applied
over the last years to unveil the complex genetic diversity (50).
Several methods were reported for assaying gene content at
the absence/presence level (51–53) or quantitatively (54–56).
Others have focused on the allelic characterization of specific
KIR genes by either sequencing, PCR-SSOP or PCR-SSP (57–
60). The comprehensive analysis of all KIR genes at allelic
resolution until recently required the combination of several
assays (61). In a joined study, several groups combined their
expertise for the in-depth characterization of a cohort of 512
samples (49). However, only the application of NGS enabled
the comprehensive characterization of the complete KIR family
of genes at allelic level in one assay (29). In contrast to our
approach which is based on PCR for target selection, the study
by Norman et al. (31)relies on capture technology. Therefore,
it is not restricted to selected exons but rather able to provide
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FIGURE 6 | Coverage of IPD-KIR allotypes. KIR alleles (IPD-KIR 2.7.1) were classified at the allotype level (first three digits): unambiguously detected alleles (resolved);

alleles detected at a frequency of below 0.00001 (rare); alleles detected as part of an allele group (ambiguous); not detected alleles (not detected).

sequence information covering complete genes including all
exons and introns. Despite its holistic nature, the capture assay
is applicable to the analysis of large cohorts enabling studies
with hundreds of samples, thereby presumably superseding most
if not all of the previously published methods. Our approach,
however, delivers yet another level of high-throughput capability.
We routinely genotype more than 6,000 samples for the complete
KIR gene family and six HLA genes on a single HiSeq run. At the
same time, ourKIR assay is extremely cost-efficient with themain
cost drivers being five PCR reactions and about 40,000 HiSeq
reads (equaling currently about $1.5 in sequencing costs) per
sample. Despite this cost-optimized setup, which presumably is
less than even a simple PCR-SSP assay for absence/presence KIR
genotyping, we obtain allotype-level resolution, including copy
number estimations.

The high-throughput data generation process is supported by
a highly automated data analysis pipeline. Extensive optimization
and validation ensure high-resolution KIR genotyping with high
accuracy. The software is conservatively tuned, reverting to
lower resolution or presence calls whenever a quality parameter
indicates an increased risk of spurious results. The main
challenge lies in the accurate copy number estimation of the
sequence features, in particular for features present in more
than two copies. While one and two copies can be estimated
with good accuracy, the variance in copy number estimation
increases with larger copy numbers often triggering a fallback-
to-presence call. In the dataset of 337,387 samples studied here
for determining KIR allele frequencies, 8% of the results at
the individual KIR gene level were reported as present. Since
these presence calls presumably are not completely random,

they entail a potential distortion in the allele frequencies
reported here. We are continuously working on reducing the
rate of low-resolution genotyping results by analyzing the
specific reasons and fine tuning and improving the neXtype
software accordingly. However, trained analysts may inspect
the warnings and all underlying data, identify inaccuracies and,
based on the comprehensive picture, improve the genotyping
resolution. Therefore, for clinical samples or research studies
of lower numbers (up to several thousands) the workflow and
software provide the opportunity for a close-to-complete (>99%)
characterization at the allelic level at an extremely low error
rate as demonstrated by the accuracy study. Currently, however,
this implies that so far unnamed alleles are reported. Analyzing
a subset of 185,170 samples, we identified 5,203 distinct novel
alleles. This indicates that our current knowledge is only a faint
reflection of the true KIR diversity. Full-length characterization
of even the more frequent of these novel alleles will pose a
major challenge. However, after developing whole KIR gene
amplification assays and updating the appropriate tools for
reference sequencing (46–48), we are currently in the process
of submitting the first few hundred sequences to the IPD-KIR
Database.

The primary motivation for this study was the potential
impact of KIR-genotype informed donor selection on HSCT
outcome. NK cells are thought to mediate potent anti-leukemic
effects in the context of allogeneic stem cell transplantation,
so called graft-vs.-leukemia reactions (62). When stem cells are
transplanted from a healthy donor to a diseased patient, activity
of natural killer cells partly depends on the donor compound
gene content for activating and inhibitory KIR in conjunction
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FIGURE 7 | Novel alleles observed. (A) Number of alleles reported in IPD-KIR

Release 2.6 (blue) vs. the distinct additional sequences identified in a cohort of

185,170 samples (green). The color code indicates the number of independent

observations per novel sequence. (B) As in A, but only alleles/sequences giving

rise to distinct protein sequences were counted. (C) Number of samples where

any of the novel sequences of A was observed; grouped by the frequencies of

the novel sequences. KIR genes are sorted by the number of reported alleles.

with the KIR ligands determined largely by the HLA genotype
of the patient. Both, the KIR B haplotype and the presence of
the KIR2DS1 gene in the donor KIR repertoire were associated
with a reduced risk of relapse and better relapse-free survival
of patients with AML after allogeneic stem cell transplantation
(21, 22). However, gene content analysis falls short of depicting
the granular levels of interaction introduced by the large variety
of KIR alleles (63). Both, binding affinity, and protein expression
on the cell surface vary between different KIR allotypes. For
example, disruption of the amino-acid sequence motif WSAPS
in KIR3DL1 by substitution of leucine for serine at position 86
blocks the correct folding of the Ig-like domains and results
in retention of the protein in the endoplasmic reticulum (64).
The KIR3DL1 alleles ∗004, ∗019, ∗021, ∗036, ∗037, ∗039, ∗056,
and ∗072, with ∗004 being one of the three most common

KIR3DL1 alleles (Figure 4), share this feature and thus are
usually not expressed at measurable levels on the cell surface.
Variation in expression and density of KIR3DL1 has been shown
to impact on AIDS progression in HIV-positive patients and on
antibody-dependent cellular cytotoxicity against neuroblastoma
cells (13, 54, 55). Most importantly, preliminary studies indicate
that the strength of KIR allele-HLA ligand interaction may
impact stem cell transplantation outcome (65). Donor selection
incorporating KIR allele information may thus positively affect
outcome (66). Two large studies addressing the benefits of
KIR-(allele)-repertoire based donor selection are in progress
(NCT02450708 & NCT01288222).

Unfortunately, fully HLA-matched donors are still not
available for all patients in need for a stem cell transplant.
However, as a result of the registration of millions of
volunteers by the donor centers worldwide, many potential
donors are available for the more abundant genotypes: e.g.,
at least four HLA-compatible 10/10 matched donors are
available for the majority of patients with European ancestry.
Therefore, a substantial proportion of patients could benefit
from considering additional selection criteria. Since the effects
on transplantation outcome are driven by the interaction of
the KIR repertoire of donor cells with many cognate ligands
on recipient hematopoietic cells encoded in the HLA class I
genes, KIR genotyping of the patients is not absolutely required
simplifying translation into clinical practice. Therefore, donors
may be selected based on KIR/ligand information once high-
resolution KIR genotyping data is available for a sufficient
number of potential stem cell donors. As of August 2018 we
have generated KIR genotyping data for 3.2 million potential
donors, including KIR allele-level data for 1.8 million donors.
Therefore, for 20% of the globally registered donors (with typing
profile of at least HLA-A, -B, -C, -DRB1) KIR data is already
available. Allele-level KIR data is currently available for 10%
of these donors. Extrapolating the current recruitment rates
we project to reach 5 million allele-level KIR typed donors by
2021. We hope that these efforts will contribute to translating
experimental and clinical research efforts involving different
aspects of the KIR family genes into clinical practice to further
improve outcome of unrelated stem cell transplantation. In
addition, availability of such a cost-efficient high-throughput
workflow may prove beneficial for the further exploration of
KIR genes and alleles for population and disease association
studies.
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case of sequences identified and characterized in several samples, only one
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