
RESEARCH ARTICLE

A linked land-sea modeling framework to

inform ridge-to-reef management in high

oceanic islands

Jade M. S. Delevaux1*, Robert Whittier2, Kostantinos A. Stamoulis3,4, Leah L. Bremer5,6,

Stacy Jupiter7, Alan M. Friedlander1,4,8, Matthew Poti9,10, Greg Guannel11,

Natalie Kurashima12, Kawika B. Winter1,13, Robert Toonen14, Eric Conklin15,

Chad Wiggins15, Anders Knudby16, Whitney Goodell4, Kimberly Burnett5, Susan Yee17,

Hla Htun1, Kirsten L. L. Oleson1, Tracy Wiegner18, Tamara Ticktin19

1 Department of Natural Resources and Environmental Management, University of Hawai‘i, Honolulu,

Hawai‘i, United States of America, 2 Hawai‘i Department of Health, Honolulu, Hawai‘i, United States of

America, 3 Department of Environment and Agriculture, Curtin University, Perth, Australia, 4 Fisheries

Ecology Research Lab, University of Hawai‘i, Honolulu, Hawai‘i, United States of America, 5 University of

Hawaii Economic Research Organization, University of Hawai‘i, Honolulu, Hawai‘i, United States of America,

6 University of Hawai‘i Water Resources Research Center, University of Hawai‘i, Honolulu, Hawai‘i, United

States of America, 7 Wildlife Conservation Society, Melanesia Program, Suva, Fiji, 8 National Geography

Society, Washington, DC, United States of America, 9 CSS, Inc., Fairfax, Virginia, United States of

America, 10 NOAA National Centers for Coastal Ocean Science, Silver Spring, Maryland, United States of

America, 11 Natural Capital Project, Stanford University, Palo Alto, California, United States of America,

12 Kamehameha Schools Natural and Cultural Resources, Kailua-Kona, Hawai‘i, United States of America,

13 Limahuli Garden and Preserve, National Tropical Botanical Garden, Hā‘ena, Hawai‘i, United States of

America, 14 Hawai‘i Institute of Marine Biology, University of Hawai‘i, Honolulu, Hawai‘i, United States of

America, 15 The Nature Conservancy, Hawaii Marine Program, Honolulu, Hawai‘i, United States of America,

16 Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, Ontario, Canada,

17 U.S. Environmental Protection Agency, Gulf Ecology Division, Gulf Breeze, Florida, United States of

America, 18 Marine Science Department, University of Hawai‘i, Hilo, Hawai‘i, United States of America,

19 Department of Botany, University of Hawai‘i, Honolulu, Hawai‘i, United States of America

* jademd@hawaii.edu

Abstract

Declining natural resources have led to a cultural renaissance across the Pacific that seeks

to revive customary ridge-to-reef management approaches to protect freshwater and

restore abundant coral reef fisheries. Effective ridge-to-reef management requires improved

understanding of land-sea linkages and decision-support tools to simultaneously evaluate

the effects of terrestrial and marine drivers on coral reefs, mediated by anthropogenic activi-

ties. Although a few applications have linked the effects of land cover to coral reefs, these

are too coarse in resolution to inform watershed-scale management for Pacific Islands. To

address this gap, we developed a novel linked land-sea modeling framework based on local

data, which coupled groundwater and coral reef models at fine spatial resolution, to deter-

mine the effects of terrestrial drivers (groundwater and nutrients), mediated by human activi-

ties (land cover/use), and marine drivers (waves, geography, and habitat) on coral reefs.

We applied this framework in two ‘ridge-to-reef’ systems (Hā‘ena and Ka‘ūpūlehu) subject to

different natural disturbance regimes, located in the Hawaiian Archipelago. Our results indi-

cated that coral reefs in Ka‘ūpūlehu are coral-dominated with many grazers and scrapers

due to low rainfall and wave power. While coral reefs in Hā‘ena are dominated by crustose
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coralline algae with many grazers and less scrapers due to high rainfall and wave power. In

general, Ka‘ūpūlehu is more vulnerable to land-based nutrients and coral bleaching than

Hā‘ena due to high coral cover and limited dilution and mixing from low rainfall and wave

power. However, the shallow and wave sheltered back-reef areas of Hā‘ena, which support

high coral cover and act as nursery habitat for fishes, are also vulnerable to land-based

nutrients and coral bleaching. Anthropogenic sources of nutrients located upstream from

these vulnerable areas are relevant locations for nutrient mitigation, such as cesspool

upgrades. In this study, we located coral reefs vulnerable to land-based nutrients and linked

them to priority areas to manage sources of human-derived nutrients, thereby demonstrat-

ing how this framework can inform place-based ridge-to-reef management.

Introduction

Over the past century, climate change became a global threat to coral reefs as it directly impacts

corals through bleaching, ocean acidification, and intensified storms [1–3]. At the local scale,

human activities also impact coral reefs through increasing land-based source pollution and

fishing pressure [3–5]. These trends have led some coral reefs to shift towards algae dominated

phases, causing the decline of important resources upon which human wellbeing depends

[6,7]. Thus, managing for coral reef resilience has become a priority for conservation planning

[8]. Resilience is the capacity of an ecosystem to cope with its disturbance regime without shift-

ing to an alternative state, while maintaining its functions and delivery of ecosystem service

[9]. Ridge-to-reef management has been widely advocated to foster coral reef resilience,

though the degree to which managing local drivers can benefit coral reefs varies among places

[10,11]. The types of management actions needed to maintain coral reef resilience will differ

spatially, depending on the characteristics of each ridge-to-reef system.

Natural disturbance regimes have shaped the character of coral reef ecosystems over geo-

logic time scales by changing community structures, physical environments, and resource and

space availability [12]. Coral reef disturbance regimes consist of a mixture of infrequent events,

such as hurricanes, which reduce habitat complexity, and more frequent events, such as waves

which dictate coral growth, and freshwater inundation that increases coral mortality [4,13–

15]. The structure of coral reef communities (hereafter—coral reefs) further depends on local

natural and anthropogenic drivers [16,17]. Fishing is an anthropogenic driver altering the

structure of fish populations by removing key functional groups, such as herbivores [18,19],

which play an important role in coral reef resilience by controlling the abundance of turf and

macroalgae, and freeing space for larval recruitment [16,17,20]. Terrestrial drivers (e.g., nutri-

ents and sediment) and marine drivers (e.g., habitat topography) shape the structure of the

benthic community [21–26]. Land cover/use, such as coastal development can be a source of

human-derived nutrients that promote algae growth, while agriculture can increase sedimen-

tation and cause coral mortality [26–29]. Coral reef community structure is, therefore, a result

of its natural disturbance regime and a combination of local natural and anthropogenic

drivers.

Community-based movements across the Pacific seek to restore customary resource man-

agement systems that recognize the importance of land and sea connections to promote social

and ecological resilience, such as the ahupua‘a (ridge-to-reef) system in Hawai‘i and the con-

cept of vanua in Fiji [30–33]. High Pacific islands are ideal models to study the effects of land-

sea connections on coral reefs under various natural disturbance regimes [34]. As a result of
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their small size and steep elevational gradients, land and sea are tightly connected through

anthropogenic and natural processes [35]. Due to their volcanic origin, island age can range

from zero (actively growing) to millions of years old, and thus represent different stages of ero-

sion [36]. The trade winds combined with rain shadows from volcanic peaks result in a gradi-

ent of rainfall, with wet windward and dry leeward exposures [37,38]. Owing to their location

in the Pacific ocean, wave power impacts on all shorelines under seasonal patterns governed

by distant storms [39,40]. Using traditional ridge-to-reef conceptual frameworks can help us

understand these systems and support the restoration of community-based management in

Pacific Islands.

To manage for coral reefs resilience, decision-makers need to understand the effects of both

natural and anthropogenic drivers, from ridge-to-reef [24,41]. To assess the impacts and

recovery of coral reefs subject to multiple drivers, researchers have generally relied on long-

term quantitative measurements, which are rare, costly, and typically conducted at limited spa-

tial scales [42–45]. Therefore, ecological modeling is a useful tool to foster understanding of

coral reefs under co-occurring drivers and inform management at relevant spatial scales

[11,46]. Although a variety of models have recently been developed to explore the influence of

natural and anthropogenic drivers on coral reefs, only a few have incorporated land-sea con-

nections and found that it changed conservation priorities [27,47–54]. However, these applica-

tions remain too coarse (1 km resolution) to support watershed-scale management for high

Pacific Islands.

To address this gap, we built a novel linked land-sea modeling framework at a fine spatial

scale, based on local data. We applied this framework in two ahupua‘a (Hā‘ena and

Ka‘ūpūlehu), with different natural disturbance regimes, located at opposite ends of the main

Hawaiian Islands, to compare outcomes and inform place-based ridge-to-reef management.

Although both communities have recently implemented marine reserves to actively limit fish-

ing impacts on coral reefs in each place [55–57], we developed this framework to determine

the effects of land-sea connections and identify terrestrial management actions that could pro-

mote coral reef resilience. Land-sea connections can take multiple pathways, which range

from streams and storm water runoff, to groundwater discharge [15,55–57]. Though less stud-

ied, groundwater has been found in many instances to exceed surface runoff and be a primary

vector for land-based nutrients to coral reefs [58–61].

Ka‘ūpūlehu is located in a very dry region, lacks perennial streams, and surface runoff is

uncommon. Submarine groundwater discharge (SGD) was found to be the primary vector

of nutrients to coastal waters in this area [59]. Although Hā‘ena is located in a wet region,

where surface water discharge largely exceeds SGD, Knee et al. [62] showed that SGD nutri-

ent flux are significantly greater than surface water, and account for over 70% of the total

coastal nutrient discharge. Because there is little agriculture and SGD is the primary vector

for land-based nutrients in both ahupua‘a [60,62], we linked land and sea through nutrient

enriched groundwater. We, then, modeled coral reef benthic and fish indicators, derived

from ecological surveys, as a function of freshwater and nutrient flux from groundwater,

and important marine drivers, including waves, local geography, and habitat [22,25,63]. By

calibrating this framework separately for Hā‘ena and Ka‘ūpūlehu, we gained insights on the

relative effects of terrestrial and marine drivers on coral reefs subject to different natural dis-

turbance regimes and examined the following research questions: (1) Where are the highest

human-derived nutrient flux in each ahupua‘a? (2) What are the drivers differentiating

these two coral reef systems? (3) How are coral reefs shaped by these drivers in each place?

(4) Where land-based management actions could promote resilience of these coral reefs in a

changing climate?

A linked land-sea modeling framework
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Methods

Site descriptions

This research focused on two ahupua‘a at the opposite ends of the main Hawaiian Islands.

Hā‘ena is located on the windward side of Kaua‘i Island and Ka‘ūpūlehu is located on the lee-

ward side of Hawai‘i Island (Fig 1A) (further described in Table 1). Geologically older and

exposed to the trade winds, Hā‘ena receives high rainfall, resulting in steeply eroded cliffs, with

high fluvial and groundwater inputs [64]. Geologically younger and located in the rain shad-

ows of Mauna Loa and Mauna Kea mountains, Ka‘ūpūlehu is very dry and minimally eroded,

resulting in poorly developed ephemeral stream channels and large SGD [55,60]. At Hā‘ena,

fishing pressure was relatively lower than Ka‘ūpūlehu prior to the establishment of the marine

closures (Fig 1C) [65].

Overview of the linked land-sea modeling framework

Our modeling framework linked land cover/use to coral reefs through nutrient-enriched

groundwater flux, using spatially-explicit groundwater and coral reef predictive models cali-

brated with existing empirical and remote sensing data (Fig 2). Based on climate, groundwater

recharge, and recharge nutrient concentration data, groundwater flow (m3.yr-1) and nutrient

flux (kg.yr-1) discharging at the coast were modeled using MODFLOW and MT3D-MS at

Hā‘ena (15x15 m) and Ka‘ūpūlehu (50x50 m). Spatially explicit nutrient flux (kg.yr-1) from

land cover/use were added to the groundwater background nutrient flux. A land-sea link was

created by sub-dividing the groundwater model domain into ‘flow tubes’ (~200 m width) end-

ing at pour points along the shoreline using MODPATH. To quantify the different effects of

freshwater and nutrient discharge on coral reefs, we computed the total groundwater flow (m3.

yr-1) and nutrient flux (kg.yr-1) for each flow tube using ZONEBUDGET and diffused those

values from each pour point into the coastal zone using GIS distance-based models to generate

the terrestrial driver grid data (60x60 m). The SWAN wave model and bathymetry data were

coupled with GIS-based models, to generate marine driver grid data (geography, habitat, and

waves) (60x60 m). The coral reef predictive models were Boosted Regression Trees (BRT) cali-

brated on local coral reef survey data, which generated response curves representing the rela-

tionships of each individual driver to each coral reef benthic and fish indicator and predicted

maps of benthic (% cover) and fish (g.m-2) indicators (60x60 m). Once calibrated on local

data, this linked land-sea framework can be used as a decision-support tool to identify priority

areas for nutrient mitigation.

Coral reef indicators and field data

To measure ecological resilience, we considered the abundance of four benthic groups

(% cover) and the biomass of four fish groups (g.m-2) based on their ecological roles and cul-

tural importance to Native Hawaiians [20,67]. The benthic indicators included calcifying

organisms (CCA and scleractinian corals) and benthic algae (turf and macroalgae) (see S1

Table for more details). Resource fishes identified as important for subsistence and cultural

practices by Indigenous Hawaiian communities (e.g., Acanthuridae, Scaridae, Carangidae)

were modeled according to their ecological role: (1) browsers, (2) grazers, (3) scrapers, and (4)

piscivores (see S1 and S2 Tables for more details) [20,68–70]. We derived percent cover of the

benthic indicators and biomass of the fish indicators (g.m-2) from reef survey data collected

by the Fisheries Ecology Research Lab (FERL) at the University of Hawai‘i and The Hawai‘i

Nature Conservancy (TNC) reef monitoring program (Fig 3). At Hā‘ena, the field dataset com-

prised 126 survey locations randomly stratified by habitat (nearshore, back-reef, and fore-reef

A linked land-sea modeling framework
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Fig 1. Study sites location. (A) Location of study sites on Kaua‘i and Hawai‘i along the main Hawaiian Island chain, with island age and the direction of the

prevailing north-east tradewinds and ocean swell indicated. Land use/cover and marine closure/fishing rest area are shown for (B) Hā‘ena and (C)

Ka‘ūpūlehu.

https://doi.org/10.1371/journal.pone.0193230.g001
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areas) and allocated proportionately across Makua and Pu‘ukahua reef complex (Fig 3C), col-

lected over two sampling periods, July 2013 and August 2014 (refer to [71] for more details).

At Ka‘ūpūlehu, the field dataset comprised 243 survey locations randomly stratified across two

factors: management status (inside and outside the Fisheries Replenishment Area) and reef

types, collected over two sampling periods, 2012 (N = 166) and 2013 (N = 78) (Fig 3D) (refer

to [72] for more details).

Groundwater models

We assigned the boundary conditions of the groundwater models using MODPATH [73,74]

with: (1) a flux representing the groundwater recharge at the upslope boundary; (2) no-flow

condition at the lateral boundaries; and (3) the elevation of the groundwater head at the coast

(layer 1) and submarine (layer 2) boundaries, based on the greater density of seawater com-

pared to freshwater. The groundwater model domains at both sites were set to comprise the

groundwater flow path from zones of recharge to coastal discharge, while spanning the entire

ahupua‘a boundaries and the coastal development. At Hā‘ena, the groundwater model bound-

aries were aligned with the groundwater divides, which follow the watershed boundaries [75].

Therefore, the model domain was 6,975 ha and spanned four watersheds with perennial

streams (i.e., Wainiha River [6,130 ha], Mānoa [253 ha], Limahuli [480 ha] and the Mauna

Pūlo‘u [112 ha] watersheds) (Fig 3A). At Ka‘ūpūlehu, Engott (2011) showed that the majority

of the groundwater discharging at the coastline is recharged on the upper slopes of Hualālai

Mountain. Using MODPATH [74] in the reverse tracking mode, we traced the groundwater

flow lines from the coastline to the upper slopes of Hualālai Mountain to delineate the Aquifer

boundaries and define the zone of groundwater recharge based on the convergence of the

lines. Consequently, the model domain at Ka‘ūpūlehu was 33,400 ha and comprised most of

the north-central and central part of the Hualālai Aquifer Sector and assumed no inter-aquifer

flow between the Kīholo Aquifer and the Keauhou Aquifer, due to a rift zone bisecting the

modeled area (Fig 3B). Given the different size of the model domains, we modeled Hā‘ena at

15x15 m resolution and Ka‘ūpūlehu at 50x50 m resolution to maintain computer efficiency.

Groundwater flow. We estimated the coastal groundwater discharge (m3.yr-1) using the

groundwater model MODFLOW [76] and applying Eq 1 [55] at each grid cell across the

Table 1. Study site attributes.

Attributes Hā‘ena Ka‘ūpūlehu

Island age (Ma) 5.1 0.8

Ahupua‘a size (km2) 7.3 104

Maximum elevation (m) 1,006 (Ali‘inui Peak) 2,518 (Hualālai Mountain)

Annual rainfall (mm.yr-1) High (4,040) Low (1,350 to 260)

Perennial streams 2 0

Coastline length (km) 4 7.4

Reef area (km2) 7.6 3.2

Dominant benthic substrate Crustose coralline algae (CCA) Coral

Mean total resource fish biomass (g.m-2) 7.35 4.53

Coastal development 136 private residences 193 private residences

2 large luxury resorts

1 golf course

Management regime (year established) Community Based Subsistence Fisheries Management Area (2016) Community-led 10-year fishing rest period (2016)

Key land owners State of Hawai‘i

A non-profit organization (National Tropical Botanical Garden)

Private land owner (Kamehameha Schools)

https://doi.org/10.1371/journal.pone.0193230.t001
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Fig 2. Linked land-sea modeling framework. Based on (A) climate, groundwater recharge, and recharge nutrient concentration data, (B)

groundwater flow (m3.yr-1) and nutrients concentrations (mg.L-1) were modeled using MODFLOW and MT3D-MS. (C) Nutrient flux (kg.yr-1) from

anthropogenic drivers were added to the background nutrient flux. (D) A land-sea link was created using MODPATH. (E) The coastal discharge

models used the groundwater flow (m3.yr-1) and nutrients flux (kg.yr-1) and GIS distance-based models to generate the terrestrial driver grid data. (F)

The SWAN wave model and bathymetry data were coupled with (G) GIS-based models to generate the marine driver grid data. (H) The coral reef

A linked land-sea modeling framework
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model domain of both sites (Fig 2A & 2B):

ΔGW ¼ Rþ Inj � ET � Str � Q � Cstl ð1Þ

where ΔGW = change in groundwater volume (set to zero under steady state modeling),

R = groundwater recharge (derived from Eq 2 for Hā‘ena [77] [see below] and from the com-

prehensive Hawai‘i Island groundwater recharge assessment at>20 m2 resolution for

Ka‘ūpūlehu [55,78]), Inj = water injection volume into the aquifer (set to zero at Hā‘ena and

derived from [79] at Ka‘ūpūlehu), ET = evapotranspiration from the aquifer (set to zero

because both model domains were deeper than the maximum evapotranspiration depth [1.5

m] [78]), Str = groundwater discharge to streams. (At Hā‘ena, we estimated at 0.26 m3.s-1 dis-

charge of groundwater to Wainiha River using gauged flow data [from 2007 to present] [80]

and a flow frequency distribution curve [81], then we scaled down the Wainiha River baseflow

according to the relative watershed area of the other streams. At Ka‘ūpūlehu, it was set to zero

due to lack of perennial streams), Q = groundwater withdrawal rate (derived from [82] for

both sites), Cstl = coastal groundwater discharge (computed as residuals).

A coarse resolution comprehensive recharge assessment was available for the Wainiha

Aquifer [77]. To enhance the spatial resolution, we calculated the groundwater recharge (R)

for Hā‘ena by applying Eq 2 [77] at each grid cell of the model domain, which was modified to

account for the leaching effluent from Onsite Sewage Disposal Systems (OSDS) into the

groundwater:

R ¼ P þ I þ OSDS � DR � AE � ΔSS ð2Þ

where P = precipitation (derived from a statewide rainfall map at 250 m resolution [37]),

I = irrigation (set to zero due to the lack of agriculture in the model domain), OSDS = leaching

effluent from OSDS (refer to section ‘Modeling anthropogenic drivers’), DR = direct runoff

(assumed at 54% of rainfall [55,77]), AE = actual evapotranspiration (derived from a statewide

evapotranspiration map at 250 m resolution [38]), and ΔSS = change in soil moisture storage

(assumed to average out to zero over long term). Our calculated groundwater recharge was

within 1% of the Wainiha Aquifer water budget model [77].

Groundwater nutrient concentrations. We estimated the dissolved inorganic nitrogen

and phosphorus (hereafter—N and P) concentrations (mg.L-1) using the nutrient transport

model Modular Three-Dimensional Multispecies Transport Model (MT3D-MS) [83] (Fig 2B).

In the absence of plant uptake at both sites, N was treated as a conservative transport species,

which did not bind to soil or alter to another chemical state [84,85]. Conversely, P binds to

most soils, so P concentrations reflected the leachable fraction available to the groundwater

[86,87]. Given that P beneath the soil zone cannot bind with soils, we assumed no sorption for

wastewater from injection wells and cesspool discharge [88]. The dispersal distance of dis-

solved nutrients depends on the aquifer heterogeneity, groundwater flow velocity, and molecu-

lar diffusion, and was set to 20 m according to local studies [75,88,89].

We assigned representative nutrient concentrations to the groundwater recharge based on

concentrations measured in the groundwater within our model domains, thereby indirectly

accounting for the biogeochemical reactions in the soil and other horizons. At Hā‘ena, the

background nutrient concentrations were derived from samples collected in the Wainiha

Aquifer (Fig 3A) [62,90]. Given the limited groundwater samples available at Hā‘ena,

predictive models were calibrated on coral reef survey data. (I) Outputs were: (1) response curves, (2) maps of benthic (% cover) and fish (g.m-2)

indicators, and (3) a linked land-sea decision-support tool. (The wave model image in panel G is reprinted from [66] under a CC BY license, with

permission from Charles Fletcher, original copyright 2009. Refer to S1 File).

https://doi.org/10.1371/journal.pone.0193230.g002

A linked land-sea modeling framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0193230 March 14, 2018 8 / 37

https://doi.org/10.1371/journal.pone.0193230.g002
https://doi.org/10.1371/journal.pone.0193230


Fig 3. Model domains and land-sea link. The groundwater (GW) model domain at (A) Hā‘ena (15x15 m) overlaps with the Wainiha Aquifer. The GW model

domain at (B) Ka‘ūpūlehu (50x50 m) was divided into 4 zones (Keauhou upland and lowland, Ka‘ūpūlehu upland and lowland) and spreads across the Kīholo and

Keauhou Aquifers and bisected by a rift line. In the coastal zone, the groundwater model domain was sub-divided into narrow (~200 m) flow tubes ending at pour

points along the shoreline to spatially link the groundwater model outputs to SGD. Reef surveys were provided by FERL at (C) Hā‘ena and TNC at (D) Ka‘ūpūlehu.

Based on the depth of coral reef surveys, the coral reef (CR) model domain (60x60 m) extended from the shoreline to –15 m at Hā‘ena and –22 m at Ka‘ūpūlehu.

https://doi.org/10.1371/journal.pone.0193230.g003
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background nutrient concentrations were uniformly distributed across the model domain

(Table 2). At Ka‘ūpūlehu, the background nutrient concentrations in the Hualālai Aquifer

were spatially variable, partly due to the rift zone; therefore, the model domain was divided

into four zones (Ka‘ūpūlehu upland and lowland, Keauhou upland and lowland) with their

respective nutrients concentrations (Table 2 & Fig 3B). The nutrient concentrations for each

zone were derived from Fackrell [91], who sampled 42 locations across the model domain (Fig

3B). We evaluated our modeled nutrient concentrations against these measured nutrient con-

centrations using linear regression (R2 and p-value).

Human derived nutrients. To assess how coastal land cover/use influences coral reefs,

we quantified N and P recharge concentrations (mg.L-1) from coastal development in each

ahupua‘a and converted those to N and P flux (kg.yr-1). In order to do so, we used vector

maps, the houses were represented with points and the fertilized green spaces were repre-

sented by polygons delineated using aerial photos with a minimum mapping unit of 20 m2

(Fig 2C). We then determined the wastewater treatment systems associated with each house

using a statewide OSDS database [97]. These were either cesspool or septic tank systems,

which both discharge effluent into the groundwater beneath the OSDS location. At Hā‘ena,

we estimated a total of 136 houses (99 cesspools; 37 septic systems) and 6 ha of lawn in the

model domain [93]. At Ka‘ūpūlehu, we estimated 193 houses with 45 ha of lawn, two resorts

disposing of their wastewater after secondary treatment through an injection well, and a golf

course (190 ha) [79]. The coastal nutrient flux from lawns and golf courses were based on

assumed irrigation and fertilization rates [97,99]. To reflect the best management practices

of the Ka‘ūpūlehu community, we used lower fertilization rates on the golf course compared

to urbanized areas, like West Maui [100]. We assigned N and P flux to each land cover/use

derived from local data where possible, and from literature values, when local data were not

available (see Table 2 for more details). We used the Groundwater Modeling System (GMS)

interface [101] to compute the nutrient loads from the vector-based land cover maps (e.g.

shapefiles) and add these fluxes to the groundwater water flow and background nutrient

Table 2. Annual nutrient concentrations and flux of the groundwater background and land cover/use zones.

Sources Zones [N]

(mg.L-1)

[P]

(mg.L-1)

N flux

(kg.yr-1)

P flux

(kg.yr-1)

Source

Natural (background) Hā‘ena 0.50 0.20 7.51.ha-1 3.00.ha-1 [62,90]

Ka‘ūpūlehu Upland 2.70 0.20 8.55.ha-1 0.63.ha-1 [55,91]

Ka‘ūpūlehu Lowland 0.25 0.10 0.65.ha-1 0.26.ha-1 [55,91]

Keauhou Upland 1.20 0.15 3.11.ha-1 0.26.ha-1 [55,91]

Keauhou Lowland 0.25 0.1 0.72.ha-1 0.29.ha-1 [55,91]

Anthropogenic Cesspoola,b 87 19 38 8.3 [92–95]

Septic systema,c 34.2 1.2 14.9 5.2 [93,96]

Injection welld 5.25 6.8 843 1300 [79]

Lawne 0.20 0.01 4.5.ha-1 0.2.ha-1 [97]

Golf coursef 7.59 0.54 49.ha-1 13.5.ha-1 [98]

Groundwater zones were assigned N and P recharge concentrations with the corresponding flux (i.e., concentration x annual recharge).
a Each land parcel assumed a residential unit with three bedrooms at an occupancy rate of 1.5 persons per bedroom generating 435 m3.yr-1 of wastewater [93].
b The nutrient loading rates were based on sampling conducted on Maui [94].
c The nutrient loading rates were based sampling conducted on Hawai‘i Island [96].
d Wastewater discharge is 160,600 m3.yr-1 according to the State of Hawaii Injection Permit database [79].
e Assuming a recharge rate of 50 m3.ha.d-1 + background concentrations [97]
f Golf course fertilization rates were assumed at 879 kg.ha-1 of N and 122 kg.ha-1 of P, and a leaching rate of 5% for both nutrients [98].

https://doi.org/10.1371/journal.pone.0193230.t002
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flux. Within each grid cell, GMS multiplied the number of houses and area of fertilized green

space with their respective nutrient flux and added these fluxes to the background water flow

and nutrient flux stored in the underlying raster gridded maps (e.g., 15x15 m at Hā‘ena and

50x50 m at Ka‘ūpūlehu) [101].

Linking land and sea models

To link the groundwater and coral reef models and represent the non-point source nature of

SGD (Fig 2D), we sub-divided the groundwater model domains into narrow flow tubes (~200

m width) ending in pour points at the shoreline using MODPATH (Fig 3C & 3D) [73,74,102].

The flow tube boundaries were established along groundwater flow path lines and assumed

very little exchange of groundwater and dissolved nutrients between them. MODPATH relies

on the MODFLOW groundwater flow solution to model particle movement along the simu-

lated track to an endpoint [73,74]. Virtual particles were placed at the pour points along the

shoreline and the reverse tracking option was used to delineate groundwater flow paths from

the coast to the zones of recharge, through the model domain. The width of the flow tubes cap-

tured the spatial distribution of groundwater flow rates and nutrient sources from anthropo-

genic sources (i.e., land cover/use). The groundwater flow rates varied along coastline features,

such as embayments where groundwater flow lines converged, and coastal protrusions where

groundwater flow lines dispersed. The smallest land cover type was houses, aggregated into

small communities, which formed the smallest spatial unit for nutrient sources. The upland

extent of flow tubes was determined by a groundwater elevation contour to be consistent with

groundwater flow through aquifers. The length of the flow tubes was based on the boundaries

of coastal development. Because coastal development at Hā‘ena was concentrated along the

coastal zone, the flow tubes reached 1,000 m inland (Fig 1B). At Ka‘ūpūlehu, the coastal devel-

opment extended further inland so the length of the flow tubes was 3,500 m (Fig 1C). At the

shoreline, the flow tube boundary corresponded to the groundwater model submarine

boundary.

Because freshwater (decreases salinity) and nutrients (promote algae growth) affect coral

reefs differently [103], we converted the background nutrient concentrations (mg.L-1) into

nutrient flux (kg.yr-1) (i.e., concentration x annual recharge), using the modeled groundwater

recharge (m3.yr-1). This allowed us to model freshwater and nutrients as separate variables and

thus quantify the independent effects of freshwater and nutrient discharge on the coral reef

indicators. The groundwater discharge and nutrient flux from the grid cells were then com-

puted for each flow tube using the groundwater utility model, ZONEBUDGET [104]. This

consisted of adding the water flow and nutrient fluxes from the multiple grid cell values within

the boundaries of each flow tube to the groundwater flow (m3.yr-1) and nutrient flux (kg.yr-1)

entering the flow tubes from upslope, and discharging those in bulk at each corresponding

pour point.

Modeling terrestrial drivers

We generated terrestrial drivers’ grid maps (60x60 m) by diffusing the modeled groundwater

discharge (m3.yr-1) and nutrient flux (kg.yr-1) from each pour point into the coastal zone using

ArcGIS (Fig 2E). First, we created a cost-path surface (c) to quantify the least accumulative

cost-distance (impedance) of moving planimetrically through each cell from each pour point,

using a composite of three marine drivers known to affect diffusion (depth [m], distance from

shore [m], and wave power [kW.m-1]–see ‘Modeling marine divers’ for more details) [26,105].

Then, the spread of groundwater and nutrient values into coastal waters from each pour point

was modeled using a decay function (see Eq 3), which assigned a portion of the remaining
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quantity from the previous cell in all adjacent cells, based on the cost-path surface until a maxi-

mum distance of 1 km from the shoreline was reached [49,60,106–108]:

Wi ¼ Lp � e� c2=Dc ð3Þ

where W = Grid cell value for diffused groundwater (m3.yr-1) and nutrients flux (kg.yr-1),

Lp = Groundwater (m3.yr-1) and nutrients (kg.yr-1) flux at each pour point (obtained from

computing the groundwater and nutrient flux by flow tube), c = cost-path surface (unitless),

Dc = cost-path surface threshold distance from the shore for each decayed groundwater met-

rics (equivalent to 1,000 m from the shoreline). This approach to modeling SGD is diffusive,

and thus, allows for wrap around coastal features, but did not account for nearshore advection

that acts to push the SGD in specific directions [49]. We used these diffusive models to derive

conservative estimates of SGD plumes, since the nearshore circulation patterns were unknown

for our study sites.

We assumed that the nutrient chemistry of the SGD was similar to that of the groundwater.

Biogeochemical reactions that could occur, but were not considered in this study are those

associated with denitrification and anammox (anaerobic ammonium oxidation). Given that

the biogeochemical conversion of N and P to other species requires reducing conditions, the

high dissolved oxygen content (dominantly >80%) in the aquifers around the main Hawaiian

Islands results in stable oxidized forms of dissolved N and P, which are the dominant species

[84,88,91,109]. Thus there is a possibility that we over- and under-estimated the amount of N

and P, respectively, particularly at Ka‘ūpūlehu, where wastewater is disposed of through injec-

tion wells [88,109]. Due to the very limited coastal water quality data in our model domains

(S3 Table), these modeled terrestrial drivers could only be partially ground-truthed at

Ka‘ūpūlehu using linear regression (R2 and p-value) (Fig 3D). These SGD models were meant

to capture general spatial patterns, which could be refined with future SGD measurements.

Modeling marine drivers

The marine drivers grid maps (60x60 m) were derived from remote sensing and wave model

data available for both sites using GIS-based tools (Fig 2F & 2G) [110]. These were identified

as important drivers of coral reef benthic and fish communities based on existing literature

and local community input (Table 3 & S4 Table). The wave disturbance driver was represented

by mean wave power at each site (kW.m-1) and derived from a 500 m resolution SWAN hind-

cast model that spanned 10 years (2000–2009) [111]. Depth and distance from shore were used

to account for variation arising from spatial location. Depth was derived from a synthesis of

multibeam sonar and LiDAR bathymetry at 5 m resolution, and distance from shore was

derived from the statewide coastline map [112,113]. Three types of habitat drivers, represent-

ing direct and indirect effects of seafloor topography on benthic and fish communities were

also derived from this bathymetry data [113]: (1) habitat topography, (2) habitat complexity,

and (3) habitat exposure. Habitat topography metrics, represented by Bathymetric Position

Index (BPI) and slope described the position of the reef relative to the surrounding area. These

metrics were computed for two neighborhood sizes (60 and 240 m radii) to capture habitat

topography at different spatial scales [114,115]. Habitat complexity metrics, represented by

rugosity, planar curvature, and profile curvature were computed to describe fine-scale topo-

graphic structure. Habitat exposure metrics were used to characterize the direct and indirect

effects of water flow due to fine-scale seafloor topography and directionality. These metrics

were derived by computing seafloor aspect, the steepest downslope direction of the seafloor

measured in degrees. We calculated the circular mean and standard deviation of aspect and
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converted the circular mean into measures of northness and eastness by calculating the cosine

and sine, respectively.

Identifying the drivers differentiating coral reefs

To identify the drivers differentiating the coral reefs between both sites, we used a distance

based redundancy analysis (dbRDA) in PRIMER PERMANOVA+ software [116]. The

dbRDA routine performed an ordination of the coral reef indicators as a function of the driv-

ers [116,117]. A Euclidean distance similarity measure was used to construct a resemblance

matrix of the transformed and normalized benthic and fish indicators. Square root and fourth

root transformations were applied to the benthic and fish variables, respectively, to improve

normality [63,118]. Environmental drivers were normalized, with highly correlated (r> 0.7)

drivers removed from the models. A fitted variation >70% was considered a good fit to the

model [116].

Coral reef modeling

We used BRT to build the coral reef models (Fig 2H) [119]. Tree-based models are effective at

modeling nonlinearities, discontinuities (threshold effects), and interactions between vari-

ables, which is well suited for the analysis of complex ecological data [120–122]. BRT models

can accommodate many types of response variables, including presence/absence, count, diver-

sity, and abundance data [123]. Since the coral reef indicators were all continuous variables,

the response variables were modeled using a Gaussian (normal) distribution, and appropriate

data transformations (square root for benthic indicators and fourth root for fish biomass)

were applied to improve the normality of the response variable distributions. We calibrated

the BRT models on coral reef data to determine the most influential drivers (among the simul-

taneously tested predictors) and estimate the underlying relationship between the modeled

indicators and the key drivers using response curves [123,124]. The values of the terrestrial

and marine drivers’ grid maps were sampled using bilinear interpolation at the location of

Table 3. Description of marine drivers.

Indicatora Driver Description Unit

Wave Powerb Mean wave power derived from a 10 year (2000–2009) SWAN hindcast wave model. kW.m-1

Geography Depthc Mean seafloor depth m

Distance to

shored
Euclidean distance to the shoreline m

Habitat

topography

BPIc Relative topographic position of a point based its elevation and the mean elevation within a neighborhood (m) m

Slopec Maximum rate of change in seafloor depth between each grid cell and its neighbors Degrees

Habitat

complexity

Planar

curvaturec
Seafloor curvature perpendicular to the direction of the maximum slope (mean). Value indicates whether flow will

converge or diverge over a point.

Radians.

m-1

Profile

curvaturec
Seafloor curvature in the direction of the maximum slope (mean). Value indicates whether flow will accelerate or

decelerate over the curve.

Radians.

m-1

Rugosityc Measure of small-scale variations of amplitude in the height of a surface (mean). Value range from 1 (flat) to infinity. Unitless

Habitat

exposure

Aspectc Downslope direction of maximum rate of change in seafloor depth between each grid cell and its neighbors (sine

circular mean, cosine circular mean, circular standard deviation)

Degrees

Refer to S5 Table for more details on processing methods.
a The marine drivers were generated at 60 m resolution
b SWAN hindcast wave model at 500 m native resolution [113]
c Bathymetry synthesis at 5 m native resolution [113]
d Coastline [112]

https://doi.org/10.1371/journal.pone.0193230.t003
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each reef survey (start of the transect) in ArcGIS. This approach takes a weighted average of

the 4 nearest cell values, thereby accounting for the relative position of the reef surveys on the

predictor grids and their different native spatial scales. The values of the coral reef indicators

and interpolated terrestrial and marine drivers at these locations were combined in a single

data table to calibrate the BRT models.

Each indicator was modeled independently as a function of the terrestrial and marine driv-

ers at each site. First, we calibrated each benthic indicator model as a function of the terrestrial

and marine drivers. Then, we calibrated each fish indicator model as a function of the terres-

trial and marine drivers and included the empirical abundance of benthic groups as additional

predictors in the models for the fish groups. The calibration process used an internal ten-fold

cross-validation to maximize the model fit and determine the optimal combinations of four

parameters: (1) learning rate (lr); (2) tree complexity (tc); (3) bag fraction (bag); and (4) the

maximum number of trees (see [123] for more details). We used the percent deviance

explained (PDE) and internal ten-fold cross validation PDE (CV PDE) as performance mea-

sures of the model optimum. The optimal models explained the most variation in the response

variables (i.e., greatest CV PDE) and were selected as the best and final models. The model cal-

ibration was conducted in R software using the gbm package [123,125,126]. Spatial autocorre-

lation of the response variable was tested using Moran’s I Index for both the raw values and

the ecological model residuals [127].

Coral reef predictive mapping

The coral reef predictive maps were generated at 60x60 m to account for the dimensions of the

reef survey methods (i.e., 25–50 m transects) and the positional accuracy of global positioning

system used to navigate to them in the field [71,72]. Using the calibrated BRT models, we pre-

dicted and mapped the distribution of each coral reef indicator on a cell-by-cell basis using the

values of the terrestrial and marine drivers at each cell across the coral reef model domains.

The boundaries of the coral reef model domains comprised the lateral boundaries of the ahu-
pua‘a to capture the spatial extent of this management unit and the offshore boundary corre-

sponded to the maximum surveyed depth (i.e., 15 m at Hā‘ena and 22 m at Ka‘ūpūlehu) (Fig

3C & 3D). This spatial predictive modeling method is static in nature, so we did not account

for exchange between grid-cells, such as fish movement. First, we spatially predicted each ben-

thic indicator as a function of their key drivers. Then, we spatially predicted the fish indicators

as a function of their key drivers, including the predicted distribution of the benthic indicators.

The predicted values of the benthic and fish grid maps were sampled using bilinear interpola-

tion at the location of each reef survey (start of the transect) in ArcGIS, thereby accounting for

the relative position of the reef surveys on the predicted grids. The values of the interpolated

predictions and surveyed coral reef indicators at these locations were compared with a linear

regression (R2 and p-value). Then, we overlaid the predicted maps with the survey points val-

ues for each indicator using the same color ramp scale for the legend to enable visual compari-

son. The spatial predictions were performed in the R software using the dismo and raster

packages [126,128,129].

Identifying priority areas for management

Once calibrated for each site, we used this framework to identify priority areas on land where

management actions that reduce or limit additional nutrient inputs can promote coral reef

resilience in the face of climate change. We considered a suite of criteria derived from the driv-

ers, coral reef models, and coral reef indicators specific to each site. Based on the assumption

that corals in shallow areas are more vulnerable to bleaching from increases in sea surface
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temperatures [10], we focused on shallow depths at both sites (<5 m). We further considered

areas with above-average (based on individual site means) coral, macroalgae or CCA, and turf

algae cover, as well as high nutrient inputs and low wave mixing (based on the high and low

tercile, respectively), assuming these criteria would also contribute to vulnerability to phase

shifts resulting from climate induced bleaching [10,16,17,26]. Because P was not shown to be a

driver of the benthic community at Hā‘ena, we did not consider it here. Likewise, we did not

consider wave power for Ka‘ūpūlehu. For Hā‘ena, we classified areas with percent cover of

coral> 11.4%, macroalgae > 9.4%, and turf algae >50.0%, and areas subject to N>1,322.7 kg.

yr-1 and wave power <19,860 kW.m-1. At Ka‘ūpūlehu, we classified areas with percent cover of

coral> 18.4%, CCA> 4.1%, and turf algae >44.4%, and areas exposed to N >2,940.8 kg.yr-1

and P>325.2 kg.yr-1. Using raster calculations in ArcGIS, we identified coral reef areas where

these criteria overlapped and were, therefore, most susceptible to future coral bleaching and

nutrient impacts. By matching these coral reef areas with corresponding flow tubes with high

nutrients derived from anthropogenic activities, we located priority areas on land where nutri-

ent inputs should be limited or reduced.

Results

Groundwater models

The groundwater model results showed differences in recharge rates and nutrient concentra-

tions between both sites. Groundwater recharge was much higher at Hā‘ena (ranging from

0.11 to 4.97 m.yr-1) compared to Ka‘ūpūlehu (ranging from 0.04 to 0.69 m.yr-1) (Figs 4A &

5A). The background N concentrations were higher at Ka‘ūpūlehu (0.25–2.70 mg.L-1), com-

pared to Hā‘ena (0.5–0.85 mg.L-1) (Figs 4B & 5B). While the background P concentrations

were similar for Hā‘ena (0.09–0.20 mg.L-1) and Ka‘ūpūlehu (0.10–0.20 mg.L-1) (Figs 4D &

5D). The key sources of human-derived nutrients were wastewater from houses on cesspools

at Hā‘ena (Fig 4C & 4E) and the golf course and wastewater from the injection well at

Ka‘ūpūlehu (Fig 5C & 5E). The comparison of measured and modeled nutrient concentrations

at Ka‘ūpūlehu, indicated that the N model performed better compared to the P model (Fig 5B

& 5D, S1 Fig). Data was insufficient to allow for a similar comparison at Hā‘ena.

Terrestrial and marine coral reef drivers

According to the dbRDA (Fig 6), Hā‘ena and Ka‘ūpūlehu coral reefs were well separated in

ordination space based on terrestrial (freshwater, N, and P) and marine (wave, distance from

shore, and depth) drivers (presented in Figs 4, 5 & 7). The first axis accounted for 57.8% of the

fitted variation (corresponding to 34.1% of the total variation) and the second axis accounted

for 29% of the fitted variation (equivalent to 17.1% of the total variation). The first axis was pri-

marily correlated with wave power, thereby separating the coral reefs exposed to high wave

power at Hā‘ena (�X ¼ 21; 697� 4; 119), from the coral reefs sheltered from wave power at

Ka‘ūpūlehu (�X ¼ 2; 756� 186) (Fig 7A & 7B). The second axis was positively correlated with

distance from shore and negatively correlated with depth, thereby separating the wider and

shallower eroded island shelf of Hā‘ena (distance to shore �X ¼ 594:5� 422:8 and depth

�X ¼ � 7:7� 6) from the narrow and steep island shelf of Ka‘ūpūlehu (distance to shore

�X ¼ 269:5� 187:1 and depth �X ¼ � 8� 4:7) (Fig 7C & 7D). While not identified as primary

marine drivers differentiating the sites, habitat topography metrics indicated that the reef

slope was steeper at Ka‘ūpūlehu (slope60
�X ¼ 3:4� 2:4) compared to Hā‘ena (slope60

�X ¼ 2:8� 1:8) (Fig 7E & 7F), while habitat complexity was higher at Hā‘ena (planar curvature

�X ¼ 18:1� 9:3) compared to Ka‘ūpūlehu (planar curvature �X ¼ 13:8� 9:9) (Fig 7G & 7H).
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Fig 4. Groundwater recharge, associated nutrient concentrations, and groundwater discharge flux (i.e. terrestrial

drivers) at Hā‘ena. (A) Groundwater recharge (m3.yr-1). (B) Groundwater recharge N concentration (mg.L-1) (with

enlarged inset C). (D) Groundwater recharge P concentration (mg.L-1) (with enlarged inset E). The modeled recharge (B) N

and (D) P nutrient concentrations maps are overlaid with the GW survey points using the same color ramp for visual

comparison. (F) Modeled coastal groundwater flow (m3.yr-1) coupled with (G) the SGD (m3.yr-1). (H) Background, (I)

human-derived, and (J) total N flux (kg.yr-1) by flow tube combined with N marine discharge plume (kg.yr-1). (K)

Background, (L) human-derived, and (M) total P flux (kg.yr-1) by flow tube combined with P marine discharge plume (kg.

yr-1)The R2 and p-value compare the measured N and P concentrations (mg.L-1) in coastal waters and modeled (J) N and

(M) P marine discharge (kg.yr-1) (see S1 Fig for linear regressions).

https://doi.org/10.1371/journal.pone.0193230.g004
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Fig 5. Groundwater recharge, associated nutrient concentrations, and groundwater discharge flux (i.e. terrestrial

drivers) at Ka‘ūpūlehu. (A) Groundwater recharge (m3.yr-1). (B) Groundwater recharge N concentration (mg.L-1) (with

enlarged inset C). (D) Groundwater recharge P concentration (mg.L-1) (with enlarged inset E). The modeled recharge (B) N

and (D) P nutrient concentrations maps are overlaid with the GW survey points using the same color ramp for visual

comparison. The R2 and p-value compare the measured and modeled (E) N and (I) P concentrations at Ka‘ūpūlehu (see S1

Fig for linear regressions). (F) Modeled coastal groundwater flow (m3.yr-1) coupled with (G) the SGD (m3.yr-1). (H)

Background, (I) human-derived, and (J) total N flux (kg.yr-1) by flow tube combined with N marine discharge plume
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In terms of habitat exposure, Hā‘ena (Aspect �X ¼ 0:4� 0:6) was more exposed than

Ka‘ūpūlehu (Aspect �X ¼ 0:6� 0:5) (Fig 7I & 7J).

The second axis was also negatively correlated with the terrestrial drivers. It indicated that

groundwater discharge (represented by freshwater) was higher at Hā‘ena (57.1 million m3.yr-1

or 10,279 m3.m-1.yr-1) than Ka‘ūpūlehu (22.7 million m3.yr-1 or 3,085 m3.m-1.yr-1), with higher

input in bays at both sites (Figs 4F & 5F). Likewise, P flux was higher at Hā‘ena (13,050 kg.yr-1

or 2.2 kg.yr-1.m-1), compared to Ka‘ūpūlehu (6,760 kg.yr-1 or 0.8 kg.yr-1.m-1) (Figs 4M & 5M).

Conversely, N flux was higher at Ka‘ūpūlehu (55,540 kg.yr-1 or 7.1 kg.yr-1.m-1), in comparison

to Hā‘ena (36,320 kg.yr-1 or 6.0 kg.yr-1.m-1) (Figs 4G & 5G). The fraction of human-derived

(kg.yr-1). (K) Background, (L) human-derived, and (M) total P flux (kg.yr-1) by flow tube combined with P marine discharge

plume (kg.yr-1)The R2 and p-value compare the measured N and P concentrations (mg.L-1) in coastal waters and modeled (J)

N and (M) P marine discharge (kg.yr-1) (see S1 Fig for linear regressions).

https://doi.org/10.1371/journal.pone.0193230.g005

Fig 6. dbRDA of the coral reef communities. Ordination plot illustrating the relationship between terrestrial and

marine drivers that best explain the variation of benthic and fish indicators in Hā‘ena and Ka‘ūpūlehu. The dbRDA

vectors show the drivers explaining a significant proportion of the variation. The drivers differentiating the coral reef

communities at Hā‘ena from Ka‘ūpūlehu are: wave power, distance to shore, depth, groundwater (H2O) and nutrients (N

and P).

https://doi.org/10.1371/journal.pone.0193230.g006
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nutrient flux delivered to the coast was lower at Hā‘ena (N = 16.4% and P = 10.7%) than

Ka‘ūpūlehu (N = 31.7% and P = 34.9%) (Figs 4I, 4L, 5I & 5L). In contrast, the fraction of natu-

ral-derived nutrient flux delivered to the coast was higher at Hā‘ena (N = 83.6% and

P = 89.3%) than Ka‘ūpūlehu (N = 68.3% and P = 65.1%) (Figs 4H, 4K, 5H & 5K).

Fig 7. Marine drivers of coral reefs at Hā‘ena and Ka‘ūpūlehu. The marine drivers are represented by (A-B) wave

power (kW.m-1), (C-D) depth (m), (E-F) habitat topography (slope [degree]), (G-H) habitat complexity (planar

curvature), and (I-J) habitat exposure (aspect [degree]) at Hā‘ena and Ka‘ūpūlehu, respectively.

https://doi.org/10.1371/journal.pone.0193230.g007
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Coral reef models

The calibration and cross-validation of coral reef BRT models for Hā‘ena explained 34–74% of

the PDE and 10–51% of the CV PDE, respectively (S6 Table). At Ka‘ūpūlehu, the calibration

and cross-validation of coral reef models explained 21–60% of the PDE and 5–26% of the

CV PDE, respectively. Analysis of the residuals from the final coral reef models showed no

spatial autocorrelation (Moran’s I Index p> 0.1). In terms of the terrestrial drivers, the

coral reef models identified that groundwater discharge (represented by freshwater) was a key

driver of coral reefs at Hā‘ena, while nutrients played a more important role for coral reefs at

Ka‘ūpūlehu (Fig 8). At Hā‘ena, freshwater had a negative effect on CCA, coral, and macroalgae,

but was positively related to turf algae. Turf and macroalgae were weakly, yet positively related

to N. Conversely, N had a negative effect on browser and piscivore biomass. At Ka‘ūpūlehu, N

had a negative effect on CCA, while P had a positive effect on turf algae and a negative effect

on browsers. The effects of freshwater varied across fish indicators, as well as between sites.

In terms of the marine drivers, the coral reef models identified wave power, depth, and dis-

tance to shore as key drivers of coral reefs at Hā‘ena (Fig 8). Wave power had a positive effect

on CCA, macroalgae, and scrapers, but a negative effect on coral and turf algae. Coral was,

however, positively associated with habitat exposure. CCA, coral, and most herbivores were

positively associated with distance from shore, whereas turf and macroalgae showed a negative

relationship. Depth had a negative effect on CCA and macroalgae. The fish indicators were

more strongly associated with CCA, but scrapers were also negatively associated with macroal-

gae, while grazers positively associated with turf algae and coral. At Ka‘ūpūlehu, the coral reef

models identified habitat topography and complexity, as well as depth and distance to shore as

key drivers of coral reefs (Fig 8). Although wave power had a positive effect on scraper and

piscivore biomass, it had no effect on the benthic indicators. CCA and macroalgae were nega-

tively related to distance to shore, whereas browsers and piscivores showed a positive relation-

ship. The fish indicators were more strongly associated with coral and turf algae. Most benthic

and fish indicators were positively associated with steeper, deeper reef slopes and more com-

plex habitat, except for turf algae and browsers, which were negatively associated with habitat

topography.

Coral reef predictive maps

Based on the key drivers and their relationship with the coral reef indicators at Hā‘ena (i.e.,

freshwater, wave power, depth, and distance to shore) (Fig 8), the coral reef models predicted a

benthic community with high CCA cover, particularly along the wave-exposed fore-reefs away

from freshwater influence; higher coral cover was restricted to the sheltered back-reef areas;

higher macroalgae was concentrated in the nearshore areas, close to sources of nutrients; while

turf algae was high and more widespread (Fig 9). The coral reef models predicted a fish com-

munity with many grazers but few browsers, scrapers, and piscivores, with higher biomass for

all indicators in more complex habitat, deeper waters, and away from the shore (Fig 9). Based

on the comparison with the empirical surveys with the spatial predictions, all the indicators,

except for the piscivores, showed a statistically significant relationship (Fig 9). The R2 was

higher for CCA and coral predictions compared to the turf and macroalgae predictions, and

the grazers and scrapers predictions performed better than the browsers and piscivores. Those

trends were consistent with their relative empirical abundance and biomass at the survey sites

(Fig 9).

Based on the key drivers and their relationship with the coral reef indicators at

Ka‘ūpūlehu (i.e., nutrients, habitat topography and complexity, depth, and distance to

shore) (Fig 8), the coral reef models predicted a benthic community with low CCA cover,
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Fig 8. Coral reef predictive models. (A) Benthic and (B) fish predictive models for each site. The benthic and fish indicators are represented along

the X axes. The terrestrial and marine drivers, and benthic community (for the fish models) are represented on the Y axes. The marine drivers

include metrics related to wave power, habitat exposure, complexity, topography, and local geography (depth and distance to shore). The bubble

size represents the relative percent contribution of each driver and the color indicates whether the relationship between the indicator and the driver

is positive (green), concave/convex (yellow), or negative (red). Refer to S2–S7 Figs for more details on these relationships.

https://doi.org/10.1371/journal.pone.0193230.g008
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Fig 9. Observed and predicted distribution of coral reef indicators at Hā‘ena and Ka‘ūpūlehu. Benthic indicators at (A-D) Hā‘ena and (I-L) Ka‘ūpūlehu are

measured in % cover and the fish indicators at (E-H) Hā‘ena and (M-P) Ka‘ūpūlehu are measured in g.m-2. The predicted maps are overlaid with the survey points

using the same color ramp for visual comparison, combined with the R2 and p-values.

https://doi.org/10.1371/journal.pone.0193230.g009
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restricted to the nearshore areas away from nutrient discharge; high coral cover, particularly

along the reef slopes; low macroalgae cover restricted to the nearshore areas; and abundant

turf algae cover on the reef flat, near nutrient discharge (Fig 9). The coral reef models pre-

dicted a fish community with many grazers and scrapers but few browsers and piscivores,

with higher biomass for all indicators in more complex habitat, deeper waters, and away

from the shore (Fig 9). Based on the comparison of the empirical surveys, the spatial predic-

tions of all the indicators showed a statistically significant relationship (Fig 9). The R2 was

higher for coral and turf algae predictions compared to CCA and macroalgae predictions,

and the scrapers and piscivore predictions performed better than the browsers and grazers.

Those trends were also consistent with their relative empirical abundance and biomass at

the survey sites (Fig 9).

Priority areas for management

By combining the selected criteria at Hā‘ena, we found that the back-reef of Makua was vul-

nerable to nutrient inputs due to high exposure to N, limited wave mixing, and abundant

benthic algae, as well coral bleaching due to high coral cover and shallow depth (Fig 10A).

On land, the flow tubes located to the east of the site deliver the highest N flux. Based on the

location of vulnerable coral reef areas, the cesspools located within these flow tubes should be

prioritized for upgrade to septic systems. At Ka‘ūpūlehu, we found that the coral reef areas

more vulnerable to N input were located around the edges of existing development and along

the reef slopes north of the development (Fig 10B). We also found that the reef flat located

downstream from the development is more vulnerable to P input. On land, the flow tubes

located to the north and south ends of the development, discharged the highest N flux in the

small bays there, while the flow tubes located below the injection well discharged the highest

P flux.

Fig 10. Coral reef areas vulnerable to land-based nutrients and priority land areas at Hā‘ena and Ka‘ūpūlehu. (A)

Hā‘ena and (B) Ka‘ūpūlehu coral reef areas vulnerable to nutrients (N and P) combined with the priority land areas

with the highest human derived nutrients and therefore, where management action should limit N and/or P inputs.

https://doi.org/10.1371/journal.pone.0193230.g010
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Discussion

To support ridge-to-reef management in high oceanic islands, this study developed a linked

land-sea modeling framework that connects land cover/use to coral reefs through groundwater

enriched nutrients at fine spatial resolution. We applied this framework in two ahupua‘a sub-

ject to different natural disturbance regimes to compare and contrast the effects of terrestrial

and marine drivers on coral reefs. Our results indicate that the terrestrial and marine drivers

differed between sites due to their natural disturbance regimes and different island age. Hā‘ena

is primarily influenced by large-scale drivers (high rainfall and wave power), while Ka‘ūpūlehu

is mostly governed by local drivers (habitat and nutrients). Consistent with previous studies

[22,130–132], our coral reef models showed that the high disturbance regime of Hā‘ena has

shaped a coral reef community dominated by CCA with cover of high turf algae and many

grazers, while the low wave disturbance regime of Ka‘ūpūlehu has allowed for the accretion of

a coral dominated community with high turf and many grazers and scrapers. Similar to other

studies [16,17,26,133–135], our coral reef predictive models showed that land-based nutrients

can increase benthic algae, inhibit reef calcifiers (CCA), and decrease the biomass of locally

important fishes. This study shows how coral reefs can differ under the influence of different

natural disturbance regimes combined with local-scale terrestrial and marine drivers, thereby

reinforcing the need for place-based ridge-to-reef management.

Groundwater as the land-sea linkage

Our groundwater flow modeling results reflected the rainfall patterns from each site, where

recharge at Hā‘ena was much higher than at Ka‘ūpūlehu, and resulted in larger SGD in

embayments [37,136]. Given that nutrient concentrations in groundwater depend on rates of

recharge, the higher rates of recharge at Hā‘ena resulted in more dilution and lower N con-

centrations, compared to Ka‘ūpūlehu [137]. Our coastal nutrient flux discharge modeling

results confirmed that groundwater at Ka‘ūpūlehu has high natural N flux, despite the exist-

ing land cover consisting only of barren rock, shrubland, and native and invasive forests

[138]. Some have hypothesized that the groundwater may be geothermally altered, but the

exact source of N remains unknown [78,138]. Ka‘ūpūlehu results were consistent with other

areas on the dry leeward side of Hawai‘i Island, where coastal groundwater nutrient fluxes

are high (e.g., N:2,000 and P: 200 kg.ha-1.yr-1), compared to other less dry high latitude oce-

anic islands, such as South Korea (N:1,100 and P:20 kg.ha-1.yr-1) [59,139]. Hā‘ena nutrient

flux modeling results were consistent with other wet and rural ahupua‘a along the Main

Hawaiian Islands chain, such as Hanalei on the windward side of Kaua‘i, Kahana on the

windward side of O‘ahu, and the south shore of Moloka‘i [59,62,107]. At Hā‘ena, a large frac-

tion of the total nutrient flux is derived from natural processes due to abundant rainfall.

Because we assumed constant background nutrient concentrations, the higher groundwater

discharge rates resulted in higher background nutrient flux. Similar to other studies

[60,61,140], our results indicated that SGD on oceanic islands can be a primary vector for

land-based nutrients to coral reefs.

Anthropogenic sources of nutrients

This study showed that wastewater disposal via cesspools at Hā‘ena was the major source of

human-derived nutrients. The impact of sewage discharge on coral reefs has been recognized

as a major environmental problem in Hawai‘i [103,141], as well as in regions such as Reunion

and Mauritius [122], the Red Sea [142], Florida Keys [143], and the Great Barrier Reef [144].

While, revised wastewater regulations declared a statewide ban of new cesspools in Hawai‘i in

2016 (HAR Title 11, Chapter 62), they currently represent the most prevalent wastewater
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disposal system across the main Hawaiian Islands (e.g., 76% and 84% of the OSDS currently

used on Kaua‘i and Hawai‘i Island, respectively) [145], and have been recognized as a primary

driver of groundwater and nearshore water quality degradation [146]. At Ka‘ūpūlehu, we iden-

tified the golf course and injection well as the major sources of nutrients. Studies elsewhere in

Hawai‘i have also shown that nutrient concentrations can be significantly higher in proximity

to golf courses [60,106,147].

Effect of SGD on coral reefs

Freshwater input from SGD can reduce salinity in shallow waters [15,60,89]. Higher freshwa-

ter input at Hā‘ena played an important role in structuring coral reefs. Consistent with their

ecology and salinity tolerance [15,148,149], CCA and coral cover were lower near high fresh-

water inputs. Conversely, decreases in salinity have been shown to directly promote turf algae

growth or indirectly hinder competition for space by other species [150]. Freshwater input had

a mixed effect on the distribution of the fish indicators, which may be due to the fact that fishes

are mobile and tolerate a wider range of salinity, which varies among species [151]. The eco-

logical responses of turf, and macroalgae to nutrients suggested that Hā‘ena may be N-limited,

as was shown in nearby Hanalei Bay [106], while Ka‘ūpūlehu may be P-limited, as was found

in Honokōhau Bay, also located on the leeward side of Hawai‘i Island [58]. Vermeij et al. [134]

showed that local nutrient enrichment can foster turf algae overgrowth and reduce CCA and

coral recovery after disturbances, through loss of space availability [152]. Similarly, our results

showed that macroalgae, but especially turf algae, may have a competitive advantage over

corals and CCA under a future scenario of land-based nutrient increase in nearshore waters,

particularly at Ka‘ūpūlehu and the back-reefs of Hā‘ena. Naturally more dominant and com-

petitive under the higher wave disturbance regime in the central Pacific region [22,67,132],

turf algae can proliferate rapidly and lead to phase shifts when exposed to land-based nutrients

[16,17,26]. Consistent with their ecological role, grazers at Hā‘ena and browsers at Ka‘ūpūlehu

appear to be controlling turf algae, demonstrating their importance for coral reef resilience

[16,17,20].

Effect of wave power on coral reefs

On Hawaiian reefs, wave power is a key driver controlling coral growth, reef development, and

the structure of coral reef communities [22,131,153]. CCA has been found to be more domi-

nant and competitive under high wave disturbance regimes on coral reefs in the central Pacific

region [22,67,132]. The coral and CCA abundance patterns at both sites indicated that CCA

may be out-competed by coral under low wave conditions suited to coral growth, but flourish

in high wave conditions adverse to coral growth [130,154,155]. Exposed to high wave power,

the benthic community on the fore-reefs at Hā‘ena is dominated by CCA, while coral growth

is primarily restricted to the sheltered back-reef of Makua. By contrast, coral growth at

Ka‘ūpūlehu was more widespread across the reef slope. The effect of wave disturbance on fish

populations is not well studied, due to the challenges of conducting field work in high wave

environments [156–158]. Our results suggest that fishes may benefit from reduced access due

to localized wave action at both sites, implying that wave power provides protection from fish-

ing pressure [156,159,160]. These patterns have been observed elsewhere across the Hawaiian

Archipelago, where coral reefs in wave exposed settings are often suppressed to a thin veneer

and support high fish biomass, while coral reefs in sheltered areas have accreted slowly over

time and support lower fish biomass [22,159,161].
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Effect of habitat on coral reefs

Owing to their island age coupled with their natural disturbance regimes, coral reef habitats

at Hā‘ena and Ka‘ūpūlehu exhibit different topographies and complexities. Coral reefs on

young islands form relatively narrow fringes, such as in Ka‘ūpūlehu, while coral reefs around

older islands, form wider and shallower reef flats, such as in Hā‘ena [153]. Many studies have

shown that habitat topography and complexity are primary drivers controlling coral reefs

[130,158,159,162], as shown in Ka‘ūpūlehu, compared to Hā‘ena where on habitat topography

and complexity were less important. At Ka‘ūpūlehu, CCA, coral cover, and fish biomass were

generally high along the reef slopes, while turf and macroalgae cover was higher on the reef

flats. Our results show that local-scale habitat characteristics played an important role in

shaping these coral reefs, which was emphasized in the low natural disturbance regime at

Ka‘ūpūlehu.

Management implications

At first glance, Ka‘ūpūlehu is more susceptible to nutrient inputs from coastal development

and coral bleaching due to high levels of background N in groundwater, combined with lim-

ited dilution and mixing from low rainfall and wave power, and high coral and turf algae

cover. Based on the location of the vulnerable coral reef areas, our results suggest monitoring

the effect of N discharge from the flow tubes located upslope from Uluweuweu and Kahuwai

bays and P discharge from the central flow tube beneath the injection well. Currently, Hā‘ena

is rural with limited development or agriculture, therefore most of the nutrient discharge

comes from natural processes, with the exception of land areas to the east of the ahupua‘a
where nutrient discharge is largely human-derived. Although Hā‘ena benefits from mixing

and dilution due to high freshwater and wave power, the back-reef areas are shallow, sheltered

from waves, exposed to natural and human-derived nutrients, and support high coral and

algae cover. For these reasons, the back-reef areas of Hā‘ena are expected to be more vulnera-

ble to coral bleaching and algae overgrowth due to nutrient inputs from existing and future

coastal development.

The communities in both places have initiated the protection of herbivores, through

marine closures, which can offset some of the effects of nutrients by controlling algae cover

[16,17,163]. However, to ensure coral reef resilience in a changing climate, land-based nutri-

ents inputs should also be addressed. Using this framework to inform resilience management

through a ridge-to-reef approach, we identified priority areas on land where limiting nutrient

inputs could prevent increase in benthic algae and promote chances of coral recovery post-

bleaching impacts. At Hā‘ena, management actions could focus on upgrading cesspools

located upstream from Makua back-reef, which has been shown to be a nursery habitat or

Pu‘uhonua for fishes [71], and is protected as such under the management plan of the Com-

munity Based Subsistence Fisheries Management Area [164]. At Ka‘ūpūlehu, management

actions could focus on minimizing increase in P from the injection well discharge and that

best management practices are employed for fertilizer application on green spaces located

upstream from Uluweuweu bay and Kahuwai bay, which was identified by the Ka‘ūpūlehu

community to contain a groundwater spring (Wai a Kāne) of cultural and historical impor-

tance [165].

Limitations and future research

Given that this framework was calibrated on existing data, some models could not be validated,

or only partially validated, due to limited or lack of data. At Hā‘ena, the groundwater model

was parametrized with limited groundwater samples and the coastal discharge models could
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not be validated due to lack of coastal water quality data. At Ka‘ūpūlehu, the coastal discharge

models were partially ground-truthed due to limited coastal water quality data. In addition, we

used existing wave data to represent mixing effect from wave action on the diffusion of the

SGD, given circulation data was not available for our study sites. To strengthen this method,

future work using this approach should include groundwater sampling with SGD measure-

ments, incorporate nearshore circulation information, and couple coral reef surveying with

water quality sampling. Thus more refined groundwater models and reliable maps of coastal

water quality could be generated. Additionally, our predictive coral reef models were calibrated

on contemporary data sets and the derived relationships (response curves) should be further

compared against historical data trends for validation. Although this framework was devel-

oped based on limited water quality data, we had access to comprehensive datasets for the

coral reef models. This allowed us to ground-truth the predicted maps of our resilience indica-

tors, which were the final output of the modeling framework.

Species composition and relative abundance can affect the predictability of selected indica-

tors [166], as illustrated by the differences in observed abundance of CCA and coral between

with our study sites. However, the same coral reef survey methods were used to record ben-

thic and fish data at both sites, thus eliminating a potential source of bias. To improve the pre-

dictions of the coral reef models, future research in those locations should couple coral reef

surveys with water quality and oceanographic conditions (e.g., waves or currents). In light of

these caveats, these priority areas should be seen as target zones for wastewater management

and further investigation of land-sea impacts. Because these models were developed at high

spatial resolution in places where communities are stewards of the environment, we leveraged

input from local community members and their observations to further ground-truth our

maps and priority areas. The fact that the areas identified as vulnerable coincided with

local observations from community members provided additional confidence to our

recommendations.

Conclusions

Managers need spatially-explicit place-based models to better understand the impact of

anthropogenic drivers on coral reefs and manage them more effectively. Empirical data pro-

vide point data at the location of the survey, but do not provide a continuous surface to sup-

port spatial prioritization of management actions [167]. Tools that provide visualization and

quantify potential impacts are needed to better manage coral reefs [11,168]. The linked land-

sea modeling framework presented here can help managers evaluate the spatial variation and

influence of terrestrial and marine drivers, mediated by anthropogenic activities, on coral

reefs, and prioritize management actions accordingly. Although these linked land-sea models

were built to understand the land-sea linkages specific to these places, many of the processes,

ecological effects, and management actions, we described can be generalized to other oceanic

island environments comprised within this spectrum of natural disturbance regimes. Addi-

tionally, when calibrated for a place and assuming the fundamental ecological relationships are

constant over time, this framework can be used to forecast and assess indicator distributions

based on land cover/use change, marine closures, and climate change scenarios.
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