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Colorectal cancer (CRC) is a common malignant tumor in digestive tract with highly inva-
sive and metastatic capacity. Drug sensitivity remains a significant obstacle to successful
chemotherapy in CRC patients. The present study aimed to explore genes related to ce-
tuximab (CTX) sensitivity in CRC by clustered regularly interspaced short palindromic re-
peats (CRISPR)-Cas9. Celigo image cytometer was used to detect suitable cells and opti-
mal dosage of CTX. Inhibition rate of CTX on Caco-2 cells was evaluated by cell counting
kit-8 (CCK-8) method before and after transfection. 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl
tetrazolium bromide (MTT) was performed to explore suitable concentration of puromycin
and multiplicity of infection (MOI). CRISPR-Cas9, sequencing data quality analysis and cell
viability test were used for the selection of genes related to CTX sensitivity in CRC cells.
Finally, the selected genes associated with CTX sensitivity in CRC cells were further val-
idated by colony formation and CCK-8 assays. In the present study, Caco-2 cells had a
better prolificacy, and CTX 100 μg/ml exhibited a good inhibition trend on the 7th and 14th
days of infection. MTT assay indicated that the minimum lethal concentration of puromycin
was 2.5 μg/ml. Forty-six candidate genes were preliminarily screened via sequencing data
quality analysis. Subsequently, we found that knockout of any of the four genes (MMP15,
MRPL48, CALN1 and HADHB) could enhance CTX sensitivity in Caco-2 cells, which was
further confirmed by colony formation assay. In summary, MMP15, MRPL48, CALN1 and
HADHB genes are related to the mediation of CTX sensitivity in CRC.

Introduction
Colorectal cancer (CRC) is a highly invasive and metastatic malignant tumor of the digestive tract, with
high mortality [1]. Most CRC cells are currently assumed to be stem cells or stem cell-like cells. These
stem cells are the outcomes of progressive accumulation of genetic and epigenetic changes that activate
oncogenes and inactivate tumor-suppressor genes [2]. Due to the low early diagnosis rate, most patients
are diagnosed as middle or advanced CRC, resulting in difficult treatment and poor prognosis [3]. At
present, chemotherapy and radiotherapy are typical therapies for CRC. Systemic treatment of metastatic
CRC usually involves chemotherapy backbone (fluoropyrimidines, oxaliplatin and irinotecan chemother-
apies form) combined with biotherapy [4]. However, despite therapeutic advancements, the prognosis for
metastatic CRC patients remains poor, with a median overall survival of 18–21 months [5]. Drug resis-
tance is the main reason for the failure of chemotherapy in cancers.

Apart from chemotherapy and radiotherapy, advances have been achieved by the addition of tar-
geted agents. Cetuximab (CTX) (Erbitux) is a monoclonal antibody that targets epidermal growth fac-
tor receptor to impede the phosphorylation of receptor-associated kinases and related signaling cascade
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[6], and plays an anti-tumor role at both cellular and genetic levels [7]. Cetuximab was also demonstrated to enhance
overall survival when combined with radiotherapy alone [8]. Segelov et al. have clarified that the median survival of
advanced CRC patients can be extended from 6–7 to 24–30 months after treatment with combined targeted drugs
such as CTX and chemotherapy [9]. However, after a period of CTX treatment, numerous patients become insensitive
to CTX with disease progression. CTX can kill cancer cells that are sensitive to drugs, but the remaining resistant
cells can cause tumor recurrence and even metastasis. Currently, the vital challenge for CRC treatment is to improve
sensitivity to CTX. Therefore, it is of great significance to find new CTX-sensitized targets in CRC.

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 is a special structure found in the
genomes of bacteria and archaea that protect them from phages and plasmids [10]. Scientists have transformed
CRISPR-Cas9 into a simple, efficient and accurate genome editing tool, providing an effective method for finding
functional genes [11]. For CRC, the use of CRISPR-Cas9 to explore genes related to CTX sensitivity has not been
reported. Therefore, in the present study, we screened novel genes involved in CTX sensitivity in CRC cells based on
genome-scale CRISPR-Cas9 knockout (GeCKO) screening and coupled with cell viability test.

Materials and methods
Cell culture
HT-29 and Caco-2 cells were obtained from the Cell Biology Institute of Chinese Academy of Sciences. The cells
were cultured in DMEM (Gibco, Invitrogen, U.S.A.), supplemented with 10% fetal bovine serum (HyClone Labora-
tories, Logan, UT), 100 U/ml penicillin and 100 μg/ml streptomycin (Invitrogen, CA, U.S.A.) at 37◦C in a humidified
atmosphere of 5% CO2.

CRISPR-Cas9 knockout screening
To identify genes associated with enhanced sensitivity of CRC to CTX, GeCKO screening with a pooled GeCKO
library was performed. We applied a GeCKO library of 123411 single-guide RNAs (sgRNAs) targeting 20914 hu-
man genes, including 19050 annotated protein-coding genes and 1864 microRNA expression genes, with an average
coverage of six sgRNAs per gene. A single lentiviral vector system (lentiCRISPRv2) of GeCKO library was used to
transfect HT-29 and Caco-2 cells at a low multiplicity of infection (MOI) to ensure that most cells gained only one
viral construct. After 72 h of transduction, HT-29 and Caco-2 cells were screened with puromycin, and the cells that
survived after 7 days were successfully transfected cells. A total of 3 × 107 cells were directly harvested as day 0 group
after puromycin selection. Then the remaining cells were treated with dimethyl sulfoxide (DMSO) vehicle and 100
μg/ml CTX for 7 and 14 days, respectively.

Cell growth curve assay
HT-29 and Caco-2 cells were plated in triplicate in 96-well plates at a density of 2000 cells per well. After culturing
at 37◦C in a 5% CO2 incubator for another day, Celigo image cytometer (Cyntellect Inc., CA, U.S.A.) was used to
capture cell images once a day for 4 days. Cell numbers in each well were quantified by Celigo image cytometer, and
cell growth curves were generated for each cell.

MTT assay
To explore the most suitable concentration of puromycin, 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bro-
mide (MTT) (Sigma Chemical Company, MO, U.S.A.) was used to assess the proliferation of Caco-2 cells. Briefly,
Caco-2 cells were seeded in 96-well plates in triplicate at the density of 2000 cells per well, followed by addition of
puromycin at various concentrations (0, 1.25, 2.5, 5, 10 μg/ml). Then the culture medium was discarded, and 20 μl
of MTT (5 mg/ml) were added into each well. After 7 days of incubation, the MTT crystals were dissolved in DMSO
and the absorbance at 490 nm was measured.

Cell proliferation analysis via Celigo image cytometer
To find out the best dosage of CTX, Celigo image cytometer was used to quantify the cell number. The Caco-2 cells
were placed in 96-well plates in triplicate and then adding CTX at a range of concentrations (0, 50, 100, 200, 400,
600, 800, 1200 μg/ml). After culturing at 37◦C in a 5% CO2 incubator for another day, Celigo image cytometer was
used to capture cell images for 14 days. Cell numbers in each well were quantified by Celigo image cytometer, and
cell growth curves were generated for each cell.
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Determination of optimal MOI
Caco-2 cells with and without puromycin were divided into group A and group B, respectively. Cells were infected with
different MOI values (0.25, 0.5, 1, 2, 10) and seeded in 96-well plates at the density of 6000 cells per well. Puromycin
(2.5 μg/ml) was then added to each well in group A only. Forty-eight hours later, the culture medium was discarded,
and 20 μl of MTT (5 mg/ml) were added to each well. Following a 4-h incubation, the crystals were dissolved by
DMSO and the absorbance at 490 nm was read. The functional MOI was defined as the MTT value of group A/the
MTT value of group B [12].

Sequencing data quality analysis
NEBNext® Ultra™ DNA Library Prep Kit for Illumina® kit (QIAGEN Company, Hilden, Germany) was used for
the construction of library. Briefly, more than 50 ng PCR products purified by gel cut or magnetic beads were adopted
to construct the library directly. End Prep Enzyme Mix was used for end repair, including 5′-end phosphorylation
and 3′-end of ‘A’ plus, with addition of sequencing adapter at both ends, followed by purification via AxyPrep Mag
PCR Clean-up. Finally, P5 and P7 primers were used for amplification, in which the index containing 6-bp base at the
end of P7 was used for subsequent sample discrimination. After purification, the quality and concentration of library
were measured by Agilent 2100 bioanalyzer (Agilent Technologies, CA, U.S.A.) and Qubit 2.0 fluorophotometer (In-
vitrogen, CA, U.S.A.), respectively. Subsequently, 2× 150 bp paired-end sequencing (PE) was performed according to
Illumina HiSeq instruction (Illumina, CA, U.S.A.), and the sequence information was read by HiSeq Control Software
(HCS) + OLB + GAPipeline-1.6.

Cell viability test
The infected cells in logarithmic phase were seeded in 96-well plates and were treated with 100 μl of CTX 100 μg/ml
or DMSO, respectively. Meanwhile, normal control (NC) group was set up and treated with CTX 100μg/ml or DMSO,
respectively. Five days later, 100 μl of CellTiter-Glo (thawed 24 h at 4◦C in advance) was added to each well and shook
on an oscillated instrument for 10 min to induce cell lysis. Subsequently, an enzyme mark instrument was adopted to
measure the absorbance of each well in Luminescent mode. The PC interference background, multiples of inhibited
proliferation and sensitization multiples of each group of cells were calculated by absorbance of each well.

Day 5 proliferation multiples = Cell number of day 5/Cell number day 1
PC background interference = Day 5 proliferation multiples of infected cell treated with DMSO/Day 5 proliferation

multiples of normal cell treated with DMSO
Multiples of inhibited proliferation = Day 5 proliferation multiples of infected cell treated with DMSO/Day 5 prolif-

eration multiples of infected cell treated with CTX
Sensitization multiples = Multiples of inhibited proliferation of infected cell/Multiples of inhibited proliferation of

normal cell

Experimental grouping
To evaluate the genes that were related to the CTX sensitivity in CRC cells, cell viability, cell growth and colony
formation assays were performed. Caco-2 cells were divided into ten groups, namely, NC group (DMSO), NC+CTX
100 μg/ml group, MMP15 knockout group (DMSO), MMP15 knockout + CTX 100 μg/ml group, MRPL48 knockout
group (DMSO), MRPL48 knockout + CTX 100 μg/ml group, CALN1 knockout group (DMSO), CALN1 knockout
+ CTX 100 μg/ml group, HADHB knockout group (DMSO) and HADHB knockout + CTX 100 μg/ml group.

Cell counting kit-8 assay
After transfection, Caco-2 cells were seeded in 96-well plates in triplicate at the density of 2 × 103 cells per well,
followed by addition of CTX 100 μg/ml. After culturing for 24, 48, 72, 96 and 120 h, cell counting kit-8 (CCK-8)
solution 100 μl (Sigma) was added into each well, and plates were incubated at 37◦C for 1 h. Microplate reader was
used to test optical density at the wavelength of 450 nm.

Colony formation assay
Colony formation assay was adopted to evaluate the effects of Caco-2 cells proliferation in vitro. Cells were plated in a
six-well plate containing 1 × 103 cells per well in triplicate. After 2 weeks, the cells were fixed with 4% paraformalde-
hyde for 15 min and stained with 0.1% Crystal Violet. The visible colonies were counted.
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Figure 1. Caco-2 cells had a better prolificacy

Proliferation multiples of the infected (A) Caco-2 and (B) HT-29 cells.

Statistical analysis
Statistical analysis was performed by SPSS (version 20.0) and the experimental measurement data were expressed as
mean +− SD. Statistical differences between groups were determined by one-way or two-way ANOVA. Differences
were considered significant when P<0.05.

Results
Growth curve results
From Figure 1A,B, the proliferation multiples of Caco-2 and HT-29 cells significantly increased in the first 4 days.
However, on the 3rd day, the proliferation multiples of Caco-2 cells were higher than 2, while that of HT-29 cells was
lower than 2, indicating that infected Caco-2 cells had a better prolificacy. Therefore, Caco-2 cells were selected for
the following experiments.

Optimal concentration of puromycin
MTT assay results revealed that the percentage of viable Caco-2 cells treated with 1.25, 2.5, 5 and 10μg/ml puromycin
for 2 days were 16.3, 7.9, 7.6 and 7.6%, respectively. Therefore, the optimal lethal concentration of puromycin was 2.5
μg/ml (Figure 2).

Optimal dosage of CTX
As shown in Figure 3, CTX suppressed Caco-2 cell proliferation in a dose-dependent manner, and the IC50 of CTX
was 245.7 μg/ml. On the 14th day, when the CTX concentration was 50, 100, 200, 400, 600, 800 and 1200 μg/ml,
the inhibitory rate was 11.67, 42.33, 43.67, 56.33, 57.67, 76.67 and 97.46%, respectively, indicating that CTX had a
significant inhibitory function on Caco-2 cells in a dose-dependent manner. In the case that three CTX concentrations
of 100, 200, 400μg/ml had similar inhibitory effect and considering the high cost of CTX, CTX 100μg/ml was selected
as the optimal concentration for subsequent experiments.

Optimal MOI results
After 48 h of infection with Caco-2 cells, we found that the fluorescence rate augmented with the increase in infection
intensity in group A, but not in group B. When MOI was 0.5, the fluorescence rate was 43% in group A, and 86% in
group B, with 50% Functional MOI. MOI = 0.5 was selected for the subsequent experiments (Table 1).

Sequencing data quality analysis results
Sequencing data quality analysis was used to screen genes meeting the screening criteria (|FC Caco2| < 2, FCER-
BITUX ≤ −2; BF Caco2 < 0, BFERBITUX > 2) between Day 7 vs Day 0 and Day 14 vs Day 0. A total of 16 genes
were obtained from the intersection in accordance with 209 genes acquired from the preliminary selection of Day 7 vs
Day 0 and 307 genes obtained from the preliminary selection of Day 14 vs Day 0. In addition, another 30 genes were
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Figure 2. The OD value of Caco-2 cells treated with puromycin at different concentrations (0, 1.25, 2.5, 5, 10 μg/ml)

Figure 3. The number of Caco-2 cells after CTX treatment at different concentrations (0, 50, 100, 200, 400, 600, 800, 1200

μg/ml)

Table 1 The effect of different MOI on Functional MOI

Cell number/well MOI MTT test value of group B MTT test value of group A Functional MOI

6000 10 0.60 0.44 0.74

6000 2 0.57 0.40 0.69

6000 1 0.89 0.44 0.50

6000 0.5 0.86 0.43 0.50

6000 0.25 0.97 0.28 0.29
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Table 2 Candidate genes screened by sequencing data quality analysis

Entrez ID Entry Caco2 logFC ERBITUX logFC

The intersecting genes of Day 7 vs Day 0 and Day 14 vs Day 0

83698 CALN1 −0.151 −2.598

1690 COCH 0.244 −2.701

2824 GPM6B −0.041 −1.119

25960 GPR124 0.137 −1.054

4324 MMP15 −0.630 −3.279

79570 NKAIN1 −0.232 −2.910

403277 OR5K3 0.340 −1.837

340990 OTOG −0.289 −3.768

29944 PNMA3 0.072 −2.672

5706 PSMC6 −0.344 −1.244

29127 RACGAP1 0.137 −5.228

2030 SLC29A1 −0.141 −1.166

84851 TRIM52 0.264 −1.300

51322 WAC −0.741 −3.744

56949 XAB2 −0.556 −2.979

80032 ZNF556 −0.433 −4.791

The genes that met the screening criteria (screening criteria: day 14 ERBITUX logFC was sorted from small to large, Caco2 logFC was less than 0.5)

4897 NRCAM −0.243 −5.262

3554 IL1R1 0.053 −5.206

402415 XKRX −0.030 −5.132

613 BCR 0.041 −4.895

51642 MRPL48 −0.102 −4.776

5422 POLA1 −0.172 −4.679

7579 ZSCAN20 −0.164 −3.717

84455 EFCAB7 −0.051 −3.718

90522 YIF1B 0.218 −3.371

85480 TSLP 0.071 −3.486

79065 ATG9A −0.203 −3.243

130497 OSR1 −0.223 −3.196

200132 TCTEX1D1 −0.231 −3.177

64221 ROBO3 −0.188 −3.206

92421 CHMP4C −0.194 −3.155

1373 CPS1 0.013 −3.309

79083 MLPH 0.105 −3.114

23589 CARHSP1 −0.037 −3.149

3646 EIF3E 0.165 −2.956

2734 GLG1 −0.128 −2.984

3032 HADHB 0.182 −2.920

2669 GEM −0.198 −2.900

58524 DMRT3 0.176 −2.873

1608 DGKG −0.195 −2.814

51116 MRPS2 −0.241 −3.365

84530 SRRM4 0.228 −3.255

138882 OR1N2 0.192 −3.145

161424 NOP9− −0.185 −3.106

5588 PRKCQ −0.227 −2.856

4762 NEUROG1 0.012 −2.999

selected according to the screening criteria (day 14 ERBITUX logFC was sorted from small to large, Cacao2 logFC
was less than 0.5) (Table 2). However, previous report has reported that BCR and GEM genes are closely related to
CTX sensitivity, so we only focused on the remaining 44 genes [13].
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Table 3 Cell viability test results of cells with different genes knocked out

Target
Day 5 proliferation
multiple

PC background
interference

Proliferation inhibition
multiple Sensitizing multiple

NC 10.43 1.00 1.31 1.00

NC + CTX 7.94

MMP15 7.48 0.72 1.56 1.19

MMP15 + CTX 4.80

MRPL48 7.28 0.70 1.61 1.23

MRPL48 + CTX 4.51

CALN1 7.69 0.74 1.69 1.29

CALN1 + CTX 4.54

HADHB 8.33 0.80 1.71 1.30

HADHB + CTX 4.88

Cell viability by CellTiter-Glo luminescence assay
To measure the PC background interference, multiples of inhibited proliferation and sensitization multiples of the
44 genes, CellTiter-Glo luminescence assay was used to determine the proliferation of cells. Genes with PC back-
ground interference multiples between 0.7 and 1 (closer to 1 indicated less background interference), multiples of
inhibited proliferation greater than 1.5, and sensitization multiples greater than 1.2 were selected. There were four
genes meeting the selection criteria, namely MMP15, MRPL48, CALN1 and HADHB (Table 3).

CTX combined with genes knockout suppressed CRC cell viability and
proliferation
From Figure 4A,B, knockout of MMP15, MRPL48, CALN1 and HADHB genes suppressed Caco-2 cell viability and
proliferation. On day 7, the inhibitory rate of Caco-2 cells in MMP15 knockout + CTX 100μg/ml, MRPL48 knockout
+ CTX 100 μg/ml, CALN1 knockout + CTX 100 μg/ml and HADHB knockout + CTX 100 μg/ml groups were 46.8,
52.68, 50.26 and 56.61, respectively, which were significantly higher than that in NC + CTX 100μg/ml group (20.64%).
These findings revealed that MMP15, MRPL48, CALN1 and HADHB genes knockout might facilitate the sensitivity
of CRC cell line Caco-2 to CTX.

Clonal formation results
To verify the sensitization effect of the above four gene knockout and evaluate its long-term sensitization effect, the
clonal formation ability of Caco-2 cells was further tested through cell cloning experiment. As shown in Figure 4C,
MMP15, MRPL48, CALN1 and HADHB genes knockout alone reduced the cloning potential of Caco-2 cells. On
this basis, the addition of CTX 100 μg/ml inhibited the clonal formation of Caco-2 cells more significantly than the
gene knockout alone group (P<0.0001).

Discussion
In the present study, GeCKO screening and cell viability test results revealed that MMP15, MRPL48, CALN1 and
HADHB genes might be involved in drug sensitivity to CTX in CRC cell (Caco-2). This finding suggested that
MMP15, MRPL48, CALN1 and HADHB genes were potential targets for the treatment of CRC, which fills in the
gap of genes responsible for CTX sensitivity in CRC.

CRISPR-Cas9 forms a complex by using nuclease Cas9 protein and sgRNA [14]. To our knowledge, sgRNA deter-
mines the specificity of target sequence through base complementary pairing; Cas9 protein acts as nuclease to cut
genomic DNA complementary to the spacers on the sgRNA, causing double-stranded DNA damage, thereby intro-
ducing genetic mutations through mechanisms [15]. As the third generation of gene editing technology, CRISPR-Cas9
has attracted wide attention due to its advantages of simple operation, flexible design, low price and multi-point edit-
ing. With the continuous development and improvement of CRISPR-Cas9 system, a series of drug-resistance genes or
virus-resistance genes have been screened [16]. Chen and Zhang have found that CRISPR-Cas9 can revert resistance
gene mutations [17]. Zhang et al. also believed that CRISPR-Cas9 could be used to construct drug-resistant cancer
cell lines for drug screening [18]. In this study, we preliminarily obtained 44 candidate genes in Caco-2 CRC cells re-
lated to CTX resistance by CRISPR-Cas9. Subsequently, based on the selection criteria of PC background interference
multiples between 0.7 and 1, multiples of inhibited proliferation greater than 1.5, and sensitization multiples greater
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Figure 4. Caco-2 cells were divided into NC group, NC + CTX 100 μg/ml group, MMP15 knockout group, MMP15 knockout +

CTX 100 μg/ml group, MRPL48 knockout group, MRPL48 knockout + CTX 100 μg/ml group, CALN1 knockout group, CALN1

knockout +CTX 100 μg/ml group, HADHB knockout group and HADHB knockout + CTX 100 μg/ml group

CCK-8 assays were used to determine the (A) viability and (B) proliferation of Caco-2 cells. (C) Colony formation assay showed that

CTX 100 μg/ml combined with knockout of MMP15, MRPL48, CALN1 and HADHB genes impaired the colony formation capacity

of Caco-2 cells. ****P<0.0001 vs NC group; ##P<0.01, ####P<0.0001 vs gene knockout alone group.

than 1.2, four genes including MMP15, MRPL48, CALN1 and HADHB were selected via CellTiter-Glo luminescence
assay.

Metalloproteinases (MMPs) is a family of proteolytic enzymes that can maintain the dynamic equilibrium of ex-
tracellular matrix by degrading and remodeling extracellular matrix [19]. Several studies have shown that MMPs
are related to inflammation, atherosclerosis, liver cirrhosis, connective tissue disease and cancer [20,21]. As the active
center of mitochondrial ribosomes, mitochondrial ribosomal proteins (MRPs) are the basis for the normal expression
of mitochondrial DNA and responsible for translation of encoding proteins of mitochondrial DNA [22]. Wang et al.
have noticed that down-regulation of MRPL18 gene expression can cause metabolic disorders in mouse insulinoma
cells (MIN6) [23]. It is well known that changes in the concentration and activity of intracellular Ca2+ have a certain
effect on the generation of drug resistance in tumors [24]. Human CALN1 gene is only expressed in the brain, espe-
cially in the hippocampus and cerebral cortex. Sequence alignment done by Wu et al. has showed that CALN1 gene
is highly similar to the ubiquitous calcium mediator protein, calmodulin [25]. Calmodulin is the principle mediator
of the Ca2+ signal found in many eukaryotic cells [26]. The proliferation, migration and metastasis of tumor cells
require a large amount of energy, which means they need a more vigorous metabolism than normal cells. In addition
to sugars that provide energy for the active proliferation of tumor cells, fatty acids can also produce ATP through
β-oxidation [27]. HADHB mainly participates in the last three steps of fatty acid β-oxidation, including hydration
of 2-dienoyl-CoA, dehydrogenation of fatty acid-2-hydroxyacyl-CoA, and thiolysis of β-ketoacyl CoA [28]. With a
3-year follow-up of 91 patients diagnosed with hilar cholangiocarcinom, Zhang et al. have found that HADHB not
only shows high expression in hilar cholangiocarcinom, but also have a close relationship with tumor infiltration and
lymphatic metastasis [29]. Nevertheless, no studies have shown the relationship between MMP15, MRPL48, CALN1
and HADHB genes and CTX sensitivity.

On the basis of our prophase research, we speculated that MMP15, MRPL48, CALN1 and HADHB genes may
be related to CTX sensitivity in CRC. To verify the idea, CCK-8 assay was performed on cells that had MMP15,
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MRPL48, CALN1 and HADHB genes knocked out. Results showed that MMP15, MRPL48, CALN1 and HADHB
genes knockout alone remarkably suppresed viability and proliferation of Caco-2 cells, and the addition of CTX 100
μg/ml inhibited cell viability and proliferation more significantly than the gene knockout alone group. Moreover, the
sensitization effect of the above four gene knockout was further confirmed by clonal formation assay. Taken together,
these data revealed that MMP15, MRPL48, CALN1 and HADHB genes knockout might facilitate the sensitivity of
CRC cell line Caco-2 to CTX.

In summary, the present study confirms that MMP15, MRPL48, CALN1 and HADHB genes are responsible for
CTX sensitivity in CRC, which is the first time to explore genes related to CTX sensitivity by CRISPR-Cas9, providing
a theoretical basis for further research on drug-sensitivity mechanism of CRC.
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