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Abstract

Purpose: Cranial radiation therapy remains an integral component of curative treatment

for pediatric patients with brain tumors. Proton beam radiation therapy (PBT) can limit

collateral radiation dose to surrounding normal tissue, thus reducing off-target exposure

while maintaining appropriate tumor coverage. While PBT offers significant advantages

over photon therapy for pediatric patients with intracranial malignancies, cases of

brainstem necrosis after PBT have raised concerns that PBT may pose an increased risk

of necrosis over photon therapy. We investigated the incidence of brainstem necrosis at

our institution in children treated with PBT for intracranial malignancies.

Patients and Methods: Patients with pediatric brain tumor treated with passively

scattered PBT, using a gantry-mounted, synchrocyclotron single-vault system between

2013 and 2018, were retrospectively reviewed. Inclusion criteria included patients 21

years of age or younger who received a minimum 0.1 cm3 maximum brainstem dose of

50 Gray relative biological effectiveness (GyRBE). Patients were assessed for ‘‘central

nervous system necrosis’’ in the brainstem per the Common Terminology Criteria for

Adverse Events (CTCAE), version 5.0 (US National Cancer Institute, Bethesda,

Maryland) criteria.

Results: Fifty-eight patients were included for analysis. The median age was 10.3 years.

Twenty-one (36.2%) patients received craniospinal irradiation. Thirty-four (58.6%)

patients received chemotherapy. The median prescription radiation dose was 54

GyRBE. Regarding published dosimetric constraints used at 3 separate proton centers,

the goal brainstem D50% ,52 GyRBE was exceeded in 23 (40%) patients, but the

brainstem Dmax ,58 GyRBE was not exceeded in any patients. No patient experienced

grade �2 brainstem injury. One patient demonstrated radiographic changes consistent

with grade 1 toxicity. This patient had myeloablative chemotherapy with tandem stem

cell rescue before PBT.

Conclusion: Our data demonstrates a low risk of any brainstem injury in children treated

with passively scattered PBT using a single-vault synchrocyclotron.
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Introduction

Pediatric brain tumors are the most common solid tumors of childhood and comprise a wide variety of tumor types. With

modern therapy, overall survival at 5 years is approximately 75% [1]. Radiation therapy remains an integral component of

curative treatment; however, significant sequelae of radiation include neurocognitive deficits, neuroendocrine abnormalities,

vasculopathy, hearing loss, permanent hair loss, and risk of secondary malignancies due to collateral exposure of nearby

normal tissue [2–6]. Proton beam radiation therapy (PBT) can reduce radiation dose to the surrounding normal tissues while

maintaining appropriate tumor coverage. This normal tissue sparing is achieved through the unique physical characteristics of

protons that allow control over the dose deposition at a specified depth that is not achievable with photon therapy [7, 8].

PBT plans use the spread-out Bragg peak (SOBP) to achieve the desired dose distribution that conforms to the target

volume [9]. The individual Bragg peak components of the SOBP tend to have the highest linear energy transfer (LET) at the

distal end of the beam range, which translates to the SOBP having the highest LET at the end of its profile.

While PBT offers significant advantages over photon therapy for pediatric cranial radiation, cases of brainstem necrosis

after PBT over the past 10 years have raised some concerns regarding the potential of a unique risk profile of necrosis that

differed from the low risk of necrosis seen following photon therapy [10–13]. These data led to the formation of a National

Cancer Institute (NCI) Workshop on Proton Therapy for Children that focused on the incidence of brainstem injury following

PBT, and dosimetric parameters to prevent it. The article from this workshop details the analysis of the literature and reports a

low risk of brainstem necrosis when brainstem dosimetric guidelines are instituted and followed [14, 15].

At our institution, we began treating pediatric brain tumors with PBT before the development of these brainstem constraints

recommended in the NCI Workshop. Additionally, our proton therapy system is unique in that it uses a compact

synchrocyclotron technology with unique beam characteristics. For these reasons, we investigated the incidence of Common

Terminology Criteria for Adverse Events (CTCAE), version 5 (US National Cancer Institute, Bethesda, Maryland) brainstem

toxicity at our institution in children treated with PBT for intracranial malignancies.

Patients and Methods

With approval of the Washington University Institutional Review Board, patients with pediatric brain tumor treated with

passively scattered PBT between 2013 and 2018 were retrospectively reviewed. Inclusion criteria included patients 21 years

of age or younger who received a minimum 0.1 cm3 maximum brainstem dose of 50 Gray relative biological effectiveness

(GyRBE). Patient characteristics, diagnosis, extent of surgery, and use of chemotherapy were gathered for all patients.

Brainstem dosimetric data were obtained from the treatment planning software, including Dmax, 0.1 cm3 maximum dose,

dose to 10% of the brainstem (D10%), and brainstem D50%. All patients were followed up for .1 year after completion of

therapy. Patients were assessed for ‘‘central nervous system necrosis’’ in the brainstem per CTCAE version 5.0 criteria (Table

1). Postradiation treatment change was defined as magnetic resonance imaging (MRI) changes in the absence of disease

progression or symptoms. Radiation necrosis was defined per Indelicato et al [15] as follows: (1) new or progressive symptoms

and/or signs after irradiation involving motor weakness or palsies of cranial nerves V to VII or IX to XII with (2) corresponding

radiographic abnormalities within the brainstem and (3) absence of local disease progression. Our analysis included

evaluation of the number of our patients who exceeded published dose constraints from 3 separate proton centers [14].

Table 1. CTCAE version 5.0: Central nervous system necrosis is

defined as a ‘‘disorder characterized by a necrotic process

occurring in the brain and/or spinal cord.’’

Grade Criteria and intervention

1 Asymptomatic; clinical or diagnostic observations only;

intervention not indicated

2 Moderate symptoms; corticosteroids indicated

3 Severe symptoms; medical intervention indicated

4 Life-threatening consequences; urgent intervention

indicated

5 Death

Abbreviation: CTCAE, Common Terminology Criteria for Adverse Events.
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All patients received passive scatter PBT using a gantry-mounted synchrocyclotron single-vault system. All patients were

treated with 3 to 4 fields and each field was treated daily. For patients receiving craniospinal irradiation (CSI), 2 equally

weighted opposite lateral fields were used for the cranial fields and 1 or 2 posterior fields for the spinal fields. Posterior fossa

boosts following CSI were always a 3-field plan with posterior-anterior, right posterior oblique, and left posterior oblique fields.

Results
Patient demographic data are listed in Table 2. Sixty-three patients were eligible for inclusion. Four of these patients died

before 1-year follow-up and 1 patient was lost to follow-up and they were thus excluded from analysis. Of note, the 4 patients

who died before the 1-year follow-up did not die from brainstem radionecrosis, nor did they demonstrate brainstem changes

indicative of radiation toxicity. The remaining 58 patients had a median age of 10.3 years (range, 1-21.9 years). Craniospinal

irradiation was delivered to 21 (36.2%) patients, and 15 (71.4%) of these patients received 23.4 GyRBE, whereas 6 (28.6%) of

these patients received 36 GyRBE. Chemotherapy was delivered to 34 patients (58.6%); of these, 2 patients (5.9%) received

myeloablative chemotherapy with stem cell rescue before radiation.

The median prescription radiation dose was 54 GyRBE (range, 50.4-60 GyRBE). Mean brainstem dose was 35.5 GyRBE

(range, 3.3-55.2 GyRBE). Average Dmax to the brainstem was 54.5 GyRBE (range, 51.1-57.1 GyRBE). Average D10% to

brainstem was 50.4 GyRBE (range, 15.5-55.7 GyRBE). Using dosimetric criteria from published constraints used at 3 separate

proton centers (Table 3), the goal brainstem D50% ,52 GyRBE was exceeded in 23 (40%) patients, but the brainstem Dmax

,58 GyRBE was not exceeded in any patients.

Table 2. Patient demographics and clinical factors.

Factor Value

Total eligible patients, n (%) 58 (100)

Age, median (range), y 10.3 (1–21.9)

Sex, n

Male 38

Female 20

Histology, n (%)

Medulloblastoma 17 (29)

Craniopharyngioma 10 (17)

Ependymoma 9 (16)

Juvenile pilocytic astrocytoma 6 (10)

Optic pathway glioma 2 (3)

Germ cell tumor 2 (3)

WHO II oligodendroglioma 2 (3)

Other 9 (16)

Extent of surgery, n (%)

Gross total/near total resection 52 (90)

Subtotal resection 2 (3)

Biopsy-only 4 (7)

Radiation dose, median (range), GyRBE 54 (50.4–60)

Received CSI, n (%) 21 (36)

23.4 GyRBE CSI 15 (71)

36 GyRBE CSI 6 (29)

Chemotherapy, n (%)

Pre-PBT chemotherapy 13 (22)

Concurrent chemotherapy 19 (33)

Adjuvant chemotherapy 20 (34)

Myeloablative chemotherapy with

stem cell rescue

2 (3)

Intrathecal methotrexate 1 (2)

Abbreviations: WHO, World Health Organization; CSI, craniospinal irradiation;

PBT, proton beam radiation therapy.
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No patient experienced CTCAE version 5.0, grade �2 brainstem injury. One (1.7%) patient had radiographic changes

consistent with CTCAE version 5.0, grade 1 toxicity. This patient was diagnosed with atypical teratoid rhabdoid tumor before 1

year of age. Treatment included posterior fossa tumor resection followed by myeloablative chemotherapy with tandem stem

cell rescue. PBT followed transplant and consisted of conformal posterior fossa radiation to 50.4 GyRBE to the surgical bed.

The patient exceeded no goal or maximum constraints listed in Table 3. The radiographic findings are included in the Figure.

Clinically, the patient was asymptomatic, and no treatment was given. MRI scans were repeated at 8-week intervals for 2

scans and the patient was examined in clinic for any signs of neurologic symptoms. The MRI findings resolved within 6 months

without intervention.

Discussion
Our data indicate a low risk of any CTCAE version 5.0 brainstem injury in a cohort of children treated with passive scatter PBT

using a synchrocyclotron. It is important to note that patients treated earlier in this cohort exceeded more recently published

brainstem dose constraints. Despite this, there were no cases of symptomatic brainstem injury. Only 1 patient had

radiographic changes after PBT, and this patient received myeloablative chemotherapy before PBT. Given the unique

attributes of synchrocyclotron technology, these data are important in demonstrating no evidence of increased or unexpected

toxicity to the brainstem.

Table 3. Dosimetric objectives to the brainstem from 3 separate proton centers.

Institution Dosimetric objective

Patients in this cohort

who exceeded dosimetric

constraint, n (%)

Massachusetts General Hospital Dmax , 58 GyRBE 0

D50% , 52.4 GyRBE 23 (40)

University of Florida 0.1 cm3

, 56.6 GyRBE (goal) 5 (9)

, 58 GyRBE (max) 0

D10%

, 55.4 GyRBE (goal) 8 (14)

, 56 GyRBE (max) 1 (2)

D50%

, 52.4 GyRBE (goal) 23 (40)

, 54 GyRBE (max) 9 (16)

MD Anderson D50% , 52 GyRBE (goal) 23 (40)

0.1 cm3 , 58 GyRBE (max) 0

Figure. T2-FLAIR MRI images

of single patient with CTCAE

grade 1 brainstem changes (A)

before radiation, (B) 7.5 weeks

after radiation (scan

demonstrating new onset patchy

edema with microhemorrhages

in the pons), and (C) 6 months

following completion of radiation

(MRI demonstrates resolution of

brainstem findings).

Abbreviations: CTCAE,

Common Terminology Criteria

for Adverse Events; FLAIR,

fluid-attenuated inversion

recovery; MRI, magnetic

resonance imaging.
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Early publications of high-dose posterior fossa radiation in children indicated frequent postradiation MRI changes [11] with

rare cases of severe/fatal radiation necrosis [15]. In 2018, following increasing concerns of reported cases of fatal radiation

necrosis, an NCI Workshop meeting was held to discuss the current clinical data and experience with brainstem injury in PBT

patients [14]. An analysis of 671 pediatric patients with posterior fossa tumor treated with PBT between 2006 and 2016

demonstrated a 1.3% risk of grade 3þ brainstem injury with 0.4% fatal brainstem necrosis. Further analysis by Indelicato et al

[15] identified age ,5 years and various dosimetric parameters (ie, brainstem Dmax .56.6 GyRBE) as predictive of

symptomatic necrosis.

During the NCI Workshop, there was consensus that ‘‘differences in linear energy transfer (LET) (and, by implication,

relative biological effectiveness [RBE]) when treating posterior fossa tumors anatomically adjacent to the brainstem contribute

to brainstem injury.’’ Although the risk of brainstem necrosis is low for patients in whom Dmax constraints are respected, future

therapy may rely on LET optimization to further reduce the risk for young patients requiring high volume or doses to the

brainstem [16].

Passive scatter PBT relies on metal apertures to shape the proton beam as it enters the patient, and tissue compensators to

adjust proton range, thus effecting an SOBP [17]. There are concerns regarding the higher RBE in an SOBP obtained with a

passive scattering PBT plan, with rates of brainstem necrosis seen at higher rates in patients treated with passive scatter PBT.

While the absolute rates of brainstem toxicity are low, prior groups have found a non-zero rate of symptomatic brainstem injury

[15]. This is in contrast to our findings where only 1 patient experienced grade 1 brainstem injury, and there were no cases of

symptomatic injury.

One possibility for the lack of any symptomatic brainstem injury is our specific method for delivery of proton therapy.

These data are the first to report the risk of brainstem necrosis in pediatric patients treated with a single-vault

synchrocyclotron system. A single-vault synchrocyclotron system allows production of high-energy protons at the

expense of a wider energy spectrum exiting the snout due to unique energy modulation of the particles in the beamline

[18]. Thus, while the doses delivered to our patients are the same as for patients treated with classic cyclotron or

synchrotron systems, our beamline LET is lower at the end of range in a single-vault synchrocyclotron system [19]. In

addition to the unique LET properties, beam and dose delivery characteristics are currently being studied by our group to

evaluate LET and RBE in the brainstem as compared to other therapeutic proton delivery machines. Overall, it is

important to note that the rate of any radiographic brainstem changes was low following high-dose posterior fossa PBT

using synchrocyclotron technology.

This study is limited by the small number of patients in evaluating a rare complication. However, these data do include

cohort patients at risk of necrosis, including infants, patients receiving myeloablative chemotherapy, and patients receiving

radiation doses in excess of later published constraints. For the 1 case of postradiation MRI changes, the child was watched

closely with MRI images every 8 weeks with physical examination. No intervention was required, and the imaging findings

resolved spontaneously. Our current guidelines follow the University of Florida brainstem goal and acceptable constraints as

detailed in the NCI Workshop article [14].
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