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ABSTRACT
Dopamine (DA) plays a significant role in regulating hippocampal function, particularly in
modulating synaptic plasticity. Despite this, a comprehensive understanding of the molecular
mechanisms involved in neuroplasticity-related signaling influenced by DA remains incomplete.
This study aimed to elucidate the changes in the expression of key molecules related to
hippocampal neuroplasticity following DA depletion in rats. To induce DA depletion, unilateral
striatal infusions of 6-hydroxydopamine (6-OHDA) were administered to adult Sprague-Dawley
rats. The subsequent loss of nigrostriatal DAergic signaling in these 6-OHDA-lesioned rats was
confirmed using an apomorphine-induced rotation test at 4 weeks post-infusion and by
assessing the expression levels of tyrosine hydroxylase (TH) through immunohistochemistry and
western blotting at 7 weeks post-infusion. A decrease in DAergic signaling, evidenced by
reduced TH-positive immunoreactivity, was also noted in the ipsilateral hippocampus of the
lesioned rats. Interestingly, 6-OHDA infusion led to increased phosphorylation of pivotal
hippocampal plasticity-related proteins, including extracellular signal-regulated kinase (ERK),
protein kinase B (Akt), glycogen synthase kinase 3β (GSK3β), and cAMP response element-
binding protein (CREB), in the ipsilateral hippocampus 7 weeks following the infusion. To
extend these findings, in vitro experiments were conducted on primary hippocampal neurons
exposed to DA and/or the active D1/D2 DA receptor antagonist, flupentixol (Flux). DA inhibited
the constitutive phosphorylation of ERK, Akt, GSK3, and CREB, while Flux restored these
phosphorylation levels. Taken together, these findings indicate that DA depletion triggers an
increase in plasticity-related signaling in the hippocampus, suggesting a possible compensatory
mechanism that promotes activity-independent neuroplasticity following DA depletion.
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Introduction

Dopamine (DA) is a critical neurotransmitter that plays a
central role in a range of physiological processes in the
brain, including motor control, emotions, reward proces-
sing, behavior, and cognition (Juarez Olguin et al. 2016).
Disturbances in DA transmission are implicated in a
diverse array of disorders, encompassing both neuropsy-
chiatric conditions – such as attention deficit hyperactiv-
ity disorder, Tourette syndrome, schizophrenia,
psychosis, and depression – and neurodegenerative dis-
eases like Parkinson’s disease (PD) (Tanaka et al. 2022).
Specifically, PD is characterized by the degeneration of
DAergic neurons, which results in a reduced availability
of DA (Klein et al. 2019; Masato et al. 2019). This
depletion of DA triggers a series of morphological,

synaptic, and signaling alterations in dopaminoreceptive
neurons located in various brain regions, including the
hippocampus (Kim et al. 2022; Madadi Asl et al. 2022).

DA modulates both short-term neuronal excitability
and long-term synaptic plasticity through the regu-
lation of ion channels and gene expression (Rangel-
Barajas et al. 2015). DA’s effects are mediated via G-
protein-coupled receptors, specifically D1-like (stimu-
latory) and D2-like (inhibitory) receptors, which in turn
modulate cAMP production (Neve et al. 2004; Rangel-
Barajas et al. 2015). This bidirectional modulation influ-
ences various signaling pathways, such as the protein
kinase A (PKA)/DA- and cAMP-regulated phosphopro-
tein-32 pathway (Greengard et al. 1999), the protein
kinase B (Akt)/glycogen synthase kinase 3 (GSK3)
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pathway (Beaulieu et al. 2005), and the mitogen-acti-
vated protein kinase (MAPK)/cAMP response element-
binding protein (CREB) pathway (Roberson et al.
1999). Additionally, both D1-like and D2-like DA recep-
tors collaboratively induce immediate early gene
expression in the striatum and influence rotational
behavior in the context of striatal DA depletion, fea-
tures that are sensitive to glutamatergic modulation
(Paul et al. 1992).

The hippocampus, essential for both cognition and
emotions, receives DAergic inputs from the ventral teg-
mental area and the substantia nigra (Weerasinghe-
Mudiyanselage et al. 2022). DA serves as a modulator
for hippocampal long-term potentiation (LTP)
(Swanson-Park et al. 1999). In the context of PD, the
DAergic system influences synaptic plasticity in the hip-
pocampus (Calabresi et al. 2013), implicating this brain
region in non-motor dysfunctions (Weerasinghe-
Mudiyanselage et al. 2022). Multiple signaling molecules
are involved in hippocampal neuroplasticity. For
instance, extracellular signal-regulated kinase (ERK) is
critical in memory, synaptic plasticity, and molecular-
level information processing (Scott Bitner 2012). Upon
activation, ERK modulates cellular functions through
protein phosphorylation, transcription, and translation
(Lavoie et al. 2020). Another key molecule is CREB,
which is instrumental in learning, memory, synaptic
transmission, neuron development, survival, and axon
growth (Lu and Chow 1999). Both ERK and CREB are
essential for neuroplasticity related to memory for-
mation and schizophrenia (Yang et al. 2004). DA recep-
tor regulation of the Akt/GSK3β signaling pathway also
modulates specific aspects of synaptic plasticity
(Jaworski et al. 2019). Changes in GSK3β activity
influence the development of both LTP and long-term
depression (LTD) in rat hippocampal slices, processes
regulated by ionotropic glutamate receptors (Golpich
et al. 2015). Furthermore, CREB is among the transcrip-
tion factors that GSK3β potentially regulates (Johannes-
sen and Moens 2007), participating in crucial cellular
processes (Brami-Cherrier et al. 2002). However, unan-
swered questions persist regarding the alterations in
neuroplasticity-related signaling and hippocampal
neuron function following DA depletion.

In the realm of animal models for PD, DAergic
neurons are targeted through the administration of neu-
rotoxic substances to the nigrostriatal system (Hernan-
dez-Baltazar et al. 2017). The rat model employing
striatal infusion of 6-hydroxydopamine (6-OHDA) pro-
vides a suitable platform for examining DA depletion
across various brain regions, including the hippocampus
(Kim et al. 2022). In this study, we utilized a hemiparkin-
sonian rat model with ipsilateral striatal infusion of 6-

OHDA to induce DA depletion in the hippocampus.
The study aims to investigate nigrostriatal impairment
and alterations in neuroplasticity-related signaling in
the hippocampus, along with the correlations between
these factors in this animal model.

Materials and methods

Animals, surgical procedures, and behavioral
tests

Male Sprague-Dawley (SD) rats were sourced from
Charles River Laboratories (Wilmington, MA, USA) for
the present study. All animal care and experimental pro-
tocols adhered to the guidelines set forth by Chonnam
National University (17 June 2021, CNU IACUC-YB-
2021-71; 1 June 2023, CNU IACUC-YB-2023-70) and the
NIH Guide for the Care and Use of Laboratory Animals.
Measures were taken to minimize both the number of
animals used and any associated suffering.

For the experiments, rats (n = 6 per group) were placed
in a stereotaxic apparatus (SR-6; NARISHIGE, Tokyo, Japan)
with their heads level. Surgical coordinates used were as
follows: anteroposterior (AP) at +1.3, + 0.4, −0.4, −1.3 mm
relative to the bregma; mediolateral (ML) at −2.6, −3.0,
−4.2, −4.5 mm from the midline; and dorsoventral (DV)
at −5.0 mm from the skull surface. A 6-OHDA solution
with a concentration of 3.5 mg/mL (Sigma-Aldrich,
St. Louis, MO, USA) was infused into the right striatum
of each rat using an infusion pump. The 6-OHDA was dis-
solved in an 8 µL saline solution containing 0.02%
ascorbic acid (Wako, Osaka, Japan) and delivered
through a 10.5 μL microinjection cannula at a flow rate
of 1 μL/min, with 2 μL delivered at each specified coordi-
nate. For the sham-operated control group, identical sur-
gical procedures were conducted, but 8 μL of vehicle
solution (0.9% saline with 0.02% ascorbic acid) was
infused into the striatum instead of 6-OHDA.

Four weeks post-striatal 6-OHDA infusion, rats were
administered intraperitoneal injections of apomorphine
hydrochloride (1 mg/kg; Wako). The incidence of contral-
ateral rotations, identified as left-handed rotations, was
subsequently observed and documented for each rat
over a span of 30 min. Brain samples were collected
seven weeks after the initial 6-OHDA infusion for both
immunohistochemistry and western blot analyses.
Figure 1A illustrates the experimental procedure utilized
in the hemiparkinsonian rat model.

Immunohistochemistry

For the immunohistochemistry procedures, we adhered
to established protocols as described in a previous study
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(Hong et al. 2023). Brains (n = 3 per group) were fixed
with 4% paraformaldehyde in phosphate-buffered
saline (PBS) and sectioned coronally into 4 µm slices.
To inhibit endogenous peroxidase activity, the paraffin-
embedded sections were treated with 0.3% hydrogen
peroxide solution for 20 min. Following this, the sections
were blocked using 5% normal goat serum (NGS; Vector
ABC Elite Kit, Vector Laboratories, Burlingame, CA, USA)
in PBS containing 0.1% Tween 20 (PBS-T; pH 7.4) for 1
h at room temperature (RT; approximately 22°C ± 2°C).
The sections were then incubated with rabbit anti-tyro-
sine hydroxylase (TH) antibody (dilution ratio of 1:500;
Millipore, Burlington, MA, USA) overnight at 4°C. After-
ward, the sections were exposed to biotinylated goat
anti-rabbit IgG (Vector ABC Elite Kit) for 1 h at RT, fol-
lowed by incubation with an avidin-biotin-peroxidase
complex (Vector ABC Elite Kit) for an additional hour.
The peroxidase reaction was visualized using a diamino-
benzidine substrate (DAB kit; Vector Laboratories).

Western blot analysis

Upon euthanizing the animals, brain tissues, specifically
from the striatum, substantia nigra, and hippocampus,
were promptly extracted (n = 3 per group) and preserved
at −80°C. Proteins were subsequently isolated from these
samples and subjected to electrophoretic separation on 7–
15% SDS-PAGE gels. These separated proteins were then

transferred onto polyvinylidene difluoride membranes.
For blocking, the membranes were incubated for 1 h at
RT in a solution composed of 1% BSA (Sigma-Aldrich)
and 2% NGS (Vector Laboratories) diluted in PBS-T. The
membranes were then exposed to overnight incubation
at 4°C with primary antibodies, including rabbit anti-TH
(1:1,000; Millipore), anti-p-ERK (1:1,000; Cell Signaling Tech-
nology, Danvers, MA, USA), anti-ERK (1:1,000; Cell Signaling
Technology), anti-p-AKT (1:1,000; Cell Signaling Technol-
ogy), anti-AKT (1:1,000; Cell Signaling Technology), anti-
p-GSK3β (Ser9) (1:1,000; Cell Signaling Technology), anti-
GSK3β (1:1,000; Cell Signaling Technology), anti-p-CREB
(1:1,000; Cell Signaling Technology), and anti-CREB
(1:1,000; Cell Signaling Technology). Following primary
antibody incubation, membranes were treated with a
horseradish peroxidase-conjugated goat anti-rabbit IgG
secondary antibody (1:5,000; Thermo Fisher Scientific,
Waltham, MA, USA) for 2 h at RT. Chemiluminescent
signals were captured using an EZ-Western Lumi Femto
kit (DoGenBio, Seoul, Republic of Korea). After membrane
stripping, re-probing was conducted with a mouse anti-β-
actin antibody (1:5,000; Sigma-Aldrich) for an additional 2
h at RT. Finally, the optical density (OD) of each band was
quantified using an iBrightTM CL750 Imaging System
(Thermo Fisher Scientific).

Figure 1. Schematic diagram of the experimental procedure. (A) In vivo experiment. (B) In vitro experiment. 6-OHDA, 6-hydroxydopa-
mine; DA, dopamine; DB, dissociation buffer; E, embryonic day; Flux, flupentixol.
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Primary hippocampal cell culture and drug
treatment

Hippocampi were surgically excised from SD rat pups on
prenatal day 17.5 and prepared for culturing. Following
dissection, the tissue samples underwent a multi-step
protocol. First, the tissues were minced and enzymati-
cally digested in a dissociation buffer containing 10
units/mL of papain (Worthington Biochemical, Lake-
wood, NJ, USA) and 100 units/mL of DNase I (Roche,
Basel, Switzerland) at 37°C for 30 min. The digested
material was then triturated using Neurobasal A
medium (Life Technology, Carlsbad, CA, USA). The result-
ing cell suspension was plated at a density of 5.0 × 105

cells per well in 12-well plates (Nunc; Thermo Fisher
Scientific) pre-coated with poly-D-lysine hydrobromide
(150 μg/mL; Sigma-Aldrich). The medium was replaced
with growth Neurobasal A medium supplemented with
1× B27 (Invitrogen, Carlsbad, CA, USA), 100 units/mL
penicillin, 0.1 mg/mL streptomycin, and 0.5 mM gluta-
mine within 1 h of plating. Cultures were maintained
at 37°C in a 5% CO2 atmosphere.

To assess the inhibitory influence of the DA signaling
pathway, flupentixol (Flux; 1 μM; Abcam, Cambridge, UK)
was administered 30 min before exposing the cultures to
DA treatment (5 μM; Abcam) on day 14 in vitro (DIV).
Cells were analyzed or harvested 10 min post-DA treat-
ment. Both DA and Flux were prepared in sterile 0.9%
saline solution. Figure 1B presents a schematic of the
in vitro experimental design utilizing rat primary hippo-
campal neuron cultures.

Statistical analysis

Statistical analyses were performed using Prism software
(GraphPad Software, San Diego, CA, USA; RRID:
SCR_002798). Data are presented as means ± standard
errors (SEs) along with the sample sizes. To compare
the sham-operated control group with the 6-OHDA-
lesioned group, unpaired Student’s t-tests were used in
all pertinent analyses. For the in vitro study, data were
analyzed using one-way analysis of variance (ANOVA),
followed by a Student-Newman-Keuls post hoc test for
multiple comparisons. A significance level of P < 0.05
was established for all tests to denote statistical
significance.

Results

Unilateral striatal 6-OHDA infusion impairs
ipsilateral nigrostriatal DAergic signaling in rats

Four weeks post-infusion, the rats exhibited pronounced
contralateral circling behavior upon systemic adminis-
tration of apomorphine (n = 6 rats/group). Rats that
demonstrated more than 7 rotations/min in response
to apomorphine administration were considered to
have effectively experienced ipsilateral DA depletion in
this model (Figure 2A; t(10) = 26.00; P < 0.001). Immuno-
histochemical results (Figure 2B; n = 3 per group)
showed a remarkable reduction in TH-positive immuno-
reactive cells and fibers in both the ipsilateral striatum
and substantia nigra after unilateral 6-OHDA treatment,
consistent with a prior study (Kim et al. 2022). Western
blot data (Figure 2C; n = 3 per group) revealed a signifi-
cant decrease in TH protein levels in both the ipsilateral
striatum (t(4) = 9.244, P < 0.001) and substantia nigra (t
(4) = 21.45, P < 0.001).

Unilateral striatal 6-OHDA infusion affects
DAergic signaling in ipsilateral rat hippocampi

The western blot analysis revealed a statistically signifi-
cant difference in TH protein levels between the sham-
operated controls and the 6-OHDA-treated rats in the
hippocampus (Figure 3A; t(4) = 5.018, P < 0.01). Immuno-
histochemical observations revealed a notable reduction
in TH-positive catecholaminergic terminals within the
CA1, CA3, and dentate gyrus subregions of the hippo-
campus following unilateral striatal 6-OHDA adminis-
tration (Figure 3B).

DA depletion activates neuroplasticity-related
signaling in the rat hippocampus

As shown in Figure 4A, unilateral 6-OHDA treatment
notably elevated the phosphorylation levels of ERK in
the ipsilateral hippocampus (t(4) = 3.778, P < 0.05).
Additionally, Akt phosphorylation levels in the 6-
OHDA-treated hippocampi were significantly elevated
compared to those in sham-operated controls (Figure
4B; t(4) = 7.324, P < 0.01). We further identified a signifi-
cant rise in the inhibitory phosphorylation (Ser 9) of
GSK3β in 6-OHDA-treated rat hippocampi in comparison
to sham-operated controls (Figure 4C; t(4) = 3.124, P <
0.05). 6-OHDA treatment also significantly activated
CREB in the hippocampus (Figure 4D; t(4) = 4.532, P <
0.05).
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Figure 2. Ipsilateral impairments of nigrostriatal DAergic signaling in unilateral 6-OHDA-lesioned hemiparkinsonian rat models. (A)
Apomorphine rotation test (n = 6 rats/group). (B) Representative photomicrographs (n = 3 rats/group) showing immunoreactivity
of TH-positive cell bodies and fibers in the STR (scale bar = 1,000 μm) and SN (scale bar = 100 μm). (C) Immunoblots of TH expression
in STR and SN (n = 3 rats/group). Data are expressed as the means ± SEs. 6-OHDA, 6-hydroxydopamine-lesioned group; DA, dopamine;
Sham, sham-operated controls; STR, striatum; SN, substantia nigra; TH, tyrosine hydroxylase. ***P < 0.001.

Figure 3. Reduction in DAergic signaling in the rat hippocampus. (A) Immunoblots of TH expression in the hippocampus (n = 3 rats/
group). (B) Representative photos (n = 3 rats/group) showing the TH-positive nerve fibers in the CA1, CA3, and dentate gyrus sub-
regions in the hippocampus (scale bar = 100 and 400 μm). Data are expressed as means ± SEs. 6-OHDA, 6-hydroxydopamine-lesioned
group; DA, dopamine; Sham, sham-operated controls; HP, hippocampus; TH, tyrosine hydroxylase. **P < 0.01.
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Phosphorylation changes of neuroplasticity-
associated proteins in cultured hippocampal
neurons exposed to DA and/or a DA antagonist

Using western blot analysis (Figure 5; n = 3 per group),
we assessed the phosphorylation status of relevant pro-
teins in cultured rat hippocampal neurons. Initial treat-
ment with DA led to a significant reduction in the
basal phosphorylation levels of neuroplasticity-

associated proteins, such as ERK (Figure 5A; Finteraction
[2, 6] = 1082, P < 0.001), Akt (Figure 5B; Finteraction [2, 6]
= 775.3, P < 0.001), GSK3β (Ser 9) (Figure 5C; Finteraction
[2, 6] = 34.15, P < 0.001), and CREB (Figure 5D; Finteraction
[2, 6] = 105.1, P < 0.001). However, subsequent treat-
ment with a dopamine antagonist, Flux, substantially
restored the phosphorylation levels of these proteins
in the cultured neurons (P < 0.001). Importantly,

Figure 4. Alterations in basal phosphorylation of neuroplasticity-related proteins in the hippocampus following DA depletion. (A–D,
left panels) Immunoblot images of p-ERK/ERK (A), p-Akt/Akt (B), p-GSK3β/GSK3β (C), and p-CREB/CREB (D) expression in the hippo-
campus. (A–D, right panels) Bar graphs showing semi-quantitative data analysis (relative OD, n = 3 rats/group). Data are expressed as
the means ± SEs. 6-OHDA, 6-hydroxydopamine-lesioned group; Sham, sham-operated controls. *P < 0.05. **P < 0.01. 6-OHDA, 6-
hydroxydopamine-lesioned group; DA, dopamine; Sham, sham-operated controls.
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neither DA nor Flux treatment led to damage in primary
hippocampal neurons, as confirmed by microscopic
evaluation and lactate dehydrogenase assay (data not
shown).

Discussion

In this study, we utilized a hemiparkinsonian rat model
involving ipsilateral striatal infusion of 6-OHDA to inves-
tigate DA depletion in multiple ipsilateral brain regions,

Figure 5. Effects of DA and/or DA antagonists on the phosphorylation of neuroplasticity-related proteins in primary cultured rat hip-
pocampal neurons. (A–D, left panels) Immunoblot images of p-ERK/ERK (A), p-Akt/Akt (B), p-GSK3β/GSK3β (C), and p-CREB/CREB (D)
expression in the hippocampus. (A–D, right panels) Bar graphs displaying semi-quantitative data analyses (relative OD, n = 3 samples/
group). CON, control group; DA, DA-treated groups, Flux, Flux-treated groups. ***P < 0.001 (CON vs. DA), ###P < 0.001 (DA vs. DA +
Flux).
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including the hippocampus. Our initial assessment used
an apomorphine-induced rotation test conducted four
weeks following 6-OHDA infusion, which demonstrated
significant contralateral rotations in the treated rats.
Subsequent analyses examined TH expression levels in
the striatum, substantia nigra, and hippocampus. The
results corroborated a reduction in TH expression
within the ipsilateral brain regions, confirming the pres-
ence of ipsilateral DA depletion in both the nigrostriatal
system and hippocampus of the rat model.

DA serves as a crucial neurotransmitter implicated in
a broad spectrum of physiological processes (Juarez
Olguin et al. 2016). Impairment of DA function leads to
various changes in morphology, synaptic connectivity,
and signaling pathways in DAergic target neurons
across various brain areas, including the hippocampus
(Kim et al. 2022; Madadi Asl et al. 2022). Disruptions in
DA transmission have also been linked to an array of dis-
orders ranging from neuropsychiatric conditions such as
depression to neurodegenerative diseases like PD
(Tanaka et al. 2022). Although much research has con-
centrated on the nigrostriatal system due to the
central role of DAergic impairment in PD (Nam et al.
2021), it is imperative to examine the effects of
DAergic dysfunction in other brain regions as well.
These regions may have critical interactions with the
nigrostriatal system and could contribute to the under-
lying mechanisms of non-motor dysfunctions. The hip-
pocampus is especially relevant for non-motor
symptoms, as it is involved in cognitive and emotional
regulation (Calabresi et al. 2013). Previous anatomical
studies have shown that midbrain DA neurons project
directly to the hippocampus (Kumaran and Duzel 2008;
Shohamy and Adcock 2010), underscoring its signifi-
cance. Therefore, our study prioritized the hippocampus
to explore its role in DAergic signaling and its intercon-
nectedness with the DAergic system.

Neuroplasticity refers to the ability of neuronal net-
works in the brain to change through development
and reorganization (Weerasinghe-Mudiyanselage et al.
2022). Molecules such as ERK, Akt, GSK3β, and CREB
have been shown to play roles in DA signaling within
the hippocampus. ERK activation can differ within the
same cell or among various cell types, influenced by
factors like signal duration, subcellular localization of sig-
naling components, interactions with other signaling
pathways, and cellular energy status (Colucci-D’Amato
et al. 2003). Importantly, the activation of ERK, followed
by its translocation to the nucleus, is associated with
synaptic plasticity and LTP (Wiegert and Bading 2011).
The Akt signaling pathway, which is activated by phos-
phatidylinositol 3-kinase in response to various stimuli
such as insulin, growth factors, cytokines, and cellular

stress (Manning and Cantley 2007), initiates the recruit-
ment of Akt to the plasmamembrane. Upon phosphoryl-
ation, Akt becomes activated (Timmons et al. 2009) and
influences several substrates, including GSK3β and CREB,
which have pivotal roles in cell survival, metabolism, and
neuronal function (Rai et al. 2019). GSK3 is a serine/
threonine kinase originally identified for its role in glyco-
gen synthesis regulation but is now acknowledged for
its broader involvement in cellular processes like gene
expression, microtubule organization, development,
and cell survival (Forde and Dale 2007). The activity of
GSK3β is mainly regulated by inhibitory phosphorylation
at specific serine residues – Ser21-GSK3α and Ser9-
GSK3β (Pardo et al. 2016; Hong et al. 2022). Stimulation
of D2 receptors has been found to modulate the regulat-
ory phosphorylation of the Akt/GSK3 pathway (Mines
and Jope 2012). Additionally, phosphorylation of ERK
and CREB can be induced in hippocampal neurons
during both D1 and D2 receptor stimulation but
through separate pathways (Wu et al. 2001). Activation
of CREB is dependent on the ERK and Akt/GSK3 path-
ways (Rai et al. 2019). Our study found that DA depletion
impacts the constitutive phosphorylation of these pro-
teins in the hippocampus. Given their roles in neuronal
function, these proteins may serve as protective factors
against DA depletion, thus contributing to the mainten-
ance of hippocampal function.

Our findings reveal that phosphorylation of neuro-
plasticity-related molecules was significantly upregu-
lated in hippocampal neurons following DA depletion.
These results align with a prior study, which demon-
strated that severe DA depletion led to elevated levels
of Akt and GSK phosphorylation in the hippocampus
(Morris et al. 2008). Such evidence supports the notion
that even minor reductions in DA concentration can
enhance Akt/GSK3β signaling in the hippocampus,
whether directly or indirectly through network inter-
actions (Li and Gao 2011). This suggests that intrinsic,
activity-independent variations in plasticity mechanisms
might result in a diverse range of neuroplastic outcomes
at physiologically relevant levels.

Additionally, molecules related to neuroplasticity
have been shown to contribute to structural modifi-
cations within the hippocampus (Weerasinghe-
Mudiyanselage et al. 2022). In the context of a PD
animal model, sustained inhibition of the DAergic
pathway led to changes in neuronal architecture in the
hippocampus (Kim et al. 2022). Notably, a prior study
demonstrated that reductions in synaptic counts and
arbor complexity coincided with synapse enlargement
in specific forebrain regions (Sando et al. 2017). Such
findings point to reciprocal and possibly self-sustaining
relationships among synaptic size, size distributions,
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and synaptic counts. These relationships are modulated
by the ongoing dynamics of synaptic molecules that are
constantly relocating within and between synapses.
Therefore, the activation of neuroplasticity signaling
pathways observed in our study could be instrumental
in reinforcing both structural and functional plasticity,
which are crucial for maintaining hippocampal function.

While our study yields crucial insights into the mol-
ecular mechanisms contributing to neuropsychiatric
symptoms in PD, it has some limitations. The small
sample size necessitates caution in interpreting our sig-
nificant findings. Furthermore, our use of the non-selec-
tive D1/D2 receptor antagonist, flupentixol, in a
dopamine-depleted condition provides a broad

overview of neuroplasticity-related signaling pathways
in hippocampal neurons. However, a more nuanced
understanding of the specific contributions of D1 and
D2 receptors is required. Future investigations employ-
ing selective D1 and D2 receptor antagonists are war-
ranted to dissect their individual roles in these
pathways, which would refine our comprehension of
dopamine receptor subtype interactions. Therefore,
while our study provides a foundational understanding
of neuropsychiatric symptoms in PD, limitations in
sample size and receptor specificity highlight the neces-
sity for future research with larger cohorts and selective
receptor modulation to validate and refine our findings.

Figure 6. Schematic illustration of the proposed molecular mechanism underlying neuroplasticity in the hippocampus due to DA
depletion. In hippocampal neurons, activity-independent plasticity involves the phosphorylation of ERK and the subsequent activation
of CREB specific transcription factors, which in turn regulate gene transcription. Concurrently, DA depletion influences the phosphoryl-
ation of Akt at the Ser473 residue, leading to inhibitory phosphorylation of GSK-3β at the Ser9 residue. A pivotal result of this signaling
cascade is the activation of CREB, which influences synaptic plasticity by modulating gene expression in hippocampal neurons. It
should be noted that this representation omits some critical pathways in hippocampal neurons for the sake of clarity. Akt, protein
kinase B; CREB, cAMP response element-binding protein; DA, dopamine; ERK, extracellular signal-regulated kinase; GSK3, glycogen
synthase kinase 3.

444 B. KIM ET AL.



In summary, our study aimed to examine the
effects of DA depletion on signaling pathways
related to neuroplasticity in the hippocampus, a
region integral to cognitive and emotional regulation.
We found significant changes in the levels of mol-
ecules associated with neuroplasticity, such as ERK,
Akt, GSK3β, and CREB, in hippocampal neurons fol-
lowing DA depletion (Figure 6). Notably, phosphoryl-
ation levels of these molecules were elevated in
response to decreased DA levels. These alterations
may be indicative of varied responses from DA recep-
tors and transporters to neurotransmitter fluctuations,
activation of compensatory pathways, and the phase
of disease development. Therefore, DA depletion
appears to elevate the basal levels of neuroplasti-
city-related signaling pathways, leading to activity-
independent plasticity in the rat hippocampus.
These findings may enhance our understanding of
the molecular mechanisms implicated in DA-associ-
ated neuropsychiatric and neurological conditions.
However, additional studies are necessary to elucidate
the specific mechanisms responsible for changes in
neuroplasticity-related signaling in the hippocampus
due to DA depletion and to investigate alterations
in other related signaling pathways.
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