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Abstract

Transcription factors (TFs) play an important role in the regulation of plant growth and devel-
opment. The study of the structure and function of TFs represents a research frontier in
plant molecular biology. The findings of these studies will provide significant information re-
garding genetic improvement traits in crops. Currently, a large number of TFs have been
cloned, and their function has been verified. However, relatively few studies that genetically
map TFs in cotton are available. To genetically map TFs in cotton in this study, specific
primers were designed for TF genes that were published in the Plant Transcription Factor
Database. A total of 977 TF primers were obtained, and 31 TF polymorphic loci were
mapped on 15 cotton chromosomes. These polymorphic loci were clearly preferentially dis-
tributed on chromosomes 5, 11, 19 and 20; and TFs from the same family mapped to homol-
ogous cotton chromosomes. In-silico mapping verified that many mapped TFs were
mapped on their corresponding chromosomes or their homologous chromosomes’ corre-
sponding chromosomes in the diploid genomes. QTL mapping for fiber quality revealed that
TF-Ghi005602-2 mapped on Chr19 was associated with fiber length. Eighty-five TF genes
were selected for RT-PCR analysis, and 4 TFs were selected for qRT-PCR analysis, reveal-
ing unique expression patterns across different stages of fiber development between the
mapping parents. Our data offer an overview of the chromosomal distribution of TFs in cot-
ton, and the comparative expression analysis between Gossypium hirsutum and G. barba-
dense provides a rough understanding of the regulation of TFs during cotton fiber
development.

Introduction

Transcription factors (TFs) are a class of the most widely studied and important trans-acting
factors, regulating gene expression at the transcriptional level. A typical TF from a higher-

order plant typically contains a DNA-binding domain, a transcription regulation domain, an
oligomerization site, and a nuclear localization domain [1]. TFs play an important role in the
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regulation of plant growth and development, organ morphogenesis, secondary metabolism,
hormonal signal transduction, and plant responses to various environmental stresses [2-7].
Therefore, it is likely that investigating and exploiting the function of TFs could provide an al-
ternative approach for improving cotton fiber quality and production.

To date, a large number of TFs have been reported, and their functions have been succes-
sively investigated and verified in cotton. Among them, the majority of research on TFs has fo-
cused on the ethylene-response factor (ERF) family, myeloblastosis (MYB) family, WKRY
family, and basic helix-loop-helix (bHLH) family. A large amount of research has confirmed
that the MYB family plays a functional role in cotton fiber differentiation and development
[8-13]. ERF genes are induced by biotic and abiotic stresses in cotton and are involved in regu-
lating plant disease resistance pathways [14,15]. The bHLH family plays an important role in
regulating plant secondary metabolism [16,17] and morphogenesis [6,7,18]. Plant WKRY TFs
have important functions in the transcriptional regulation of a variety of biological processes
that are related to growth and development [19-21], various environmental stimuli [22-24],
and disease resistance pathways [25-27].

As of April 2012, approximately 1,116 TFs from 50 families were annotated in Gossypium
hirsutum (http://planttfdb.cbi.edu.cn/index.php?sp=Ghi). However, previous research has fo-
cused mainly on identifying and verifying the biological functions of these TFs rather than
their genomic distributions. In this study, the TFs were mapped to reveal their genomic distri-
bution in cotton using specific primers designed based on transcription factor sequences avail-
able in the Plant Transcription Factor Database (http://planttfdb.cbi.edu.cn/). We also
confirmed their chromosomal location by in-silico mapping the experimental mapped TFs in
two sequenced diploid genomes, A, genome of G. arboretum and D5 genome of G. raimondii.
QTL mapping was conducted to identify TFs related to fiber quality. RT-PCR and qRT-PCR
analysis were also conducted to detect differences in expression during fiber development be-
tween G. hirsutum and G. barbadense in selected TFs from each family.

Materials and Methods
Plant materials

Polymorphisms of the designed TF primers were detected using G. hirsutum cv. Emian22 and
G. barbadense acc. 3-79, which are the parents of the BC; mapping population [(Emian22 x 3--
79) x Emian22] [28,29], using single-strand conformation polymorphism (SSCP) with minor
modifications [30]. The BC, population, which consisted of 141 plants, was used as the map-
ping population for all of the polymorphic TF markers.

Marker development

Cotton TFs were obtained from the Plant Transcription Factor Database V2.0 (http://
planttfdb.cbi.edu.cn/), which contains 1,116 G. hirsutum TFs classified into 50 families

(Table 1). The primers were designed based on the sequences surrounding specific motifs of
the TF genes using Primer 3.0 (http://frodo.wi.mit.edu/primer3/). For those TFs with multiple
motifs, if the sequence interval between motifs was too long, individual primers were designed
for each motif (examples are presented in Fig 1). The criteria for the primer design were as fol-
lows: a primer length of 18 to 25 bp (20 bp is optimal), a GC content of 35 to 70% (50% is opti-
mal), an annealing temperature of 50 to 65°C (55°C is optimal), and a PCR product size
ranging from 100 to 1,000 bp. The primers were named “TF-Ghi xxxxxx”. For TFs with mul-
tiple motifs, the primers were named “TF-Ghi xxxxxx-1” and “TF-Ghi xxxxxx-2".
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Table 1. Distribution of TFs in various families.

Family No. Family No. Family No. Family No. Family No.
AP2 8 ARF 7 ARR-B 2 B3 23 BBR/BPC 6
BES1 7 C2H2 56 C3H 44 CAMTA 2 CO-like 4
CPP 2 DBB 12 Dof 22 E2F/DP 3 EIL 10
ERF 112 FAR1 7 G2-like 31 GATA 24 GRAS 46
GRF 13 GeBP 5 HB-other 15 HD-ZIP 40 HSF 17
LBD 14 M-type 2 MIKC 21 MYB 75 MYB_related 59
NAC 50 NF-YA 5 NF-YB 10 NF-YC 11 Nin-like 7
RAV 1 S1Fa-like 2 SBP 13 SRS 4 TALE 14
TCP 23 Trihelix 38 vOz 5 WOX 6 WRKY 55
Whirly 1 YABBY 4 ZF-HD 15 bHLH 92 bzIP 71

doi:10.1371/journal.pone.0126150.t001

PCR amplification and electrophoresis

Polymerase chain reaction (PCR) of the TF markers was performed in 10 uL of solution con-
taining 25 ng DNA template, 1 x buffer, 2.0 mmol L MgCl,, 0.25 mmol L' dNTPs, 0.16 pmol
L' forward primer, 0.16 yumol L' reverse primer, 0.8 units Taq DNA polymerase, and ddH,0
to a final volume of 10 pl. PCR was performed using the following parameters: 95°C for 5 min;

(b)

(a) TF-Ghi003408 TF-Ghi003040

—

CAGTACTOCACTCATAGTTCACTTGAACAACAAATCACAACTAGTATAGATGATGATGGA

61 GCAGGTTCAGTACCTGCAATAGGTTGTGCGGATTTACAGTCATTAAGCTTATCAATGAGT
121 CCTGGTTCTCATTCAAGTTGTGTTACAGCTCAAAGACAGATCTCACCTACTGOCACTACT
181 GAATGTGTGGOCATTGAAACAAAGAAGACGGGGCCTGGTAAAGTGAGTCAAAAGCAAACT

-

XCGCACGCAGCGATTGTAAAAGCAAGTATACTTAGTGETGGATTCGACACAGCACATGCA

fuiy

61 GCTGCTCGTGCATACGATAGGGCAGCAATCAAGTTCCGGGGAGTTGAAGOCGACATAAAT
121 TTTAGTATTGAAGATTATGAAGATGACTTGAAGCAGATCTCTAACCTAACCAAGGAAGAA

—

IOIIIIIIIOIIOODD
241 GTTCATAGGAAGTCCATTGACACATTTGGACALAGAACATCTCAGTATAGAGGTGTTACA
181 TTTGTGCACGTACTTCGCCGACAAAGCACCGGATTTCCTCGAGGAAGCTOCAAATATAGA
DIIIIIIIIOOIDIIIODND
>0 sestepkctotekodotbodok

o4 301 AGACATAGATGGACTGGTAGATATGAAGCTCATCTATGGGATAACAGTTGCAAGAAAGAA

—

GGAGTCACCTTACACAAATGTGGCCGATCGGAAGCTAGAATGGCCCAATTATTAGCCAAA

30 361 GGGAAACAAGGAAAGGAAGGCAAGTTTATCTTGGGCGGGTTATGACATGGAAGAGAAAGCT

=

AAGTACGTTTATTTAGGCTTGTTTGACACAGAGATTGAAGCTGOGAGGGCTTATGACAGA

421 GCTAGAGCTTATGATCTTGCTGCTCTTAAATATTCGGGTCOCTOCACTCATATAARATTTC
361 GCAGCAATTAAGTGCAATGGTAAAGATGCTGTCACTAACTTTGATCOCAGGATATACGAC

LLLLLLLLLLL LKL
etttk LKL
481 CCACTTGAAAATTATAGAGAAGAATTAGAGGAAATCAACAACATGAACCCCCAAGAATAT
421 AATGAGCTTAACTGTGGAGARACTTOGGGTAATGCTGGAGATCACAACCTTGATTTGAGC LKL SHSISSISSSS

481 TTAGGGAATTCAACCTCGAAGCAAACGAATCTGGAGTTAGGTGGTGATAGGCAAATTGCT 541 GTTGCTCATCTAAGAAGGAALAGTAGTGGATTTTCTAGAGGGGCTTCAATTTACAGAGGA

541 ATCACCGATCACCACACTCTCCCACCTCAAGCTCATTCCCAATATAGCCAATTTACGTCT IIIIIIP> Aetetobkfeclck ok

601 GTAACAAGACATCATCAGCATGGAAGATGGCAAGCTCGCATTGGAAGAGTTGCAGGAAAC
601 AAGGTAAATCTGCAGCAGGAGCCTTGTAGAAGCAATGGTGCTACTCATGGAAGATOGGAT

661 GGATATAGTGAGGCAGAAACAATGCAGTTGTTGAGCCAAACTCATATCCAATCTCCAGCA a1 AAGCATCTTTATCTTCGAACATTTACCACTCAAGACCALCCAGCTCAACCATATGATATT
721 TCAATTAAGTCTAATGAAATGCALAGATATGGACAGTTCAGGAGACCTGGAGATAACAAT

721 GCTGCTATAAAGTTTCGAGGTGTTAATGOGGTGAACAACTTCCACATTACAAAATATGAT
Ftokekkpkbokokk LK
841 CCAATAGGGAGCGATCTTTTGCTATOCATTAGTGAACAACAATCGCAGTCAAGTCCTCAC 781 GTTCALACCATTATCCOCACTACTACTCTACTTCONGCECACTTACCTACCCCAAACA AL
901 CAAATGTTTGGAAATTCTGCAGCATCATCAGGATTCCCATOGCAGATTAGACCTTCTTCT 841 GAGATGGATTCTAACAAAGATACTATCGAAACCAACGGAGAGACCATTCAACATGGCCAT
901 GTTTCACAGCAACAACTGACTGTTTGTGCTGCTGAGTCTCTTGAACOGAAGACTACAAGT
961 AOCGGAAATTATCGAAACCCAAGTTTCTOCATGGCTTTACAAGATCTAATCGGAGTTGAT
1021 AGCCAGAARAATGTCTCCGCTAATTAA 1021 TTGGTGAGTTCTACACAAGCAATGGTGGATGAATOGTGT ABACTAGGGACTCACTATTCD
1081 CACCCATCATOSTTGGGTAACCAGCOGTAA

Fig 1. Primer design strategies for TFs. (a) TFs with one motif (GenBank acc No. Ghi003408); (b) TFs with two motifs (GenBank acc No. Ghi003040). *:
Target sequence; >>>>>: Primer region.

doi:10.1371/journal.pone.0126150.g001

781 GTGTTTCACATTCCTCCATCATCTTATCAGATTCATTTTCCAAGCAGCAGCAGTGGAGGC

961 CAAACTTGGCTGCAGAAAAATAGGTTCCACTCACTCATGAACCCTCCTACCCCAAAAAGT
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34 cycles of 94°C for 50 sec, 56°C for 45 sec, and 72°C for 60 sec; and a final extension of 5 min
at 72°C. The PCR products were then separated in an 8% non-denaturing polyacrylamide gel
at a constant voltage of 15 W for approximately 4 h at room temperature. After electrophoresis,
all of the DNA fragments were visualized by silver staining.

Experimental mapping and identification of TFs related to fiber quality

The polymorphic loci were integrated into the interspecific BC, genetic linkage map [29] using
JoinMap V3.0 [31]. The logarithm of odds (LOD) threshold was 5.0. Map distances were mea-
sured in centi-Morgans (cM), which were calculated using the Kosambi mapping function [32].
The linkage map was generated using MapChart V2.2 software [33]. QTL mapping of TFs relat-
ed to fiber quality was performed using the genetic linkage map integrated with the TF markers.
The phenotype data of fiber quality and QTL mapping methods were as same as Li et al. [30].

In-silico mapping TFs in two diploid genomes

To verify our genetic mapping results, we blasted the mapped TF sequences against the diploid
A, genome of G. arboretum and Ds genome of G. raimondii (http://www.phytozome.net/
cotton.php) with an E-value cut-off le-10. Then, the best match for each TF sequence was re-
tained; one TF was only mapped to A, or D5 genome rather than both.

RT-PCR and gRT-PCR analysis

To evaluate differences in TF expression between G. hirsutum and G. barbadense, RNAs were
extracted from developing fibers at 0 days post-anthesis (DPA), 5 DPA, 10 DPA, 15 DPA, 20
DPA, and 25 DPA, RNAs (4 ug) were reverse-transcribed into cDNA using M-MLV-RT Re-
verse Transcriptase (Invitrogen). For RT-PCR analysis, PCR was performed in 15 pL of solu-
tion containing 25 ng cDNA template, 1.7 x buffer, 3.2 mmol Lt MgCl,, 0.42 mmol Lt
dNTPs, 0.27 umol L™ forward primer, 0.27 umol L™ reverse primer, 1.3 units Taq DNA poly-
merase, and ddH,O to a final volume of 15 pl. The PCR program was as follows: denaturation
at 95°C for 5 min; 35 cycles of 94°C (50 s), 58°C (45 s), and 72°C (60 s); and a final extension
step of 5 min at 72°C. The qRT-PCR analyses were performed according to the methods de-
scribed by Munis et al. [34] with minor modifications. Ubiquitin (GenBank acc No.:
DQ116441; forward primer, 5’GAAGGCATTCCACCTGACCAAC3’; reverse primer,
5CTTGACCTTCTTCTTCTTGTGCTTG 3’) served as an internal standard to demonstrate
equal amounts of first-strand cDNA in each sample.

Results
Primer design and polymorphisms

Primers were designed for the 1,116 TF sequences, and then repeated primers were eliminated
by a BLAST analysis. In total, 977 primer pairs were obtained (S1 Table). In the present study,
TF primers were screened based on SSCPs. Thirty-four polymorphic primers were obtained,
and 37 polymorphic loci were produced with a primer polymorphism rate of 3.48%. These 37
polymorphic loci were from 16 TF families. Seven loci were from the ERF family, and four loci
were from the bHLH families. The remaining TF families contained 1-2 polymorphic loci (S1
Table).

Distribution of TFs in the cotton genome and fiber-related QTLs

After linkage analysis, 31 of the 37 TF polymorphic loci were mapped to 15 cotton chromo-
somes (Chr05, Chr06, Chr07, Chr09, Chrl11, Chr12, Chr13, Chr17, Chr19, Chr20, Chr21,
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Chr22, Chr24, Chr25, and Chr26). Among these chromosomes, 14 TF loci were mapped to 7
chromosomes of the A genome, and 17 loci were mapped to 8 chromosomes of the D ge-
nome (Fig 2). The 31 TF markers were not equally distributed on the 15 chromosomes. Com-
paratively, more loci (a total of 15 loci) were mapped to Chr05, Chr11, Chr19, and Chr20.
These mapped TF markers belonged to 16 TF families, among which 7 markers were from the
ERF family, 4 were from the bHLH family, and 3 were from the WRKY family (S1 Table). As
shown in Fig 2, TF-Ghi005868 and TF-Ghi005905 of the ERF family were located on the same
chromosome (Chr20) and separated by 0.3 cM. S1 Table indicates that TF-Ghi012239 of the
C2H2 family (located on Chr05) and TF-Ghi000600 of the C2H2 family (located on Chr19)
were present on homologous chromosomes. In addition, TF-Ghi010629 of the WRKY family
has two loci, TF-Ghi010629a and TF-Ghi010629b, which were located on the homologous
chromosomes Chr25 and Chr06, respectively. TF-Ghi006349 of the bHLH family and
TF-Ghi001350 of the bHLH family were located on the homologous chromosomes, Chr11 and
Chr21, respectively.

QTL mapping TF markers associated with fiber quality revealed that only one TF markers,
TF-Ghi005602-2 mapped on Chr19, was tightly linked with fiber length with LOD value of
8.70 and explained 12.23% of the phenotypic variance with an additive effect of -0.35. This re-
sult may imply that TFs in cotton are involved in developments of many traits rather than
fiber development.

Comparison of the genetically mapped TFs with in-silico mapping in two
sequenced diploid genomes

With the availability of cotton genome sequences, we can check the consistency of mapped re-
sults with their chromosomal positions by in-silico mapping their sequences to the genome se-
quence. By unique matching genetically mapped TF sequences to A, and Ds genomes, 15 TFs
were mapped to 7 chromosomes of A, genome and 14 to 10 chromosomes of D5 genome (Fig
3). The in-silico mapping results was different to genetic mapping results. TF-Ghi018559b,
mapped on Chr05, was not mapped on the corresponding Gal0, but on Gr11; Gr10 is the cor-
responding chromosome of Chr20 which is not the homologous chromosome of Chr19. The
two loci on Chr06 were not mapped on the corresponding Gal2 but on Gr10; Grl10 is the cor-
responding chromosome of Chr25 which is the homologous chromosome of Chr06.
TF-Ghi019589 on Chr07 was mapped on Gr01, the corresponding chromosome of Chr16
which is the homologous chromosome of Chr07. TF-Ghi001068 on Chr09 was mapped on
Gr06, the corresponding chromosome of Chr23 which is the homologous chromosome of
Chr09. TF-Ghi006349 on Chrl1 was not mapped on the corresponding Ga04, but on Ga06;
TF-Ghi012730 was mapped on Gr07, the corresponding chromosome Chr21 which is the ho-
mologous chromosome of Chr11. The two loci on Chrl3 were mapped on Grl3, the corre-
sponding chromosome Chr18 which is the homologous chromosome of Chrl13.

TF-Ghi015538 on Chrl7 was mapped on Gal3, the corresponding chromosome Chr13
which is not the homologous chromosome of Chr17. TF-Ghi005602-2 and TF-Ghi019046 on
Chr19 was mapped on Gal0, the corresponding chromosome Chr05 which is the homologous
chromosome of Chr19. TF-Ghi005868 and TF-Ghi016105 on Chr20 was mapped on Ga09, the
corresponding chromosome Chr10 which is the homologous chromosome of Chr20;
TF-Ghi001019 was mapped on Ga07, the corresponding chromosome Chr01 which is not the
homologous chromosome of Chr20. TF-Ghi013545 on Chr24 was mapped on Ga08, the corre-
sponding chromosome Chr06 which is not the homologous chromosome of Chr24.
TF-Ghi005927 on Chr26 was mapped on Ga06, the corresponding chromosome Chr12 which
is the homologous chromosome of Chr26.
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Fig 2. Locatior?s of polymorphic TF loci on the BC, genetic linkage map. TF markers are underlined and
bolded. The loci on each chromosome with an average of 10 cM of the original map were selected shown.

The top and bottom markers and markers that were closely linked to the TF markers were retained

for simplicity.

doi:10.1371/journal.pone.0126150.g002
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Fig 3. Chromosomal location of TFs in the A, genome of G. arboretum (a) and Ds genome of G.
raimondii (b).
doi:10.1371/journal.pone.0126150.g003
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Fig 4. RT-PCR analysis of TFs between mapping parents. The numbers on the top represent fibers at 0 DPA, 5 DPA, 10 DPA, 15 DPA, 20 DPA, and 25
DPA for Emian22 and 3—-79. Similar expression trends between Emian22 and 3—-79 were classified as similar expression patterns. Apparent differences in
expression between Emian22 and 3-79 were classified as different expression patterns. Obvious differences in expression levels between Emian22 and
3-79 were classified as obvious differences. Minor or no differences in expression levels between Emian22 and 3-79 were classified as no difference. Gene
primers and their family names are indicated on the left.

doi:10.1371/journal.pone.0126150.9g004

RT-PCR and gRT-PCR analysis between mapping parents

One or two markers were randomly selected from each family, and a total of 85 primer pairs
from 45 TF families were used for the RT-PCR analysis. Thirty-six TF primer pairs (42.4%)
from 31 families were expressed during the cotton fiber stages (Fig 4, Table 2). Among them,
27 displayed clear differences in expression, 4 exhibited minor differences, and 5 showed no
differences. Almost all expressed TFs clearly differed between Emian22 and 3-79 at various
stages of fiber development (0, 5, 10, 15, 20, and 25 DPA). Five TFs were weakly expressed or
not expressed during any stages in either Emian22 or 3-79, and these TFs were defined as hav-
ing no differences in expression in this study. Furthermore, 17 TFs displayed similar expression
patterns, and 14 had different expression patterns. To further confirm the RT-PCR results,
four randomly chosen genes belonging to different categories were analyzed (S1 Fig). Consis-
tent results were observed in both the RT-PCR and the qRT-PCR analyses.

PLOS ONE | DOI:10.1371/journal.pone.0126150 May 6, 2015 8/14



@'PLOS ‘ ONE

Characterization of Transcription Factors in Cotton

Table 2. Chromosome localization and RT-PCR analysis of TFs.
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Results of RT-PCR

(Continued)
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Table 2. (Continued)
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-1 TF was not mapped on the chromosomes, and expression was not detected.

0: No differences in expression.

1: Obvious difference in expression.

doi:10.1371/journal.pone.0126150.1002
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Discussion
Low level of polymorphisms of the TF markers

TFs, as an important type of trans-acting factor, are extensively involved in the development of
plants and animals. Various TFs are related to cotton fiber development [3,16,35,36]. A large
number of TF functions have been verified. However, few genetic mapping studies of TFs have
been performed in cotton [37]. Therefore, we downloaded TF sequences reported in the Plant
Transcription Factor Database V2.0 (http://planttfdb.cbi.edu.cn/) (Table 1) and designed spe-
cific primers based on the motifs of the TF genes. Thus, the primers developed in the present
study were TF-specific. In contrast, the simple sequence repeats (SSRs) primers derived from
the TF sequences [37] may not have been TF-specific.

To detect additional polymorphisms in the TF markers, SSCP was applied. We discovered a
very low rate of primer polymorphisms in the TF markers (3.48%), which was potentially at-
tributed to the highly conserved nature of TFs. The results also indicated that the genes that
were compared between G. hirsutum and G. barbadense are highly conserved. Although the
primer polymorphism rate was low, the TF markers examined in this study exhibited more
polymorphisms than other TF markers. Li et al. [37] used SSRs designed from 1,116 G. hirsu-
tum TFs in an analysis of polymorphisms and revealed polymorphism ratios of 1.6%, 2.1%,
and 2.3% in the (Yumian 1XCCRI35) F,., (Yumian 1xT586) F,.,, and (Yumian 1x7235) F,.4
populations, respectively. The higher rate of polymorphisms detected in the present study
may have been caused by SSCP, which can detect minor difference between sequences [38].
This result may also be caused by differences between the interspecific and intraspecific
populations.

Genetic mapping TFs in cotton

To date, some genetic mapping analyses of TFs have been reported. SNP primers of the MYB
family were mapped on the cotton chromosome by An et al. [39]. Myb1Gbmt_238 is located
on Chr13, Myb1Gb_500 is located on Chr18, and Myb2Gb_204 is located on Chr8. Guo et al.
[40] also mapped TFs of the MYB family on cotton chromosomes; for example, MYB38 is lo-
cated on Chr16. However, in the present study, TF markers of the MYB family were not
mapped on the interspecific linkage map. In 2012, SSR primers designed from the same 1,116
G. hirsutum TFs were mapped on cotton chromosomes by Li et al. [37]. Unfortunately, due to
different marker develop strategy, no common TFs were mapped.

In this study, 31 polymorphic TF loci were mapped to 15 chromosomes. Among them, 14
TF loci were mapped to 7 chromosomes of the At genome and 17 loci on 8 chromosomes of
the D genome (Fig 2). These loci were clearly evenly distributed between the At and the Dy
genome. However, Chr05, Chr11, Chr19, and Chr20 contained 15 loci that accounted for
48.4% of the total mapped TF loci. Therefore, genetic mapping revealed preferential distribu-
tion of TF loci on cotton chromosomes (Fig 2). Comparison of chromosomal location of TF
loci revealed that TFs from the same family mapped to homologous cotton chromosomes.

Comparison of the genetically mapped TFs with in-silico mapping results in two sequenced
diploid genomes showed that some TFs were not mapped on their corresponding chromo-
somes in the diploid genome, but on their homologous chromosomes’ corresponding chromo-
somes in the other diploid genome. It is reasonable that many genes are duplicated on the
homologous chromosomes in the tetraploid genome. However, some TFs were not mapped on
their corresponding chromosomes or their homologous chromosomes’ corresponding chro-
mosomes in the diploid genomes; the reason may be that these genes translocate
after polyploidization.
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Differences in the expression of TFs between G. hirsutum and
G. barbadense during fiber development

Cotton is an important cash crop. Therefore, improvements in yield, fiber quality, and disease
resistance are areas of focus in cotton genetics and breeding. A number of studies have indicat-
ed that various TFs are involved in fiber development. Therefore, in the present study, we used
RT-PCR analysis to compare TFs between G. hirsutum and G. barbadense during
fiber development.

We discovered dynamic expression of TFs during various stages of fiber development in
G. hirsutum and G. barbadense. The most expressed TFs (75%) from 25 families exhibited sig-
nificantly different expression levels during different stages between parents. Further studies of
TFs showing different expression patterns between G. hirsutum and G. barbadense may be very
helpful for understanding differences in fiber quality between the two species. Unique expres-
sion patterns may be associated with a particular function. Additional studies are required to
determine the functions and mechanisms of action of these TFs.

Supporting Information

S1 Fig. qRT-PCR analysis of TFs between mapping parents. The expression levels of
Emian22 and 3-79 are presented. “*” represents P<0.05, and “**” represents P<0.01. The fol-
lowing primers were used: A, TF-Ghi001138-1; B, TF-Ghi003946-2; C, TF-Ghi005868; D,
TF-Ghi016740.

(TIF)

S1 Table. Characteristics of the 977 TF primers used in this study. /: Polymorphic primers.
x: Non-polymorphic primers. -: The primer was not mapped on the chromosome.
(XLS)
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