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Hepatocellular carcinoma (HCC) is the most common primary malignancy of

the liver with a very high fatality rate. Our goal in this study is to find a reliable

lipid metabolism-related signature associated with prognostic significance

for HCC. In this study, HCC lipid metabolism-related molecular subtype

analysis was conducted based on the 243 lipid metabolism genes collected

from the Molecular Signatures Database. Several significant disparities in

prognosis, clinicopathological characteristics, and immune and ferroptosis-

related status were found across the three subtypes, especially between

C1 and C3 subgroups. Differential expression analysis yielded 57 differentially

expressed genes (DEGs) between C1 and C3 subtypes. GO and KEGG analysis

was employed for functional annotation. Three of 21 prognostic DEGs

(CXCL8, SLC10A1, and ADH4) were finally selected through machine-

learning-based discovery and validation strategy. The risk score =

(0.103) × expression value of CXCL8 + (−0.0333) × expression value of

SLC10A1 + (−0.0812) × expression value of ADH4. We used these three to

construct a HCC prognostic risk model, which stratified the patients of the

validation cohort into two risk subtypes with significantly different overall

survival. Our work provides possible significance of the lipid metabolism-

associated model in stratifying patient prognosis and its feasibility to guide

therapeutic selection.
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Introduction

As a leading cause of cancer-related death worldwide,

hepatocellular carcinoma (HCC) is the most prevalent type of

primary liver malignancy (Balogh et al., 2016). Patients with

HCC have a wide range in overall survival rates from region to

region (Sung et al., 2021), with a 5-years survival rate of only 18%

in the United States (Jemal et al., 2017). The most major risk

factors for the development of HCC are chronic liver disease and

cirrhosis, with viral hepatitis and excessive alcohol consumption

being the primary well-known etiologies (Bruix et al., 2004).

Therefore, it is vital and urgent to identify the prognostic value of

novel markers that can aid in selecting patients who will benefit

from patient-specific strategies.

The tumor microenvironment (TME) facilitates tumor

metastasis, proliferation, and survival, which leads to

abnormal metabolisms for tumor cells and those adjacent

stromal cells. The TME in HCC might indicate a variety of

metabolic disturbances, with lipid metabolic anomaly being a

fresh subject that has sparked a lot of interest in recent years

(Beloribi-Djefaflia et al., 2016). Lipid metabolic disturbance,

particularly for fatty acid (FA) metabolism, is associated with

altered lipid-metabolizing enzyme expression and activity due to

aberrantly activated oncogenic signaling pathways (Hu et al.,

2020). Lipid metabolism has been increasingly recognized as a

critical phenomenon of metabolic rewiring within immune cells

and cancer cells, which may be involved in the development of

HCC. Furthermore, evidence from various solid tumor research

suggests that tumor immune-metabolic reprogramming is

significant, and it has been designated as a new critical subject

for future HCC studies (Zhang et al., 2018). According to prior

research, immune cells play an important role in the TME of

HCC, and aberrant lipid metabolismmay have amajor impact on

their activities and recruitment (Gajewski et al., 2013). Although

growing studies have explored the genetic, cellular, and

environmental mechanisms involved in the development of

tumors (Chen et al., 2020; Zhang et al., 2020; Cao et al.,

2021a; Zhong et al., 2021), clinicians currently have few

choices for slowing HCC progression and extending patients’

lives. Therefore, integrated lipid metabolism and liver cancer

progression to build an effective prediction model is needed and

is the focus of this investigation.

In this study, our goal is to identify a robust lipid

metabolism-related signature associated with the HCC

microenvironment to improve the prognostic prediction of

HCC patients. Genes related to energy metabolism were

collected from the Molecular Signatures Database. Gene

expression data from The Cancer Genome Atlas (TCGA)

were used in constructing HCC molecular subtypes based on

genes related to energy metabolism. The relationship between

molecular subtypes and prognosis was further evaluated. After

differential expression analysis and machine-learning-based

selection, three lipid metabolism-driven signatures were

chosen from the 576 differentially expressed genes (DEGs) for

establishing a prognostic risk model. Then, we validated the risk

model, which may be used to assess the prognosis of HCC

patients. Overall, this 3-signature prognostic risk model

(CXCL8, SERPINC1, and ADH4) we built can be used as an

independent prognostic evaluation index for HCC patients.

Materials and methods

Data collection and preprocessing

RNA-sequencing expression (level 3) profiles and

corresponding clinical information for 371 HCC as well as

50 healthy subjects were derived from the TCGA dataset

(https://portal.gdc.com). The raw data were preprocessed with

the criteria which have been described elsewhere (Cao et al., 2020;

Mao et al., 2020; Cao et al., 2021b; Mao et al., 2021). A total of

243 lipid metabolism-associated genes were gathered based on

the Molecular Signatures Database v7.5.1 (c2: curated gene sets),

including Fatty acid metabolism M699, Glycerophospholipid

metabolism M9131, Glycerolipid metabolism M15902,

Sphingolipid metabolism M15955, Ether lipid metabolism

M2130, Glycosphingolipid biosynthesis-ganglio series M8535,

Biosynthesis of unsaturated FAs M11673, Glycosphingolipid

biosynthesis-globo series M12899, Glycosphingolipid

biosynthesis-lacto, and neolacto series M17377 (http://www.

broadinstitute.org/gsea/msigdb/index.jsp).

Identification and validation of the lipid-
related subtypes

Consensus clustering was applied to identify a robust cluster

of HCC patients based on the expression profile of The Cancer

Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC)

data (Cao et al., 2020). The 1,000 bootstraps with 80% item

resampling and a range of K from 2 to 10 were selected for

clustering analysis. Partition around the medoids classifier was

trained in the discovery cohort. By calculating the in-group

proportion and Euclidean correlation in the centroid of gene

module scores, we quantitatively acquired and verified the

consistency of immune subtypes among populations. The

expression value for lipid metabolism-associated gene within

each subtype was used for Principal component analysis

(PCA) by the “prcomp” function in R.

Immune status and ferroptosis-related
estimation

We used the CIBERSORT method (Chen et al., 2018) to

assess the immune composition of a tumor biopsy and get
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reliable results of immune score evaluation. The relative

abundance enrichment score of 22 Tumor infiltrating

leukocytes (TILs) was measured and standardized from 0 to 1.

Moreover, potential immune checkpoint blockade (ICB)

response was predicted with Tumor Immune Dysfunction and

Exclusion (TIDE) algorithm (Jiang et al., 2018). Twenty-four

Ferroptosis-related genes were collected from the previous study

(Liu et al., 2020). The expression distribution of ferroptosis-

related mRNA in tumor and normal tissues was implemented by

the R program v4.0.3.

DEG identification and functional
enrichment analysis

The differentially expressed genes (DEGs) of the subtypes

were identified using the “limma” algorithm for subsequent

analyses (FDR adjusted p-value < 0.05 and |log2FC| > 3; FC,

fold change, FDR, False Discovery Rate) (Ritchie et al., 2015).

Afterward, Gene Ontology (GO) terms and Kyoto Encyclopedia

of Genes and Genomes (KEGG) functional enrichment analyses

were conducted based on the DEGs (Wu et al., 2021). The GO

terms and KEGG pathways with a p-value of < 0.05 were

considered significantly enriched function annotations.

Development and validation of the
prognostic signature

To identify overall survival (OS)-related genes from DEGs

and detect lipid metabolism-driven prognostic signature

(LMSig), we randomly divided the mRNA expression profile

of 371 HCC patients into two parts as the discovery

(186 samples) and validation data (185 samples). Then,

machine-learning-based variable selection was carried out on

the discovery data using likelihood-based boosting in the Cox

model as implemented in the R package “CoxBoost” [30]. The

machine-learning algorithm has been as described previously in

detail (Hou et al., 2021). For the CoxBoost model, the number of

boosting iterations was then optimized through cross-validation

after the optimal penalty had been determined through ten cross-

validations using the R package “CoxBoost” (De Bin, 2016). The

CoxBoost algorithm was used to automatically estimate the

optimal number of LMSig.

In addition, we used the validation data to further confirm

the relationship between LMSigs and clinical/prognostic features

of HCC. The p-values and hazard ratio (HR) with 95%

confidence interval (CI) were generated by log-rank tests and

univariate cox proportional hazards regression in Kaplan–Meier

curves analysis using the R package “survival” (Therneau and

Lumley, 2015; Zhou et al., 2019). The concordance statistic

(C-statistic index) was used to measure the goodness of fit of

the prognostic model. The time-dependent receiver operating

characteristic (ROC) curve was used to appraise the prognostic

performance of the risk model for survival prediction, and the

area under the ROC curve (AUC) values were calculated with the

R package “timeROC” (Blanche and Blanche, 2019).

Statistical analysis

The statistical difference between the two groups was

compared through the Wilcox test, the significant difference

between the three groups was tested with the Kruskal–Wallis

test. All statistical tests were two-sided, p-value < 0.05 was

considered statistically significant. All the data were processed

and analyzed by R program v4.0.3.

Results

Lipid metabolic molecular subtypes of
HCC identification

An expression profile of 243 common lipid-related genes in

371 HCC patients from the TCGA database was used to

implement the consensus clustering. The analysis clustered the

patients with HCC into three subgroups C1, C2, and C3

(Figure 1A). These three conceivable subclusters were

respectively distinguished via first and second principal

components (PCs) (Figure 1B). As shown in Figure 1C, the

expression levels of lipid metabolism-related genes seem to differ

among the three subtypes. Prognosis signature among them was

further analyzed. The Kaplan–Meier method was used to

investigate the overall (OS) of the three subgroups, and we

observed that the patients in the C3 subtype had the worst

prognosis, while the C2 subgroup had significantly best OS

(Figure 1D, p-value = 0.0043).

Clinicopathological and immune
infiltration characteristics in three
subgroups

The clinicopathological characteristics of the three subtypes

were then compared. Tumor T stage, Gleason grade, and type of

treatment among subtypes reached statistical significance

(Figure 2A). The results manifested that those patients

diagnosed with differential T stage and grade were clustered

unevenly. T3 stage and G3 accounted for the major proportion of

C3 while T1 and G2 were in the majority in C1 (Figure 2A).

The results of CIBERSORT showed significant differences in

infiltrating immune cell types between the three subgroups.

There were more abundant proportions of T cell CD8+and

T cell regulatory (Tregs) in the C1 subgroup than in the

C3 subgroup. On the other hand, Macrophage M0 was
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significantly enriched in C3 compared with C1 (p-value < 0.05;

Figure 2B). Moreover, eight ICPs-associated genes were

differentially expressed among C1-3. C3 showed significant

upregulation of CD274, CTLA4, HAVCR2, PDCD1,

PDCD1LG2, TIGIT, and SIGLEC15, while these genes were

down-expressed separately in the C1 tumors (Figure 2C).

To predict the ICB response of identified HCC subtypes, the

TIDE score was calculated. The findings showed that the TIDE

score was significantly lower in the C1 subtype than in the

C3 subtype (Kruskal–Wallis test, p-value = 4.9 × 10−11;

Figure 2D). These discoveries suggested that patients of the

C1 subtype may be more sensitive to ICB therapy as judged

by the TIDE score.

Ferroptosis-related estimation among
three distinct subgroups

Ferroptosis is known as an iron-dependent form of

regulated cell death (RCD) triggered by lipid peroxidation

FIGURE 1
Identification of potential lipid metabolism-related subtypes of HCC. (A) Consistency of clustering results in the heatmap (k = 3), rows and
columns represent samples, the different colors represent different types. (B) PCA analysis of different subgroups with PC1 and PC2. (C) The
expression heatmap of lipid metabolism-related genes in three subgroups, red represents high expression, and blue represents low expression. (D)
Kaplan–Meier survival analysis of the different groups of samples from TCGA dataset, comparison among different groups was made by log-
rank test. HR (95% Cl), the median survival time for different groups.
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accumulation (Aguilera et al., 2021). Recently, triggering

ferroptosis has emerged as a promising therapeutic option

for inducing cancer cell death, particularly for malignancies

that are resistant to traditional therapies (Liang et al., 2019). In

our study, the comprehensive landscapes of ferroptosis-

related gene interactions, connections, and their

prognostic significance for HCC patients in three subgroups

were depicted, respectively (Figure 3A). We found that

ferroptosis-related genes in distinct subgroups presented a

remarkably different correlation in expression. The

expression of each ferroptosis-related gene also

differed insignificantly among the three lipid subtypes. As

shown in Figure 3B, the expression levels of CDKN1A,

HSPA5, EMC2, SLC7A11, NFE2L2, FANCD2, SLC1A5, CS,

and CARS1 were highly accumulated in C3 compared to

C1 subgroups.

DEG identification and functional analysis

Transcriptome differential expression was performed

between C1 and C3 subgroups of HCC patients according

to the above difference among them. Fifty-seven genes were

identified as DEGs at FDR < 0.05 and log2FC > 3, of which

27 DEGs were up-regulated, and 30 DEGs were down-

regulated (Figures 4A,B). Then, GO functional and KEGG

pathway enrichment analyses were performed. The results of

KEGG analysis demonstrated that up-regulated DEGs majorly

FIGURE 2
The distribution of clinical and immune characteristics in the samples from different groups. (A)Distribution of clinical characteristics across C1-
C3 HCC patients. Association between three different subtypes and CIBERSORT immune infiltration (B), ICPs (C), and TIDE score (D). Asterisks (*)
stand for significance levels. * represents p < 0.05, ** represents p < 0.01,*** represents p < 0.001.
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participated in complement and coagulation cascades,

cholesterol metabolism, fatty acid degradation, and bile

secretion (Figure 4C). Meanwhile, down-regulated DEGs

were involved in Hepatitis B, proteoglycans in cancer,

and the PI3K−Akt signaling pathway. GO analysis revealed

that these DEGs were mostly enriched in steroid metabolic

FIGURE 3
Ferroptosis-related Estimation in three subgroups. (A) The circles represent the ferroptosis-related mRNA, and the line represents the
relationship between genes. Red represents positive correlation whereas blue represents negative correlation. The thicker the line, the higher the
correlation coefficient. The larger the circle the smaller the log-rank p value. Different colors of circles represent different types of clusters. (B) The
expression distribution of ferroptosis-related mRNA in tumor tissues and normal tissues. Asterisks (*) stand for significance levels. * represents
p < 0.05, ** represents p < 0.01, and *** represents p < 0.001.
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FIGURE 4
DEGs Identification and functional analysis between C1 and C3. (A) The volcano plot and heatmap (B) of differentially expressed gene analysis
between C1 and C3. Red represents up regulation whereas blue represents down regulation. (C) GO and KEGG enrichment analysis of up- and
down-regulated DEGs.
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process, terpenoid metabolic process (up-regulated

DEGs), and regulation of small GTPase (down-

regulated DEGs), which were related to lipid metabolism

(Figure 4C).

Establishing a prognostic risk model

Integrated the differential gene expression and patient

survival data from the TCGA cohort, we screened DEGs to

discover the feasibility and reliability of a prognostic

signature for HCC. Among all 57 DEGs, 21 DEGs were

associated with the OS of HCC patients (p-value < 0.05).

Subsequently, a boosting machine learning algorithm was

performed for signature selection from these 21 DEGs and

identified three lipid metabolism-driven signatures (3LMSig).

Then, the 3LMSig was transformed into a risk scoring model

by linear combination of the expression of the 3LMSig as

follows: risk score of 3LMSig = (0.103) × expression value

of CXCL8 + (−0.0333) × expression value of SLC10A1 +

(−0.0812) × expression value of ADH4. Among them, the

expression value of CXCL8 was linked positively to HCC risk

score, while the expression value of SERPINC1 and

ADH4 showed a negative relationship with HCC risk score.

According to the risk score, the patients in validation cohort

were divided into the high-risk group and the low-risk

group. Low-risk patients had statistically significantly better

OS than those in the high-risk group (Log-rank p-value =

2.54 × 10−6, Figure 5). To compare the sensitivity and

specificity of survival prediction, a time-dependent ROC curve

analysis of this 3LMSig-based risk score model was performed.

The area under the curves (AUCs) of the nomogrammodel in 1-,

3-, and 5-years were 0.766, 0.707, and 0.68, respectively

(Figure 5), which suggested the good performance of the risk

score signature.

Discussion

Prognostic prediction of Hepatocellular carcinoma (HCC)

patients has been challenging due to the complicated etiologic

variables and high-level heterogeneity of HCC (Liang et al.,

2020). Therefore, there is an additional need for the

development of novel prognostic models, considering the

FIGURE 5
The validation of 3LMSig-associated prognostic risk model.
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limited treatment strategies for HCC. Emerging data suggest that

changes in tumor lipid metabolism, including metabolite

abundance and lipid metabolic product accumulation,

contribute to tumor formation and local immunosuppression

in the TME (Hao et al., 2019). As a result, we focused on learning

more about the link between tumor lipid metabolic genes and

prognosis in HCC. We seek to develop a panel of prognostic

markers using molecular markers derived from tumor metabolic

genes.

In this study, the public gene expression data from the TCGA-

LIHC database were utilized to classify HCC patients into three

molecular subtypes C1-3 based on 243 lipid metabolism-related

genes. Several significant disparities in prognosis,

clinicopathological characteristics, and immune and ferroptosis-

related status were found across the three subtypes, especially

between C1 and C3 subgroups. For example, a recently discovered

cell death mechanism called ferroptosis may serve as a therapeutic

biomarker for HCC.We observed C3 and C1 cluster can be classified

as ferroptosis-high and ferroptosis-low groups according to the

expression levels of ferroptosis-related genes. Previous research

inferred the ferroptosis-high group have a worse prognosis and

higher immune score (Deng et al., 2021), in line with our findings.

Then, 57 DEGs between these two subgroups were identified.

GO and KEGG enrichment analysis displayed that these DEGs

were closely associated functionally with lipid metabolism and

tumorigenesis. Selected by machine-learning- based feature

selection afterward, a prognostic risk model including 3LMSig

was established. The risk model consisting of CXCL8, SLC10A1,

and ADH4 was effective in predicting the prognosis of HCC

patients. Moreover, the risk score calculated from the established

risk model divided patients into high-risk and low-risk groups.

The risk model showed that high CXCL8 expression level was

associated with a bad prognosis, and high expression of

SERPINC1 and ADH4 was related to better overall survival.

The ROC curve analysis confirmed the moderate discriminatory

accuracy of the model. According to findings, the lipid

metabolism-related signature has prognostic significance for

HCC. Previous research reported that SLC10A1 (solute carrier

family 10 member 1) can inhibit the Warburg effect to suppress

HCC tumor growth (Lu et al., 2020). ADH4 (Alcohol

dehydrogenase 4), a member of the ADH family, metabolizes

a wide variety of substrates including ethanol and retinol (Wei

et al., 2012). CXCL8 is a promising prospective prognostic and

tumor TME-related cluster (Zhu et al., 2020).

The advantage of this study is that we have identified a

prognostic feature by 3LMSig that predicts 1-, 3-, and 5- year

survival with relatively high AUC. However, there are limitations

to this initial work. Some of the findings from this study could

not be explained satisfactorily given our current limited

knowledge of cancer biology. Moreover, independent studies

are warranted to replicate our findings.

In summary, our study divided HCC patients into three

lipid metabolism-related molecular subtypes with different

prognoses and other molecular features. Then, a risk

model with a good performance in prognostic prediction

was built using the TCGA dataset. This model can be used

as an independent prognostic evaluation index for HCC

patients. Our work shed lighter on the possible significance

of the lipid metabolism-associated model in stratifying

patient prognosis and its feasibility to guide therapeutic

selection.

Data availability statement

Publicly available datasets were analyzed in this study. The

names of the repository/repositories and accession number(s)

can be found in the article/supplementary material.

Author contributions

GY and SL designed this work. RX, HW, and YL integrated

and analyzed the data. JZ and YC wrote this manuscript. RX,

HW, GY, and SL edited and revised the manuscript. All authors

approved this manuscript.

Funding

The present study was supported by the National Natural

Science Foundation of China (project no. 81602626), Scientific

Research Foundation for Returned Scholars of Tongji Hospital

(project no. 2022hgry021), “School of Basic Medical Science

and Zhongnan Hospital” Joint Development Fundamental

Research Funds of Wuhan University. Chen Xiao-Ping

Foundation for The Development of Science and

Technology of Hubei Province (CXPJJH12000001-2020308).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the

publisher.

Frontiers in Genetics frontiersin.org09

Xiong et al. 10.3389/fgene.2022.1005271

https://www.ncbi.nlm.nih.gov/gene/6554
https://www.ncbi.nlm.nih.gov/gene/6554
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1005271


References

Aguilera, A., Berdun, F., Bartoli, C., Steelheart, C., Alegre, M., Bayir, H., et al.
(2021). C-ferroptosis is an iron-dependent form of regulated cell death in
cyanobacteria. J. Cell Biol., 221. Rockefeller University Press, e201911005.
doi:10.1083/jcb.201911005

Balogh, J., Victor, D., III, Asham, E. H., Burroughs, S. G., Boktour, M., and
Saharia, A. (2016). Hepatocellular carcinoma: A review. J. Hepatocell. carcinoma, 3.
Dove Press, 41. doi:10.2147/jhc.s61146

Beloribi-Djefaflia, S., Vasseur, S., and Guillaumond, F. (2016). Lipid metabolic
reprogramming in cancer cells. Oncogenesis. Nat. Publ. Group 5, e189. doi:10.1038/
oncsis.2015.49

Blanche, P., and Blanche, M. P. (2019). Package ‘timeROC.

Bruix, J., Boix, L., Sala, M., and Llovet, J. M. (2004). Focus on hepatocellular
carcinoma. Cancer Cell 5, 215–219. doi:10.1016/s1535-6108(04)00058-3

Cao, F., Fan, Y., Yu, Y., Yang, G., and Zhong, H. (2021). Dissecting prognosis
modules and biomarkers in glioblastoma based on weighted gene Co-expression
network analysis. Cancer Manag. Res., 13. . Dove Press, 5477. doi:10.2147/cmar.
s310346

Cao, F., Guo, Y., Zhang, Q., Fan, Y., Liu, Q., Song, J., et al. (2020). Integration of
transcriptome resequencing and quantitative proteomics analyses of collagenase
vii-induced intracerebral hemorrhage in mice. Front. Genet. 11, 551065. doi:10.
3389/fgene.2020.551065

Cao, F., Wang, C., Long, D., Deng, Y., Mao, K., and Zhong, H. (2021). Network-
based integrated analysis of transcriptomic studies in. Dissecting Gene Signatures
LPS-Induced Acute Lung Inj., 44. Inflammation. Springer, 2486–2498. doi:10.1007/
s10753-021-01518-8

Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., and Alizadeh, A. A.
(2018). Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol.
Biol. 1711, 243–259. doi:10.1007/978-1-4939-7493-1_12

Chen, Q., Li, F., Gao, Y., Xu, G., Liang, L., and Xu, J. (2020). Identification of
energy metabolism genes for the prediction of survival in hepatocellular carcinoma.
Front. Oncol. 10, 1210. doi:10.3389/fonc.2020.01210

De Bin, R. (2016). Boosting in cox regression: A comparison between the
likelihood-based and the model-based approaches with focus on the R-packages
CoxBoost and mboost. Comput. Stat. 31, 513–531. doi:10.1007/s00180-015-
0642-2

Deng, T., Hu, B., Jin, C., Tong, Y., Zhao, J., Shi, Z., et al. (2021). A novel ferroptosis
phenotype-related clinical-molecular prognostic signature for hepatocellular
carcinoma. J. Cell. Mol. Med. 25, 6618–6633. doi:10.1111/jcmm.16666

Gajewski, T. F., Schreiber, H., and Fu, Y-X. (2013). Innate and adaptive immune
cells in the tumor microenvironment.Nat. Immunol., 14. Nature Publishing Group,
1014–1022. doi:10.1038/ni.2703

Hao, Y., Li, D., Xu, Y., Ouyang, J., Wang, Y., Zhang, Y., et al. (2019). Investigation
of lipid metabolism dysregulation and the effects on immunemicroenvironments in
pan-cancer using multiple omics data. BMC Bioinforma. 20, 195–239. doi:10.1186/
s12859-019-2734-4

Hou, P., Bao, S., Fan, D., Yan, C., Su, J., Qu, J., et al. (2021). Machine learning-
based integrative analysis of methylome and transcriptome identifies novel
prognostic DNA methylation signature in uveal melanoma. Brief. Bioinform, 22.
Oxford University Press, bbaa371. doi:10.1093/bib/bbaa371

Hu, B., Lin, J., Yang, X., and Sang, X. (2020). Aberrant lipid metabolism in
hepatocellular carcinoma cells as well as immune microenvironment: A review. Cell
Prolif., 53. Wiley Online Library, e12772. doi:10.1111/cpr.12772

Jemal, A., Ward, E. M., Johnson, C. J., Cronin, K. A., Ma, J., Ryerson, A. B., et al.
(2017). Annual report to the nation on the status of cancer, 1975–2014, featuring
survival. J. Natl. Cancer Inst. 109, djx030. doi:10.1093/jnci/djx030

Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu, X., et al. (2018). Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat. Med., 24.
Nature Publishing Group, 1550–1558. doi:10.1038/s41591-018-0136-1

Liang, C., Zhang, X., Yang, M., and Dong, X. (2019). Recent progress in
ferroptosis inducers for cancer therapy. Adv. Mater, 31. Wiley Online Library,
1904197. doi:10.1002/adma.201904197

Liang, J., Wang, D., Lin, H., Chen, X., Yang, H., Zheng, Y., et al. (2020). A novel
ferroptosis-related gene signature for overall survival prediction in patients with
hepatocellular carcinoma. Int. J. Biol. Sci. 16, 2430–2441. doi:10.7150/ijbs.45050

Liu, Z., Zhao, Q., Zuo, Z-X., Yuan, S-Q., Yu, K., Zhang, Q., et al. (2020).
Systematic analysis of the aberrances and functional implications of ferroptosis
in cancer. iScience 23, 101302. doi:10.1016/j.isci.2020.101302

Lu, C., Fang, S., Weng, Q., Lv, X., Meng, M., Zhu, J., et al. (2020). Integrated
analysis reveals critical glycolytic regulators in hepatocellular carcinoma. Cell
Commun. Signal. 18, 97–14. doi:10.1186/s12964-020-00539-4

Mao, K., Geng, W., Liao, Y., Luo, P., Zhong, H., Ma, P., et al. (2020). Identification
of robust genetic signatures associated with lipopolysaccharide-induced acute lung
injury onset. Aging (Albany NY). 12. Impact Journals, LLC, 18716. doi:10.18632/
aging.104042

Mao, K., Luo, P., Geng, W., Xu, J., Liao, Y., Zhong, H., et al. (2021). An integrative
transcriptomic and metabolomic study revealed that melatonin plays a protective
role in chronic lung inflammation by reducing necroptosis. Front. Immunol. 12,
1469. doi:10.3389/fimmu.2021.668002

Ritchie, M. E., Phipson, B., Wu, D. I., Hu, Y., Law, C. W., Shi, W., et al. (2015).
Limma powers differential expression analyses for RNA-sequencing and
microarray studies. Nucleic Acids Res. 43, e47. doi:10.1093/nar/gkv007

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A.,
et al. (2021).Global cancer statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 71. Wiley
Online Library, 209–249. doi:10.3322/caac.21660

Therneau, T. M., and Lumley, T. (2015). Package ‘survival. ’ R. Top. Doc. 128,
28–33.

Wei, R-R., Zhang, M-Y., Rao, H-L., Pu, H-Y., Zhang, H-Z., and Wang, H-Y.
(2012). Identification of ADH4 as a novel and potential prognostic marker in
hepatocellular carcinoma. Med. Oncol., 29. Springer, 2737–2743. doi:10.1007/
s12032-011-0126-3

Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., et al. (2021). clusterProfiler 4.0:
A universal enrichment tool for interpreting omics data. Innovation. 2, 100141.
doi:10.1016/j.xinn.2021.100141

Zhang, Q., Zhong, H., Fan, Y., Liu, Q., Song, J., Yao, S., et al. (2020)., 8. Frontiers,
592. doi:10.3389/fbioe.2020.00592Immune and clinical features of CD96 expression
in glioma by in silico analysisFront. Bioeng. Biotechnol.

Zhang, Q. I., Lou, Y. U., Bai, X-L., and Liang, T-B. (2018). Immunometabolism: A
novel perspective of liver cancer microenvironment and its influence on tumor
progression. World J. Gastroenterol. 24, 3500–3512. doi:10.3748/wjg.v24.i31.3500

Zhong, H., Liu, S., Cao, F., Zhao, Y., Zhou, J., Tang, F., et al. (2021). Dissecting
tumor antigens and immune subtypes of glioma to develop mRNA vaccine. Front.
Immunol. 12, 709986. doi:10.3389/fimmu.2021.709986

Zhou, J-G., Zhong, H., Zhang, J., Jin, S-H., Roudi, R., and Ma, H. (2019).
Development and validation of a prognostic signature for malignant pleural
mesothelioma. Front. Oncol. 9, 78. doi:10.3389/fonc.2019.00078

Zhu, J., Zhou, Y., Wang, L., Hao, J., Chen, R., Liu, L., et al. (2020). CXCL5/
CXCL8 is a promising potential prognostic and tumor microenvironment-related
cluster in hepatocellular carcinoma. J. Gastrointest. Oncol. 11, 1364–1380. doi:10.
21037/jgo-20-556

Frontiers in Genetics frontiersin.org10

Xiong et al. 10.3389/fgene.2022.1005271

https://doi.org/10.1083/jcb.201911005
https://doi.org/10.2147/jhc.s61146
https://doi.org/10.1038/oncsis.2015.49
https://doi.org/10.1038/oncsis.2015.49
https://doi.org/10.1016/s1535-6108(04)00058-3
https://doi.org/10.2147/cmar.s310346
https://doi.org/10.2147/cmar.s310346
https://doi.org/10.3389/fgene.2020.551065
https://doi.org/10.3389/fgene.2020.551065
https://doi.org/10.1007/s10753-021-01518-8
https://doi.org/10.1007/s10753-021-01518-8
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.3389/fonc.2020.01210
https://doi.org/10.1007/s00180-015-0642-2
https://doi.org/10.1007/s00180-015-0642-2
https://doi.org/10.1111/jcmm.16666
https://doi.org/10.1038/ni.2703
https://doi.org/10.1186/s12859-019-2734-4
https://doi.org/10.1186/s12859-019-2734-4
https://doi.org/10.1093/bib/bbaa371
https://doi.org/10.1111/cpr.12772
https://doi.org/10.1093/jnci/djx030
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1002/adma.201904197
https://doi.org/10.7150/ijbs.45050
https://doi.org/10.1016/j.isci.2020.101302
https://doi.org/10.1186/s12964-020-00539-4
https://doi.org/10.18632/aging.104042
https://doi.org/10.18632/aging.104042
https://doi.org/10.3389/fimmu.2021.668002
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.3322/caac.21660
https://doi.org/10.1007/s12032-011-0126-3
https://doi.org/10.1007/s12032-011-0126-3
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.3389/fbioe.2020.00592
https://doi.org/10.3748/wjg.v24.i31.3500
https://doi.org/10.3389/fimmu.2021.709986
https://doi.org/10.3389/fonc.2019.00078
https://doi.org/10.21037/jgo-20-556
https://doi.org/10.21037/jgo-20-556
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1005271

	Machine learning-based transcriptome analysis of lipid metabolism biomarkers for the survival prediction in hepatocellular  ...
	Introduction
	Materials and methods
	Data collection and preprocessing
	Identification and validation of the lipid-related subtypes
	Immune status and ferroptosis-related estimation
	DEG identification and functional enrichment analysis
	Development and validation of the prognostic signature
	Statistical analysis

	Results
	Lipid metabolic molecular subtypes of HCC identification
	Clinicopathological and immune infiltration characteristics in three subgroups
	Ferroptosis-related estimation among three distinct subgroups
	DEG identification and functional analysis
	Establishing a prognostic risk model

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


