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Abstract

Autoimmune diseases are characterized by the loss of self-tolerance, leading to immune-mediated tissue destruction 
and chronic inflammation. Tyrosine kinase 2 (TYK2) protein plays a key role in immunity and apoptosis pathways. 
Studies have reported associations between single nucleotide polymorphisms (SNPs) in the TYK2 gene and 
autoimmune diseases; however, results are still inconclusive. Thus, we conducted a systematic review followed by 
meta-analysis. A literature search was performed to find studies that investigated associations between TYK2 SNPs 
and autoimmune diseases (multiple sclerosis, systemic lupus erythematosus, Crohn’s disease, ulcerative colitis, 
psoriasis, rheumatoid arthritis, type 1 diabetes, and inflammatory bowel disease). Pooled odds ratios (OR) with 
95 % CI were calculated using random (REM) or fixed (FEM) effects models in the Stata 11.0 Software. Thirty-four 
articles were eligible for inclusion in the meta-analyses, comprising 9 different SNPs: rs280496, rs280500, rs280523, 
rs280519, rs2304256, rs12720270, rs12720356, rs34536443, and rs35018800. Meta-analysis results showed the 
minor alleles of rs2304256, rs12720270, rs12720356, rs34536443, and rs35018800 SNPs were associated with 
protection against autoimmune diseases. Moreover, the A allele of the rs280519 SNP was associated with risk for 
systemic lupus erythematosus. Our meta-analyses demonstrated that the rs2304256, rs12720270, rs12720356, 
rs34536443, rs35018800, and rs280519 SNPs in the TYK2 gene are associated with different autoimmune diseases.
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Introduction
Autoimmune diseases are complex diseases triggered 

by multifaceted interactions between several genetic and 
environmental factors (Gutierrez-Roelens and Lauwerys, 
2008; Rose, 2016), and are characterized by the loss of self-
tolerance leading to immune-mediated tissue destruction and 
chronic inflammation (Marrack et al., 2001; Lee and Bae, 
2016; Odhams et al., 2017). These diseases share common 
etiological pathways, with genetic factors being considered as 
strong determinants of their development (Gutierrez-Roelens 
and Lauwerys, 2008; Lee and Bae, 2016). Regarding genetic 
factors, tyrosine kinase 2 (TYK2) is a candidate gene for 
autoimmune diseases since it encodes a member of Janus 
Kinase (JAK) family of tyrosine kinases, which have a central 
role in immune response since they mediate signaling pathways 
for several cytokines and type I interferon (IFN-I) (Ghoreschi 
et al., 2009; Strobl et al., 2011).

TYK2 is a non-receptor protein that bounds to the IFN-I 
receptor (IFNAR1) on the cell surface in its inactive form. 
After IFN-α binding to IFNAR1, TYK2 and JAK1 proteins 
are activated, leading to the recruitment and phosphorylation 
of the signal of transducers and activators of transcription 

(STAT) 1 and 2. STAT1/2 heterodimers then translocate to 
the nucleus, where they are major regulators of the expression 
of a number of IFN-stimulated genes (Yamaoka et al., 2004; 
Strobl et al., 2011). TYK2 is also associated with IL-6, IL-10, 
IL-12, and IL-23 receptors, playing a key role in the activation 
of these cytokine pathways (Ghoreschi et al., 2009; O’Shea 
and Plenge, 2012). Abnormal expression of IFN-I and other 
cytokines or JAK kinase members in immune cells are well 
known players in the pathogenesis of autoimmune diseases 
(Strobl et al., 2011; O’Shea and Plenge, 2012; Deng et al., 
2019). Besides its role in the IFN-I and other type I and II 
cytokine receptor pathways, TYK2 plays a key role in other 
immune processes, including the activity of natural killer cells, 
maturation of B and Treg cells, and differentiation of Th1 and 
Th17 cells. Accordingly, dysregulated TYK2 expression has 
been associated with autoimmune diseases, specially systemic 
lupus erythematosus (SLE) [reviewed in (Deng et al., 2019)].

Consistent with the role of TYK2 in immune processes, 
several studies have suggested common single nucleotide 
polymorphisms (SNPs) in this gene are associated with 
different autoimmune diseases, including multiple sclerosis 
(MS) (Tao et al., 2011), SLE (Tao et al., 2011; Lee et al., 
2012; Lee and Bae, 2016; Yin et al., 2018), Crohn’s Disease 
(CD) (Lees et al., 2011; Tao et al., 2011; Ellinghaus et al., 
2016), ulcerative colitis (UC) (Lees et al., 2011; Tao et al., 
2011; Ellinghaus et al., 2016), rheumatoid arthritis (RA) (Tao 
et al., 2011; Lee and Bae, 2016; Westra et al., 2018), type 1  
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diabetes mellitus (T1DM) (Nagafuchi et al., 2015; Westra 
et al., 2018), and psoriasis (Pso) (Ellinghaus et al., 2016). 
In 2011, Tao et al. (2011) published a meta-analysis of 11 
studies that investigated the association between 6 TYK2 SNPs 
and autoimmune and inflammatory diseases. The authors 
showed an association between the TYK2 rs2304256 and 
rs34536443 SNPs and MS, RA, SLE, CD, and UC. Lee and 
Bae (2016) performed a meta-analysis of 12 studies regarding 
the association of 7 TYK2 SNPs with SLE and RA, showing 
the rs2304256 and rs1270356 minor alleles were associated 
with protection against these rheumatic diseases. Five other 
SNPs (rs12720270, rs280500, rs280523, rs8108236, and 
rs280519) were not associated with these diseases; however, 
the number of studies included in their meta-analyses was 
small. A recent meta-analysis suggested the association of the 
TYK2 rs2304256 C allele with risk for SLE in Europeans (3 
studies) but not in Asians (3 studies), while the rs12720270 and 
rs280519 SNPs were not associated with SLE (3 studies each) 
(Yin et al., 2018). Therefore, different SNPs in the TYK2 gene 
seem to be associated with autoimmune diseases, although the 
results on individual SNPs are still inconclusive (Tao et al., 
2011; Lee et al., 2012; Ellinghaus et al., 2016; Lee and Bae, 
2016; Westra et al., 2018; Yin et al., 2018) especially due to 
the increase in the number of studies in this field in the last 
few years in different ethnicities. Thus, here, we performed 
a comprehensive and updated meta-analysis of the related 
literature aiming to clarify the role of different TYK2 SNPs 
on susceptibility to autoimmune diseases. 

Material and Methods

Search strategy and eligibility criteria

This systematic review was performed and described 
following PRISMA and MOOSE guidelines (Stroup et al., 
2000; Moher et al., 2009), and its protocol was registered in 
the International Prospective Register of Systematic Reviews 
(PROSPERO) under the CRD42018100302 number. In order 
to identify studies that investigated associations between TYK2 
SNPs and autoimmune diseases, we performed a literature 
search in Embase and PubMed resources. For this, the following 
MeSH terms were applied: (“TYK2 Kinase” OR “TYK2 protein, 
human”) AND (“Autoimmune Diseases” OR “Rheumatic 
Diseases” OR “Lupus Erythematosus, Systemic” OR “Multiple 
Sclerosis” OR “Sclerosis” OR “Crohn Disease” OR “Pediatric 
Crohn’s disease” OR “Ulcerative colitis” OR “Psoriasis” OR 
“Diabetes Mellitus” OR “Diabetes Mellitus, Type 1”). The 
search was completed on June, 2020, and was restricted to papers 
written in English, Spanish or Portuguese. Studies were also 
searched in the GWAS Catalog (https://www.ebi.ac.uk/gwas/).

Eligibility assessment was done by reviewing titles and 
abstracts of all articles selected, and when abstracts did not 
provide necessary information, the full text of the article was 
analyzed. This was performed independently, in a standardized 
manner, by two investigators (C.D. and F.M.P.), as previously 
described in other meta-analyses from our group (Souza et al., 
2013; Brondani et al., 2014). Discordances were settled by 
debate between them and, when needed, a third investigator 
(D.C.) was referred. When articles had missing information, 

we contacted the authors for further information. In case 
of duplicated data that had been published more than once, 
we opted to include the most complete study. In addition, 
reference lists from all articles fulfilling the eligibility criteria 
were manually searched to identify other important citations.

Studies were considered eligible if they had case-control 
designs and evaluated one or more TYK2 SNPs in patients with 
some of the autoimmune diseases included in the MESH terms 
(cases) and individuals without any autoimmune condition 
(controls). Exclusion criteria were as follows: 1) Studies 
that did not have sufficient data to estimate an OR with 95 
% CI; and 2) Studies where genotype distributions in control 
group deviated from those predicted by the Hardy-Weinberg 
equilibrium (HWE). 

Data extraction and quality control assessment

Data were individually extracted by two researchers 
(C.D. and F.M.P.) using a standardized form (Souza et al., 
2013; Brondani et al., 2014), and agreement was pursued in 
all extracted items. When an agreement could not be achieved, 
data extraction divergences were solved by referencing to 
the original publication or by consulting a third reviewer 
(D.C.). Data extracted from each study included: publication 
year, name of the first author, number of cases and controls, 
autoimmune disease, gender, age, ethnicity, genotyping 
technique, genotype and allele distributions in case and control 
samples and OR (95 % CI). We included in the meta-analysis 
only those SNPs investigated in at least 3 studies. 

The Newcastle-Ottawa Scale (NOS) for case-control 
studies was used to analyze the quality of each eligible study 
(Wells et al., 2020). Two investigators (C.D. and F.M.P.) 
evaluated the 9 items of the NOS, which are categorized 
into 3 dimensions: selection, comparability, and exposure. 
Each item contains a sequence of alternative questions to be 
answered by the investigators. Then, a star scoring system 
allows the semi-quantitative analysis of article quality. In 
this score, the highest-quality studies receive one star for 
each item, excepting the comparability item that can receive 
two stars. Thus, the range of stars in the NOS score varies 
from zero to nine. The Clark-Baudouin Score (CBS) was also 
used to assess the quality of the studies (Clark and Baudouin, 
2006). This method uses pre-defined criteria to assess each 
publication, highlighting quality issues in the conduction of 
studies and interpretation of the results. Using a 10-point 
scoring sheet, researchers are able to evaluate components 
of the articles related to reproducibility, selection of subjects, 
statistical analysis and genotyping methods.

Statistical analysis

Goodness-of-fit χ2 tests were used to evaluate whether 
the genotype frequencies in the control groups were in 
agreement with those predicted by the Hardy-Weinberg 
Equilibrium (HWE). Gene-disease associations were 
measured using OR (95 % CI) calculations based on allele 
contrast, additive, recessive, and dominant inheritance 
models, which were categorized as suggested by Zintzaras 
et al. (2008). Stratifications by autoimmune disease type 
and/or ethnicity were performed when a disease / ethnicity 
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had ≥ 2 studies for each assessed SNP. Heterogeneity among 
studies was evaluated using a χ2-based Cochran’s Q statistic 
and inconsistency was calculated using the I2 metric. When 
P < 0.10 for the Q test and/or I2 > 50 %, heterogeneity among 
studies was considered significant. Then, the DerSimonian 
and Laird random effects model (REM) was used to calculate 
OR (95 % CI) for each study and for the pooled effect. In 
the lack of significant heterogeneity, the fixed effect model 
(FEM) was used for this calculation (Higgins et al., 2003; 
Melsen et al., 2014).

In the case of relevant inter-study heterogeneity, 
sensitivity analyses were performed to identify which studies 
could have a considerable impact on heterogeneity. Risk of 
publication bias was evaluated for SNPs analyzed in ≥ 10 
studies using funnel plot graphics, analyzed both visually 
and using the Begg and Egger statistic (Egger et al., 1997). 
The significance of the intercept was determined by the t 
test, as proposed by Egger, with P < 0.10 being considered 
indicative of significant publication bias (Egger et al., 1997). 
In case of significant publication bias, the Trim and Fill 
method was used for adjusting for it. This method evaluates 
whether publication bias is present and, then, estimates the 
pooled effect when biases are removed (Duval and Tweedie, 
2000). The Stata 11.0 software (StataCorp, College Station, 
TX, USA) was used for all statistical analyses.

Results

Results from the literature search and quality of the 
studies

Figure 1 shows the flow diagram with the strategy used 
to identify and select studies for inclusion in this systematic 
review and meta-analysis. A total of 313 articles were retrieved 
after searching PubMed, Embase, and GWAS Catalog 
resources, and 237 of them were excluded following the 
review of titles and abstracts due to disagreements with our 
defined eligibility criteria. Seventy-six articles were therefore 
considered as being eligible at this point and had their full 
texts examined. Nevertheless, after analyzing the full texts, 
another 42 studies were excluded, and a total of 34 articles 
(Sigurdsson et al., 2005, 2007; International Consortium for 
Systemic Lupus Erythematosus Genetics et al., 2008; Ban et al., 
2009; Hellquist et al., 2009; Kyogoku et al., 2009; Sato et 
al., 2009; Suarez-Gestal et al., 2009a, b; Genetic Analysis 
of Psoriasis et al., 2010; Jarvinen et al., 2010; Mero et al., 
2010; Couturier et al., 2011; Graham et al., 2011; Li et al., 
2011; Lian et al., 2013; Qiu et al., 2013; Shaiq et al., 2013; 
Alonso-Perez et al., 2014; Can et al., 2015; Diogo et al., 
2015; Nagafuchi et al., 2015; Prieto-Perez et al., 2015; Tang 
et al., 2015; Ellinghaus et al., 2016; Lopez-Isac et al., 2016; 

Figure 1 – Flowchart illustrating the search strategy used to identify studies of TYK2 SNPs and autoimmune diseases.
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Almlof et al., 2017; Langefeld et al., 2017; Myrthianou et al., 
2017; Westra et al., 2018; Zaplakhova et al., 2018; Contreras-
Cubas et al., 2019; Graciolo et al., 2019; Mohamadhosseini 
et al., 2019) met the eligibility criteria and were included in 
this meta-analysis. 

Nine SNPs in the TYK2 gene were investigated in ≥ 3 
studies and then were included in our meta-analyses. Table 
S1 shows genotype and allele frequencies of these SNPs 
in case and control groups from the eligible studies as well 
as in which autoimmune disease and ethnicity they were 
analyzed. Among the 34 eligible articles, 4 studies analyzed 
the rs280496 (g.10352804C>G) SNP (408 cases with CD or 
UC / 578 controls), 6 studies, the rs280500 (g.10379726A>G) 
SNP (2 988 cases with SLE / 6 440 controls), 14 studies, the 
rs280519 (g.10362257A>C) SNP (13 969 cases with CD, UC, 
Pso or SLE / 29 167 controls), and 6 studies investigated the 
rs280523 (g.10366530G>A) SNP (997 cases with CD, UC 
or SLE / 955 controls). Moreover, 25 studies evaluated the 
rs2304256 (g.10364976C>A) SNP (23 827 cases with CD, 
UC, SLE, MS, RA or T1DM / 35 760 controls), 9 studies, 
the rs12720270 (g.10365084G>A) SNP (2 792 SLE cases 
/ 5 184 controls), and 20 studies analyzed the rs12720356 
(g.10359299A>C) SNP (69 788 cases with SLE, RA, IBD, MS, 
CD, UC or Pso / 177 438 controls). Nineteen studies evaluated 
the rs34536443 (g.10352442G>C) SNP (50 011 cases with 

MS, RA, SLE, IBD, Pso or T1DM / 95 923 controls), while 
8 studies analyzed the rs35018800 (g.10354167G>A) SNP 
(61 241 cases with RA, SLE, IBD, CD, Pso, UC or MS / 163 
386 controls).

The quality of each individual study is shown in Table 
S2. As mentioned in the Material and Methods section, 
the highest quality articles can receive up to 9 stars for the 
NOS score. Most of the included studies were classified as 
presenting good quality since 61.8 % of the studies were 
awarded 6 to 8 stars and 38.2 % of the studies received the 
maximum of stars allowed. None of the articles scored less 
than 6 stars. Regarding the CBS score, most of the studies 
were also classified as presenting good quality since 73.5 % 
of them received 7 to 9 points and 26.5 % received 10 points, 
which is the highest score.

Meta-analyses of studies that evaluated associations 
between TYK2 SNPs and autoimmune diseases

Table 1 shows results of the pooled analyses for the 
associations between TYK2 rs280496, rs280500, rs280519, 
rs280523, rs2304256, rs12720270, rs12720356, rs34536443, 
and rs35018800 SNPs and autoimmune diseases under 
different inheritance models. When the number of studies 
was statistically adequate, we also evaluated these associations 
after stratification by disease type and/or ethnicity (Table 1).

Table 1 – Pooled measures for associations between TYK2 rs280496, rs280500, rs280519, rs280523, rs2304256, rs12720270, rs12720356, rs34536443, 
and rs35018800 SNPs and susceptibility to autoimmune diseases.

Inheritance model n studies n cases n controls I² % Pooled OR (95 % CI)

rs280496

Allele contrast 4 408 578 0.0 1.15 (0.89 – 1.49)*

Disease

CD 2 143 289 0.0 1.19 (0.80 – 1.76)*

UC 2 265 289 0.0 1.12 (0.80 – 1.58)*

Dominant 3 294 378 0.0 1.21 (0.86 – 1.70)*

rs280500

Allele contrast 6 2 988 6 440 55.7 1.12 (0.95 – 1.31)**

rs280523

Allele contrast 6 997 955 0.0 1.11 (0.87 – 1.41)*

Disease

CD 2 143 289 0.0 0.90 (0.51 – 1.57)*

UC 2 265 289 0.0 1.07 (0.68 – 1.70)*

SLE 2 589 377 0.0 1.21 (0.87 – 1.68)*

Ethnicity

Asian 4 408 578 0.0 1.00 (0.70 – 1.42)*

Caucasian 2 589 377 0.0 1.21 (0.87 – 1.68)*

Dominant 3 294 378 0.0 0.95 (0.60 – 1.49)*

rs280519

Allele contrast 14 13 969 29 167 87.1 1.07 (0.96 – 1.20)**

Disease

CD 3 223 389 58.7 1.08 (0.74 – 1.57)**

UC 2 265 289 0.0 1.21 (0.94 – 1.55)**

SLE 8 6 733 16 973 38.5 1.10 (1.04 – 1.18)**

Pso 1 6 748 11 516 – –
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Inheritance model n studies n cases n controls I² % Pooled OR (95 % CI)

Ethnicity

Asian 8 1 868 2 538 34.4 1.08 (0.95 – 1.22)**

Caucasian 6 12 101 25 245 94.2 1.07 (0.91 – 1.25)**

Recessive 6 1 085 1 184 65.6 1.18 (0.80 – 1.75)**

Dominant 6 1 085 1 184 0.0 0.84 (0.70 – 1.02)*

Additive 6 618 629 41.8 0.89 (0.71 – 1.12)*

rs2304256

Allele contrast 25 23 827 35 760 70.8 0.83 (0.77 – 0.88)**

Disease

SLE 12 7 315 11 736 72.9 0.77 (0.69 – 0.85)**

CD 3 223 389 53.5 0.77 (0.52 – 1.15)**

UC 2 265 289 0.0 0.84 (0.64 – 1.09)**

T1DM 3 551 573 56.6 1.03 (0.77 – 1.38)**

MS 3 12 312 20 010 0.0 0.84 (0.81 – 0.87)**

RA 2 3 161 2 763 33.3 0.99 (0.89 – 1.09)**

Ethnicity

Caucasian 12 20 474 30 034 73.8 0.81 (0.75 – 0.87)**

Asian 10 2 678 4 891 74.7 0.85 (0.71 – 1.01)**

Mixed Ethnicity 3 675 835 31.6 0.87 (0.69 – 1.09)**

Recessive 13 16 916 26 506 78.3 0.80 (0.65 – 0.98)**

Disease

SLE 4 3 759 5 545 88.5 0.62 (0.40 – 0.97)**

CD 2 143 289 33.8 0.88 (0.45 – 1.75)**

UC 1 151 89 – –

T1DM 3 551 573 0.0 1.51 (0.97 – 2.34)**

MS 3 12 312 20 010 0.0 0.79 (0.73 – 0.87)**

Ethnicity

Caucasian 4 14 794 24 134 83.7 0.64 (0.51 – 0.82)**

Asian 7 1 815 2 053 80.7 0.87 (0.55 – 1.37)**

Mixed Ethnicity 2 307 319 0.0 1.12 (0.54 – 2.30)**

Dominant 14 16 996 26 606 45.0 0.78 (0.72 – 0.84)**

Disease

SLE 4 3 759 5 545 13.0 0.75 (0.67 – 0.83)**

CD 3 223 389 63.9 0.60 (0.31 – 1.14)**

UC 1 151 89 – –

T1DM 3 551 573 49.8 0.93 (0.66 – 1.31)**

MS 3 12 312 20 010 0.0 0.81 (0.77 – 0.85)**

Ethnicity

Caucasian 4 14 794 24 134 28.9 0.79 (0.75 – 0.83)**

Asian 8 1 895 2 153 59.0 0.72 (0.55 – 0.95)**

Mixed Ethnicity 2 307 319 56.0 0.82 (0.51 – 1.33)**

Additive 13 10 778 15 955 72.2 0.68 (0.55 – 0.84)**

Disease

SLE 4 2 330 3 325 86.2 0.58 (0.34 – 0.99)**

CD 2 103 164 0.0 0.43 (0.21 – 0.88)**

Table 1 – Cont.
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Inheritance model n studies n cases n controls I² % Pooled OR (95 % CI)

UC 1 113 54 – –

T1DM 3 345 334 0.0 1.45 (0.92 – 2.28)**

MS 3 7 887 12 078 0.0 0.73 (0.67 – 0.80)**

Ethnicity

Caucasian 4 9 437 14 493 84.5 0.59 (0.46 – 0.75)**

Asian 7 1 136 1 266 68.3 0.73 (0.46 – 1.16)**

Mixed Ethnicity 2 205 196 0.0 1.03 (0.49 – 2.14)**

rs12720356

Allele contrast 20 69 788 177 438 92.1 0.85 (0.77 – 0.94)**

Disease

SLE 9 6 360 20 668 49.9 0.75 (0.65 – 0.88)**

RA 2 6 256 14 544 11.5 0.91 (0.83 – 1.00)**

IBD 1 1 346 13 683 – –

CD 1 19 085 34 213 – –

Pso 4 10 240 40 419 63.2 0.71 (0.61 – 0.83)**

UC 1 14 413 34 213 – –

MS 2 12 088 19 698 0.0 0.85 (0.79 – 0.90)**

Recessive 4 13 437 22 606 1.1 0.85 (0.64 – 1.13)*

Dominant 4 13 437 22 606 34.2 0.82 (0.77 – 0.87)*

Additive 4 11 787 19 301 4.4 0.83 (0.62 – 1.10)*

rs34536443

Allele contrast 19 50 011 95 923 75.7 0.68 (0.61 – 0.76)**

Disease

MS 9 21 346 27 989 38.6 0.75 (0.67 – 0.83)**

RA 3 5 818 14 894 62.4 0.83 (0.54 – 1.29)**

SLE 4 12 041 27 735 25.4 0.50 (0.43 – 0.57)**

IBD 1 1 346 13 687 – –

Pso 1 126 507 – –

T1DM 1 9 334 11 111 – –

Recessive 4 13 180 20 905 67.1 0.35 (0.03 – 3.83)**

Dominant 5 13 306 21 412 88.0 0.34 (0.21 – 0.56)**

Additive 4 12 834 20 478 67.2 0.35 (0.03 – 3.88)**

rs12720270

Allele contrast 9 2 792 5 184 30.2 0.92 (0.84 – 1.00)*

Ethnicity

Asian 3 1 380 3 274 0.0 0.92 (0.87 – 1.08)*

Caucasian 5 1 044 1 394 51.7 0.84 (0.72 – 0.98)*

Mixed Ethnicity 1 368 516 – –

rs35018800

Allele contrast 8 61 241 163 386 18.0 0.60 (0.55 – 0.65)*

Where significant heterogeneity was detected (I2 > 50 % and/or Q statistic P>0.1), the DerSimonian and Laird random effect model (REM)** was used 
to calculate OR (95 % CI) for each individual study and for the pooled effect; where heterogeneity was not significant, the fixed effect model (FEM)* 
was used for this calculation. CD: Crohn’s disease; IBD: inflammatory bowel disease; MS: multiple sclerosis; Pso: psoriasis; RA: rheumatoid arthritis; 
SLE: systemic lupus erythematosus; T1DM: type 1 diabetes mellitus; UC: ulcerative colitis.

Table 1 – Cont.
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Figure 2 – Forest plot showing individual and pooled OR (95 % CI) for the association between the TYK2 rs2304256 SNP and autoimmune diseases, 
under an allele contrast model.

Our results show the TYK2 rs280496, rs280500, and 
rs280523 SNPs were not associated with autoimmune 
diseases under an allele contrast model (Table 1 and 
Figures S1 and S2). Overall, the rs280519 SNP was also 
not associated with autoimmune diseases considering allele, 
dominant, recessive, and additive models (Table 1 and 
Figure S2). However, after stratification by disease type, 
the rs280519 SNP was independently associated with risk 
for SLE (REM OR 1.10, 95 % CI 1.04 – 1.18, allele contrast 
model; Table 1 and Figure S2). 

The A allele of the rs2304256 SNP was associated with 
protection against autoimmune diseases when assuming the 
allele contrast model (REM OR 0.83, 95 % CI 0.77 – 0.88; 
Table 1 and Figure 2). This SNP was also significantly 
associated with autoimmune diseases under dominant, 
recessive, and additive models (Table 1). In addition, the C 
allele of the rs12720356 SNP conferred protection against 
different autoimmune diseases under both the allele contrast 
(REM OR 0.85, 95 % CI 0.77 – 0.94) and dominant models 
(REM OR 0.82, 95 % CI 0.77 – 0.87; Table 1 and Figure 3).  
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Figure 3 – Forest plot showing individual and pooled OR (95 % CI) for the associations between the TYK2 rs12720356 SNP and autoimmune diseases, 
under an allele contrast model.

In the same way, the rs34536443 C allele was associated 
with protection for autoimmune diseases under allele contrast 
(REM OR 0.68, 95 % CI 0.61 – 0.76) and dominant (REM 
OR 0.75, 95 % CI 0.58 – 0.98) models (Table 1 and Figure 4).

The A allele of the rs12720270 SNP conferred protection 
for SLE under the allele contrast model [FEM OR 0.92, 95 % 
CI 0.84 – 1.00 (P = 0.041); Table 1 and Figure 5]. Moreover, 
after stratification by ethnicity, the A allele was associated with 
protection for SLE in Caucasians (FEM OR 0.84, 95 % CI 
0.72-0.98) but not in Asians (Table 1). Besides SLE, this SNP 

was not evaluated in other autoimmune diseases. The A allele of 
the rs35018800 SNP also conferred protection for autoimmune 
diseases (FEM OR 0.60, 95 % CI 0.55 – 0.65, allele contrast 
model; Table 1 and Figure 5) in European populations.

Sensitivity analyses and publication bias

When significant inter-study heterogeneities were 
observed, sensitivity analyses were carried out in order to 
estimate the influence of each individual study on the meta-
analysis results obtained when assuming the allele contrast 
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Figure 4 – Forest plot showing individual and pooled OR (95 % CI) for the associations between the TYK2 rs34536443 SNP and autoimmune diseases, 
under an allele contrast model.

Figure 5 – Forest plots showing individual and pooled OR (95 % CI) for the associations between the TYK2 rs12720270 (A) and rs35018800 SNPs (B) 
and autoimmune diseases, under an allele contrast model.
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model. This was performed by repeating meta-analyses 
excluding a different study each time. Our results showed 
two studies (International Consortium for Systemic Lupus 
Erythematosus Genetics et al., 2008; Tang et al., 2015) 
explained the observed heterogeneity in the meta-analysis 
of the rs280500 SNP since their exclusion significantly 
decreased the heterogeneity (all studies: I² = 42.6 %, P = 
0.138, and after exclusion: I² 0.0 %, P = 0.901). However, 
the exclusion of these two studies from the rs280500 meta-
analysis did not change the lack of the association of this SNP 
with autoimmune diseases. Moreover, the exclusion of one 
study (Genetic Analysis of Psoriasis et al., 2010) from the 
rs280519 meta-analysis decreased the observed heterogeneity 
(I² = 27.7 %, P = 0.165). Importantly, the exclusion of this 
study significantly changed the pooled OR for this SNP, which 
was now associated with risk for autoimmune diseases (OR 
1.11, 95 % CI 1.05 – 1.18). Of note, meta-analyses of the 
rs2304256, rs12720356, and rs34536443 SNPs still presented 
significant heterogeneity after sensitivity analyses.

Funnel plots and Egger’s tests were performed to 
investigate the presence of possible publication bias in those 
meta-analyses containing at least 10 studies, which were those 
performed for the rs12720356, rs2304256, rs280519, and 
rs34536443 SNPs (Figure S3A-D). No significant publication 
bias was observed for the rs2304256, rs280519, and rs34536443 
SNPs. However, funnel plot and Egger’s test indicated a 
significant publication bias in the rs12720356 meta-analysis 
(P = 0.037; Figure S3A). Trim and Fill analysis was performed 
to account for this bias, and the results indicated that the pooled 
OR obtained for this SNP did not change significantly since 
the adjusted effect was similar to the original effect.

Discussion
To further investigate the possible effects of the TYK2 

SNPs on susceptibility for autoimmune diseases, we performed 
meta-analyses of 34 published articles on the field. Our 
results suggest the minor alleles of rs2304256, rs12720270, 
rs12720356, rs34536443, and rs35018800 SNPs are associated 
with protection against autoimmune diseases, while the 
rs280519A allele is associated with risk for SLE. The rs280496, 
rs280500, and rs280523 SNPs do not seem to be associated 
with autoimmune diseases in the investigated populations.

Our meta-analysis for the rs280519 SNP included 14 
studies (13 969 cases and 29 167 controls) and showed the 
A allele of this SNP is associated with risk for SLE. This 
SNP does not seem to be associated with CD, UC, and Pso. 
In contrast, two previous meta-analyses did not show any 
association of this SNP with autoimmune diseases (Tao et 
al., 2011; Yin et al., 2018). The discordant results may be due 
to the small number of studies included in the meta-analyses 
by Tao et al. ( 2011), which included 3 studies with CD and 
SLE, and by Yin et al. (2018), which included 4 studies with 
SLE. The A allele of this SNP does not cause an amino acid 
substitution, but it is located in a splice site of the TYK2 gene 
(Lopez-Rodriguez et al., 2017). No study has evaluated if this 
SNP has an impact on TYK2 function. Linkage disequilibrium 
(LD) analyses suggest the rs280519 SNP is on the same 
haplotype block of the rs2304256 and rs12720270 SNPs 

(Kyogoku et al., 2009); thus, the rs280519 SNP could be a 
marker of the functional rs2304256 SNP.

Our meta-analysis for the rs2304256 SNP included 25 
studies (23 827 cases and 35 760 controls) and showed the 
A allele of this SNP is associated with protection against 
autoimmune diseases (SLE, CD, UC, T1DM, MS, and RA) 
in all inheritance models analyzed. This association was 
confirmed in SLE and MS diseases, although the lack of 
individual associations with CD, UC, T1DM, and RA might 
be due to the small number of studies/sample sizes for each 
disease. In addition, after stratification by ethnicity, this SNP 
remained associated with autoimmune diseases in Caucasians 
(REM OR 0.89, 95 % CI 0.81 – 0.98, allele contrast model) 
but not in Asians or populations of mixed ethnicity (from 
Southern Brazil), which can be attributed to the fact that the 
studies in Asian and Brazilian populations presented a small 
number of subjects. Our results regarding this SNP are in 
agreement with the results of two previous meta-analyses (Tao 
et al., 2011; Lee and Bae, 2016). The meta-analysis performed 
by Tao et al. (2011) included only 11 studies and showed the 
rs2304256 A allele conferred protection for SLE, RA, UC, 
and CD (OR 0.78, 95 % CI 0.70 – 0.87, for the allele contrast 
model). In 2016, Lee and Bae (2016) published a meta-analysis 
of 12 studies, showing the rs2304256 A allele was associated 
with protection against SLE and RA in Caucasians (OR 0.82, 
95 % CI 0.70 – 0.89) but not in Asians (Lee and Bae, 2016). 
In addition, Zuvich et al. (2010) demonstrated the rs2304256 
A allele was associated with protection for MS (OR 0.90) in 
North American and British subjects. This study was not 
included in our meta-analysis due to lack of required data.

The A allele of the rs2304256 causes a substitution of 
valine to phenylalanine at position 362 in the JAK-homology 4 
(JH4) region, which is a crucial domain for interaction of 
TYK2 with IFNAR1 and its function, maintaining the 
expression of IFNAR1 on cell membranes (Tao et al., 2011; 
Marroqui et al., 2015). Li et al. (2020) showed the rs2304256 
A allele affects the TYK2 pre-mRNA processing since it 
destroys a putative exonic splicing enhancer; thus, promoting 
the inclusion of exon 8 in the mRNA, which is essential for 
TYK2 binding to cytokine receptors. Marroqui et al. (2015) 
isolated B lymphoblastoid cell lines (BLCLs) from subjects 
carrying the rs2304256 A/A genotype and demonstrated less 
marked IFN-α-induced STAT1 phosphorylation compared 
with subjects carrying the C/C genotype (3.5-fold STAT1 
phosphorylation vs. 5.7-fold increase). Interestingly, TYK2 
inhibition decreased cytokine-induced apoptosis and pro-
inflammatory pathways in pancreatic beta-cells via inhibition 
of the IFN-I signaling and consequent decrease in STAT1/2 
phosphorylation (Marroqui et al., 2015). It is well known that 
the initial attack in autoimmune diseases is usually followed 
by an inflammatory response caused by autoreactive cytotoxic 
cells, which then activates the release of pro-inflammatory 
cytokines and apoptosis via JAK-STAT pathways (Stuart and 
Hughes, 2002; Coomans de Brachene et al., 2020). Thus, taken 
together, these studies suggest the rs2304256 SNP decreases 
TYK2 activity and, consequently, the inflammatory response 
and apoptosis, explaining its association with protection 
against autoimmune diseases.
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Our meta-analysis for the rs12720356 SNP included 
20 studies (69 788 cases and 177 437 controls) and showed 
the C allele of this SNP provides protection for autoimmune 
diseases (SLE, RA, IBD, CD, Pso, UC, and MS) under allele 
contrast and dominant models. Among the 20 studies that 
evaluated this SNP, 18 were performed in Caucasian subjects. 
Accordingly, the meta-analysis conducted by Lee and Bae 
(2016) included 6 studies with rheumatic diseases and showed 
a similar result to ours (OR 0.81, 95 % CI 0.66 – 0.99). In 
contrast, another small meta-analysis, which included 4 035 
cases with SLE, RA, or CD and 2 953 controls, was not 
able to find any association between the rs12720356 SNP 
and these diseases, possible because of the small number of 
evaluated studies (n = 4) and sample sizes (Tao et al., 2011). 
The C allele of the rs12720356 SNP leads to a isoleucine to 
serine substitution at position 684 in the pseudo-kinase region 
JAK-homology 2 (JH2) of TYK2. This region is required for 
the binding of IFN-I to IFNAR1 (Sigurdsson et al., 2005). 
Enerbäck et al. ( 2018) analyzed peripheral blood mononuclear 
cells (PBMCs) from patients with Pso carrying the A allele 
(n = 10) vs. patients with the C allele (n = 10) of this SNP. 
PBMCs from subjects carrying the C allele showed reduced 
phosphorylated (p)-STAT4 levels after induction with IL-12 
compared to the A/A genotype, suggesting the rs12720356 C 
allele may have a functional impact on TYK2 function and, 
consequently, immunity (Enerback et al., 2018).

Our meta-analysis for the rs34536443 SNP included 
19 studies (50 011 cases and 95 923 controls) and showed 
the C allele is associated with protection against autoimmune 
diseases (MS, RA, SLE, IBD, Pso, and T1DM) under both 
allele contrast and dominant models. This association was 
confirmed for SLE and MS; however, for IBD, Pso, and T1DM, 
we had a small number of studies to individually conclude 
about the associations with these diseases. Of note, most of the 
studies were performed in Caucasian subjects. Moreover, two 
studies (Johnson et al., 2010; International Multiple Sclerosis 
Genetics et al., 2013) were not included in our meta-analysis 
due to lack of data. Johnson et al. (2010) demonstrated the 
rs34536443 C allele was associated with risk for MS (OR 
2.04, 95 % CI 1.01 – 4.08) in African-Americans (Johnson 
et al., 2010). In contrast, another study including 14 498 
patients with MS and 24 091 controls of European ancestry 
suggested this allele conferred protection for MS (OR 0.95; P 
= 1.2x10-8), which is in accordance to our results (International 
Multiple Sclerosis Genetics et al., 2013). Tao et al. (2011) 
also performed a meta-analysis of the rs34536443, including 
9 studies with MS (10 642 MS patients / 10 620 controls), and 
showed the C allele was associated with protection against 
this disease (OR 0.76, 95 % CI 0.69 – 0.84) (Tao et al., 2011).

The rs34536443 SNP is located in exon 21 and causes 
a change of a proline to alanine at position 1104 within the 
kinase domain of TYK2 (Peluso et al., 2013; Gorman et al., 
2019). The C allele of this SNP seems to be functional since 
it decreased the IFN-α induced-pSTAT1 levels in PBMCs 
compared to cells obtained from patients carrying the G allele, 
thus reducing IFNAR signaling (Gorman et al., 2019). The 
rs34536443 C allele also decreased IL-23 and IL-12 induced-
p-STAT3 levels in a murine model of MS (Gorman et al., 
2019). Accordingly, PBMCs of patients with MS carrying the 

C allele of this SNP also showed reduced IFNβ induced-p-
STAT2 levels compared to patients with the G allele (Couturier 
et al., 2011).

Our meta-analysis for the rs12720270 SNP included 9 
studies (2 792 cases and 5 184 controls) and showed the A 
allele of this SNP was associated with protection against SLE. 
In contrast, 3 previous meta-analyses (Tao et al., 2011; Lee and 
Bae, 2016; Yin et al., 2018), including only 3 to 5 studies with 
SLE patients, were not able to show any association between 
this SNP and SLE. This SNP is located in intron 7 of TYK2 
gene, most specifically 36 nt upstream of the intron 7/exon 8 
boundary (Li et al., 2020). The rs12720270 SNP is in strong 
LD with the functional rs2304256 and the rs280519 SNPs 
(Contreras-Cubas et al., 2019; Li et al., 2020). However, it 
also seems to be functional since in silico analysis and cell 
line experiments suggested the A allele breaks a splicing-
branch point in the intron, promoting the inclusion of exon 8 
in the mature TYK2 mRNA; thus, influencing TYK2 activity 
(Li et al., 2020).

Our meta-analysis for the rs35018800 SNP included 8 
studies (61 241 cases and 163 386 controls) and demonstrated 
the A allele of this SNP is associated with protection against 
autoimmune diseases (RA, SLE, IBD, CD, Pso, UC, and MS) 
in Caucasian subjects. No study has evaluated this SNP in 
other ethnicities. We were not able to determine if this SNP 
provides differential protection for a given autoimmune disease 
since we had a small number of studies for each disease. The 
rs35018800 SNP causes a substitution of an alanine to valine 
at position 928 within the kinase domain of TYK2 (Lopez-
Isac et al., 2016). To date, there is no available information 
if this SNP has a functional significance. 

Autoimmune diseases share common etiological 
pathways and, as a result, they may also share some similar 
genetic factors (Gutierrez-Roelens and Lauwerys, 2008; Luan 
et al., 2017). Indeed, our present meta-analysis confirms that the 
rs2304256, rs12720270, rs12720356, rs34536443, rs35018800, 
and rs280519 SNPs influence the susceptibility to different 
autoimmune diseases. However, the size of the effect of each 
individual SNP on a specific autoimmune disease might be 
affected by the interaction with other environmental and genetic 
factors involved in that disease. Thus, additional studies with 
larger sample sizes are required in order to clarify the effects 
of the rs2304256, rs12720270, rs12720356, rs34536443, 
rs35018800, and rs280519 SNPs on each autoimmune disease 
analyzed here. Moreover, since some of the analyzed SNPs 
(rs12720270, rs2304256, and rs280519) are in strong LD, 
future functional studies should evaluate which is(are) the 
functional(s) SNP(s) in a LD block or if they are interacting 
in the susceptibility for the autoimmune diseases. 

Despite all the efforts, the results of the present meta-
analysis should be interpreted within the context of few 
limitations. First, we tried to retrieve all published articles, 
but we cannot exclude the possibility that small negative 
studies could have been lost. Although we did not observe 
publication bias for the rs2304256, rs280519, and rs34536443 
SNPs, a significant publication bias was present in the meta-
analysis of the rs12720356 SNP. However, Trim and Fill 
analysis demonstrated that the adjusted effect did not change 
significantly, indicating that the number of missing studies 
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needed to reverse the bias is smaller than the number of 
missing studies needed to nullify the effect (Brondani et 
al., 2014). Second, we only analyzed those articles written 
in English, Spanish or Portuguese; hence, we could have 
lost few articles written in other languages. Third, we were 
not able to perform meta-regression analyses to explain the 
observed heterogeneity because of lack of data regarding 
age and gender. Despite of that, we performed sensibility 
analysis for those SNPs that showed significant heterogeneity 
in the respective meta-analyses. The exclusion of two studies 
(International Consortium for Systemic Lupus Erythematosus 
Genetics et al., 2008; Tang et al., 2015) from the rs280500 
meta-analysis decreased its heterogeneity, but did not change 
the observed result. However, the exclusion of one study 
(Genetic Analysis of Psoriasis et al., 2010), with a large sample 
size, explained the heterogeneity detected in the rs280519 
meta-analysis. After exclusion of this study, the rs280519 SNP 
was associated with risk for autoimmune diseases, suggesting 
that heterogeneity among studies might have influenced the 
results. Fourth, as already mentioned, we could not include 3 
articles (Johnson et al., 2010; Zuvich et al., 2010; International 
Multiple Sclerosis Genetics et al., 2013) in our meta-analyses 
due to the lack of data. Fifth, the rs280496, rs280523, and 
rs35018800 SNPs were investigated by few studies, thus we 
were not able to stratify their meta-analyses by disease type. 
In addition, ethnic-specific association studies are required 
to confirm genetic associations in different populations (Lee 
et al., 2012), since we could not identify differences among 
ethnicities in the meta-analyses of the rs34536443, rs280500, 
rs280496, rs12720356, and rs35018800 SNPs due to the small 
number of studies evaluating different ethnicities.

In conclusion, our results suggest that the minor alleles 
of the rs2304256, rs12720270, rs12720356, rs34536443, 
and rs35018800 SNPs are involved in the protection against 
autoimmune diseases, and the A allele of the rs280519 SNP is 
associated with risk for SLE. In addition, our results indicate 
that the rs280496, rs280500, and rs280523 SNPs are not 
associated with autoimmune diseases. Additional studies with 
larger sample sizes are necessary to clarify the impact of each 
TYK2 SNP on susceptibility for different autoimmune diseases. 
Functional studies are also needed to elucidate which are the 
TYK2 SNPs with the highest impact on TYK2 function and, 
consequently, on autoimmune diseases.
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Figure S2 – Forest plots showing individual and pooled OR (95 % 
CI) for the associations between the TYK2 rs280523 and rs280519 
SNPs and autoimmune diseases, under an allele contrast model.
Figure S3 – Begg’s funnel plots for publication bias test for 
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