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The influence of latitude, 
geographic distance, and habitat 
discontinuities on genetic variation 
in a high latitude montane species
J. A. Hindley1, B. A. Graham   1, P. C. Pulgarin-R.   2,3 & T. M. Burg1

Examining the factors that influence contemporary genetic patterns is important given the alarming 
rate at which natural environments are changing. In particular habitat fragmentation and climate 
change are expected to influence the distribution and diversity of natural populations. In this study 
we used both mitochondrial control region (mtDNA) and microsatellite data to answer the following 
questions about genetic diversity and divergence in mountain chickadees (Poecile gambeli) a resident 
bird species in western North America: (1) Do populations exhibit similar levels of genetic diversity 
across the range? (2) What is the genetic affinity of western populations in Oregon and Washington? 
(3) Do genetic patterns exhibit isolation by distance, or are genetic patterns more heavily influenced 
by habitat discontinuity? We tested the effects of isolation by distance and habitat distribution on 
genetic structure by analyzing 266 samples from 17 sites across western Canada and the United 
States. We found a near significant relationship between genetic diversity and latitude, however, 
our results indicate that overall, latitude is not a strong predictor of genetic diversity. Our analyses of 
populations in Oregon and Washington revealed a mismatch between patterns detected with mtDNA 
and microsatellite data. In particular, Washington clustered with the Coast Range/Cascades/Rocky 
Mountain mtDNA group, but with populations in southern Oregon/California based on microsatellite 
data. These results suggest the presence of a contact zone in Washington between the two mtDNA 
clades Coast Range/Cascades/Rocky Mountain and southern Oregon/California clades. Finally, our 
study revealed a greater effect of isolation by distance than isolation by habitat for both mtDNA and 
microsatellite data. Overall the isolation by distance signal was greater for mtDNA than microsatellite 
patterns. The greater signal of isolation by distance on mtDNA patterns likely reflects the strong effects 
of Pleistocene glaciations in shaping genetic patterns in western North America.

Although life history and historical processes are the primary factors shaping an organism’s evolutionary his-
tory, one must consider the role of contemporary processes on genetic variation1–3. Contemporary processes 
are especially important given the alarming rate that environments are changing and the effects of these changes 
on populations4–6. One only has to look at the Pleistocene glaciations to see the historical impact of climate 
change on population genetic structure. The fragmentation of populations due to repeated habitat contractions 
and expansions led to many recent speciation events7 and fragmented habitat including the separation of conif-
erous forests in western North America8. In the Pacific Northwest, the legacy of the last glacial maximum (LGM) 
combined with contemporary landscape features on population genetic structure is especially evident. Within 
this region, many subalpine species exhibit concordant genetic breaks associated with habitat fragmentation and 
isolation across arid, low elevation barriers, emphasizing the role of habitat discontinuity on genetic diversity and 
population differentiation9–14.

Environmental change (i.e. habitat fragmentation) impacts not only the landscape, but also behaviour 
and demographic factors. Species with strong year-round philopatry and infrequent dispersal will be heavily 
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impacted, especially species with highly structured populations15,16. By comparison organisms with seasonal 
migration have higher dispersal potential and lower levels of population genetic structure17,18 (although see19). 
The higher genetic homogeneity may mean individuals are not as highly adapted to local conditions and may be 
able to survive in a variety of areas.

Birds are a good model group for examining the influence of landscape features on dispersal because of their 
exceptional dispersal capabilities and ability to move large distances20. Despite being capable of dispersing long 
distances, geographic and ecological barriers can impede dispersal between populations. Rivers, mountain 
ranges, and habitat discontinuities have all been shown to limit dispersal and promote genetic differentiation 
between populations21–23.

Given the presence of geographic and ecological barriers and the glacial history of the region, western North 
America is an ideal area to examine the effect of landscape and dispersal barriers on population genetic structure. 
Many sedentary species exhibit restricted dispersal across these barriers14,21 including the mountain chickadee 
(Poecile gambeli). Previous work on mountain chickadees demonstrated two well-supported mitochondrial DNA 
(mtDNA) groups, an eastern (Rocky Mountains and Great Basin) and a western (Sierra Nevada and Cascades) 
clade24, although a recent study suggested contemporary gene flow may be occurring between these two clades25. 
A common year-round resident of dry, montane, coniferous forests in western North America, the mountain 
chickadee is thought to have limited natal dispersal, exhibit strong philopatry, and limited altitudinal migration 
during winter26. Given that this species is thought to have limited dispersal capabilities, it is well suited for studies 
examining the effects of dispersal and biogeographic barriers on population genetic structure and phylogeo-
graphic structure25,27,28.

Here we examine phylogeographic and population genetic structure in mountain chickadees using the rapidly 
evolving mtDNA control region and microsatellite markers. In addition to exploring genetic structure, we sought 
to answer the following questions: (1) Do populations exhibit similar levels of genetic diversity across the range? 
Given that their range includes areas that were glaciated during the LGM, it allows us to test if younger popu-
lations (i.e. those populations in previously glaciated regions) exhibit similar levels of genetic diversity as older 
populations (i.e. those populations found in areas that were free of ice during the LGM); (2) What is the genetic 
affinity of western populations in Oregon and Washington? Previous research found eastern and western clades, 
but did not sample the area separating these two groups. The Pacific Northwest is a well-documented contact 
zone for many other species29–31; (3) Do genetic patterns exhibit isolation by distance, or are genetic patterns more 
heavily influenced by breaks in habitat? Mountain chickadees display strong philopatry and limited altitudinal 
migration, which suggests that distance between sites may reduce gene flow. By comparison mountain chickadees 
are primarily found in montane coniferous forests, and therefore habitat isolation and not geographic distance 
may influence genetic differentiation. Therefore, comparing these two variables, geographic distance and habitat 
isolation, will allow us to examine the roles of each variable on genetic differentiation in this species.

Results
We observed high levels of genetic diversity in our analysis of mountain chickadee control region sequences and 
microsatellite markers (Table 1). For populations with ≥5 individuals, mean haplotype diversity ranged from 0.64 
in south-central California to 0.93 in eastern Montana and northeast Oregon, while nucleotide diversity ranged 
from 0.001 (Colorado and south-central California) to 0.005 (Idaho). Within each population, the seven micro-
satellite loci showed variable levels of genetic diversity (Table 1); allelic richness across all populations ranged 
from 3.53 (Idaho) to 4.46 (south-central California), while observed heterozygosity ranged from 0.67 (southern 
California) to 0.93 (British Columbia-Revelstoke). Despite this range, we observed no significant differences in 
allelic richness or observed heterozygosity across populations (allelic richness: F13,84 = 1.20, p = 0.30) observed 
heterozygosity: F13,84 = 0.41, p = 0.96).

Our analysis of genetic diversity along a north-south transect (Fig. 1) revealed a near-significant, positive 
relationship between latitude and mtDNA genetic diversity (adjusted r2 = 0.15, t = 1.83, p = 0.09). By compar-
ison, we observed a negative non-significant relationship between latitude and microsatellite genetic diversity 
(adjusted r2 = −0.08, t = −0.01, p = 0.99). For our RDA, latitude was a near-significant predictor of mtDNA 
genetic diversity (F1,12 = 3.36, p = 0.10), and accounted for 21.86% of the observed variation. Similarly latitude 
was a near significant predictor of microsatellite genetic diversity (F1,12 = 0.01, p = 0.99), and accounted for <1% 
of the observed variation.

Phylogeographic and population structure.  We identified a total of 80 control region haplotypes. Our 
statistical parsimony network revealed three distinct groups: (1) Coast Range/Cascades/Rocky Mountain; (2) 
southern Oregon/central California; and (3) southern California (Fig. 2A). Although we observed a number 
of shared haplotypes within each group (19 shared haplotypes were identified in Coast Range/Cascades/Rocky 
Mountains, and four in southern Oregon/central California), we did not observe any shared haplotypes among 
groups. The southern California group was separated by 16 fixed differences from the Coast Range/Cascades/
Rocky Mountain group and by two fixed differences from the southern Oregon/central California group whereas 
the southern Oregon/central California group was separated by 18 fixed differences from the Coast Range/
Cascades/Rocky Mountain group. Although our statistical parsimony network suggested three groups, our max-
imum likelihood tree only supported two distinct clades (Fig. 3). In contrast to the results of Spellman et al.24, 
northern populations in the Cascades and Coast Range (Washington and central Oregon) did not group with 
southern Oregon and California populations. Instead these populations grouped with populations in the Great 
Basin, Rocky Mountains and Canada.

Pairwise ΦST and FST values revealed significant differentiation in mountain chickadees (Table 2); 71 of 91 
pairwise ΦST comparisons and 53 of 91 pairwise FST comparisons were significant following corrections for mul-
tiple pairwise tests. Southern California was significantly different from all populations based on ΦST and all 
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populations with the exception of south-central California and eastern Montana based on FST. Pairwise ΦST com-
parisons revealed that south-central California, central California, and southern Oregon were not significantly 
different from each other, but were significantly different from all Rocky Mountain populations. Unlike pair-
wise FST comparisons, where central California was significantly different from all populations, southern Oregon 
and south-central California were significantly different from only a handful of populations. Within the Rockies 
group 28 of the 45 pairwise ΦST comparisons were significantly different from each other, with four populations 
(central Oregon, northeast Oregon, Colorado and Utah) accounting for all but one of the significant ΦST values. 

Population Latitude Longitude Nmsat PA AR Ho He NmtDNA H π Hd

Northwest British 
Columbia (NWBC) 58.51 −130.02 2 0 — 0.86 0.61 2 2 0.005 1.00

British Columbia 
Revelstoke (BCR) 51.04 −118.13 4 1 — 0.93 0.76 2 2 0.012 1.00

Central British Columbia 
(CBC) 54.75 −127.25 9 0 4.05 0.80 0.81 7 4 0.003 0.71

Southern Alberta (SAB) 49.35 −114.42 23 3 4.22 0.83 0.82 16 9 0.003 0.82

Western Montana (WMT) 46.54 −112.11 23 4 4.41 0.78 0.86 12 6 0.004 0.77

Eastern Montana (EMT) 46.66 −111.73 8 0 4.34 0.70 0.75 6 5 0.004 0.93

Colorado (CO) 39.77 −105.38 38 5 4.40 0.82 0.85 15 6 0.001 0.65

Utah (UT) 41.45 −111.50 20 2 4.28 0.81 0.83 17 11 0.003 0.85

Arizona (AZ) 35.15 −111.65 5 1 — 0.79 0.68 2 2 0.004 1.00

Washington (WA) 46.90 −121.64 20 0 4.06 0.76 0.81 18 8 0.003 0.74

Idaho (ID) 46.84 −116.96 10 2 3.53 0.76 0.80 5 5 0.005 0.90

Northeast Oregon 
(NEOR) 44.96 −118.23 25 3 4.28 0.78 0.83 19 12 0.003 0.93

Central Oregon (CEOR) 44.43 −120.92 17 1 4.21 0.82 0.83 15 4 0.002 0.70

Southern Oregon (SOR) 42.70 −122.15 24 1 4.05 0.77 0.82 19 9 0.002 0.82

Central California (CCA) 40.31 −123.10 12 4 3.86 0.80 0.79 12 8 0.003 0.85

South-central California 
(SCCA) 35.72 −118.15 11 2 4.46 0.74 0.80 8 3 0.001 0.64

Southern California 
(SCA) 34.16 −116.80 15 2 3.89 0.67 0.79 15 6 0.002 0.71

Table 1.  Microsatellite and mitochondrial genetic diversity statistics within populations of mountain chickadee; 
latitude, longitude, number of samples screened at microsatellite loci (Nmsat), private alleles (PA), allelic richness 
(AR), observed heterozygosity (Ho), expected heterozygosity (He), number of samples sequenced for mtDNA 
control region (NmtDNA), number of haplotypes (H), nucleotide diversity (π) and haplotype diversity (Hd). Allelic 
richness was only calculated for those populations with n > 5 individuals genotyped.

Figure 1.  Range map showing the sampling sites for mountain chickadees (lower inset; picture taken by 
Brendan Graham) in western North America. The red dashed line indicates the extent of glaciation during 
the Last Glacial Maximum. Top right inset shows three major morphological groups previously described 
in Behle69: gambeli –white, inyoensis – dark grey, baileyae – light grey. Sampling sites include central British 
Columbia (CBC), northwest BC (NWBC), Revelstoke, BC (BCR), southern Alberta (SAB), western Montana 
(WMT), eastern Montana (EMT), Colorado (CO), Utah (UT), Arizona (AZ), Washington (WA), Idaho (ID), 
northeast Oregon (NEOR), central OR (CeOR), southern Oregon (SOR), central California (CCA), south 
central CA (SCCA), and southern CA (SCA). Range maps were created in DIVA-GIS 7.5 (www.diva-gis.org) 
using digital distribution files provided by Ridgley et al.70.

http://www.diva-gis.org
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Among Rocky Mountain populations 24 of 45 FST comparisons were significant, Idaho was significantly different 
from all populations, and northeast Oregon from all populations except southern Alberta and Utah, Central 
Oregon from all populations except southern Alberta, eastern and western Montana, and Colorado, and central 
British Columbia from all but three populations (southern Alberta, western Montana and eastern Montana).

Figure 2.  (A) Statistical parsimony network of mtDNA haplotypes for mountain chickadees: A1 SOR/
CA group; A2 Rockies group. Each square represents a single individual and open circles indicate inferred 
haplotypes. Refer to Fig. 1 for location of sampling sites. (B) Principal coordinate analysis of mtDNA data based 
on population location. Coordinate 1 explains 73% of the variation and coordinate 2 12%.

Figure 3.  Unrooted ML tree with bootstrap values (left) and BAPS 95% CI cluster assignment (K = 4) of 
mtDNA. Contemporary mountain chickadee distribution is outlined in main map, populations with small 
circles representing sites where <5 individuals were sequenced, and larger circles where ≥5 individuals were 
sequenced. Colours represent the proportion of individuals that were assigned to each clade based on BAPS 
analysis. Green and purple circles represent individuals from the western clade (as outlined in Fig. 1), while blue 
and red represent haplotypes from the eastern clade. Range maps were created in DIVA-GIS 7.5 (www.diva-gis.
org) using digital distribution files provided by Ridgley et al.70.

http://www.diva-gis.org
http://www.diva-gis.org
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Similar to our statistical parsimony network, PCoA (Fig. 2B) showed three genetic clusters: Coast Range/
Cascades/Rocky Mountain, southern Oregon/central California, and southern California. SAMOVA also 
grouped populations into the same three distinct clusters (FCT = 0.85; p < 0.0001). The majority of variation was 
explained by differences among groups (85.43%; p < 0.001), although there was significant variation among pop-
ulations within groups (3.86%; FSC = 0.27; p < 0.001) and within populations (10.70%; FST = 0.89, p < 0.0001). 
In contrast to these previous methods, BAPS identified four distinct clusters; it split the Coast Range/Cascades/
Rocky Mountains into two different groups. Every population with exception of central Oregon and Colorado 
had at least one individual with a haplotype from each of the two Coast Range/Cascades/Rocky Mountains 
groups identified with this analysis.

Structure revealed four distinct clusters (ΔK = 1.94; Pr Ln (X|K) = −7338.60; Fig. 4). Similar to mtDNA 
patterns, the majority of Rocky Mountain populations clustered together with central Oregon, although Idaho 
formed a separate cluster independent of all other Rocky Mountain populations. One other difference between 
mtDNA and microsatellite patterns, was that Washington clustered with southern Oregon, central California, 
and south-central California, whereas it clustered with Rocky Mountain populations based on mtDNA control 
region sequences. Similar to mtDNA analyses, southern California was distinct from all other populations. We 
observed some introgression between groups based on microsatellites with 11 of 264 individuals (4.2%) assigned 
to a cluster outside of their ‘home’ cluster (Fig. 4). The average Q of birds that assigned to their home cluster was 
0.69, while those birds that showed evidence of introgression and assigned to an alternate cluster had an average 
Q of 0.47.

Figure 4.  Proportion of individuals in each mountain chickadee population assigned to one of the four clusters 
by Structure based on microsatellite data. Individual birds were assigned to the cluster (each cluster indicated 
by different colour) with the highest Q value (ancestry coefficient). Populations with small circles represent sites 
where <8 individuals were genotyped, and larger circles represent sites where ≥8 individuals were screened. 
Range maps were created in DIVA-GIS 7.5 (www.diva-gis.org) using digital distribution files provided by 
Ridgley et al.70.

CBC SAB WMT EMT CO UT WA ID NEOR CeOR SOR CCA SCCA SCA 
CBC * 0.002 0.005 0.046 0.022 0.018 0.030 0.055 0.018 0.037 0.062 0.095 0.021 0.076 
SAB 0.088 * 0.001 0.028 0.004 0.008 0.011 0.054 0.002 0.008 0.033 0.077 0.012 0.057 
WMT -0.076 0.061 * 0.022 0.009 0.007 0.020 0.076 0.015 0.013 0.030 0.070 0.005 0.056 
EMT -0.050 0.040 -0.043  0.008 0.013 0.017 0.111 0.023 0.016 0.010 0.064 0.005 0.036 
CO 0.322 0.538 0.346 0.364 * 0.007 0.014 0.060 0.001 0.012 0.019 0.061 0.003 0.033 
UT 0.140 0.424 0.201 0.224 0.111 * 0.011 0.078 0.014 0.019 0.027 0.061 0.009 0.033 
WA -0.022 0.047 0.014 0.011 0.357 0.272 * 0.061 0.002 0.004 0.016 0.062 0.002 0.056 
ID 0.009 0.313 0.046 0.113 0.385 0.063 0.176 * 0.041 0.083 0.095 0.110 0.075 0.123 
NEOR 0.145 0.042 0.124 0.107 0.538 0.446 0.107 0.351 * 0.005 0.018 0.060 -0.003 0.041 
CeOR 0.257 0.119 0.204 0.216 0.653 0.522 0.192 0.459 -0.006 * 0.009 0.070 0.009 0.042 
SOR 0.899 0.901 0.882 0.891 0.929 0.893 0.899 0.891 0.901 0.919 * 0.035 0.012 0.048 
CCA 0.880 0.889 0.863 0.868 0.922 0.879 0.887 0.867 0.890 0.911 0.008 * 0.057 0.098 
SCCA 0.912 0.910 0.882 0.902 0.950 0.897 0.906 0.900 0.907 0.936 -0.002 0.022 * 0.018 
SCA 0.898 0.899 0.878 0.891 0.933 0.890 0.898 0.885 0.900 0.922 0.835 0.824 0.856 * 

Table 2.  MtDNA ΦST (bottom left) and microsatellite FST (upper right) values for pairwise comparisons among 
mountain chickadee populations (bold = significant after Benjamini-Hochberg correction). AZ, NWBC, BCR 
populations were excluded due to small sample size (n < 8).

http://www.diva-gis.org
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Isolation by distance and resistance analyses.  Comparisons of microsatellite and mtDNA patterns of 
differentiation revealed contrasting patterns. Whereas four explanatory variables (geographic distance, habitat 
resistance, latitude, and longitude) explained relatively little of the observed differentiation (0.5–1.2%; Table 3) 
for microsatellites, these four variables were better predictors of mtDNA differentiation (7.2–52.9%). When we 
controlled for the effects of geographic distance and habitat resistance, our conditional models revealed that 
geographic distance is a stronger predictor of mtDNA genetic differentiation than habitat resistance; geographic 
distance explained a greater proportion of the variance (46.8%) than habitat resistance (7.2%). By comparison 
geographic distance and habitat resistance explained a similar proportion of the variance for microsatellites (1.2% 
and 0.5% respectively) indicating that both of these variables are not strong predictors of microsatellite genetic 
differentiation patterns.

Discussion
In this study we sought to answer the following questions: (1) Do populations exhibit similar levels of genetic 
diversity across the range? (2) What is the genetic affinity of western populations in Oregon and Washington? 
(3) Do genetic patterns exhibit isolation by distance, or are genetic patterns more heavily influenced by breaks 
in habitat? Across the range, we found a near-significant positive correlation between latitude and mtDNA 
genetic diversity using both a linear model and RDA approach, and microsatellite genetic diversity using an RDA 
approach only. Although these results indicate that latitude may predict genetic diversity, latitude may be reflec-
tive of other processes including isolation and post-glacial colonization patterns for this species. Our inclusion 
of populations from Washington and Oregon provided critical insights into genetic patterns; in particular our 
results revealed a contact zone in Washington between southern Oregon/California and Coast Range/Cascades/
Rocky Mountain mtDNA clades given that Washington grouped with southern Oregon/central California pop-
ulations based on microsatellite patterns. This area has been reported as an area of contact in several other avian 
species29,32. Finally, we found that isolation by distance has had a strong effect on the genetic structure of moun-
tain chickadees; specifically on mtDNA patterns Although habitat resistance explained less of the genetic varia-
tion in this species, we cannot ignore the important influence of habitat fragmentation as a result of Pleistocene 
glaciations similar to other studies25,26.

Our analyses of genetic diversity across the range suggest the potential for a correlation between genetic diver-
sity and latitude. In particular mtDNA genetic diversity showed a stronger correlation with latitude than micro-
satellite genetic diversity, indicating that genetic diversity was higher in previously glaciated areas than ice-free 
areas. It is important to note though that this relationship may reflect both past and present processes, including 
isolation and post-glacial colonization patterns. For example work on post-glacial patterns of genetic diversity in 
Italian agile frogs (Rana latastei) found that the distance from glacial refugium and isolation were strong predic-
tors of genetic diversity in this species27. In our own study, isolation may drive patterns of genetic diversity, given 
that our most isolated population in southern California exhibited some of the lowest levels of genetic diversity 
for both mtDNA and microsatellite markers. Additionally Idaho, a distinct population based on microsatellite 
markers also exhibits lower microsatellite genetic diversity and appears to be isolated from other populations in 
the Coast Range/Cascades/Rocky Mountain mtDNA group (see below). Further our analyses of population struc-
ture indicate limited gene flow is occurring between populations in the Rocky Mountains and central Oregon, 
and along the Pacific Coast among Washington, southern Oregon and California populations.

Previous genetic studies of mountain chickadees did not include or sampled relatively few individuals from 
Oregon and Washington25,26. Our inclusion of these populations allowed us to analyze the genetic affinity of these 
populations in an important biogeographic area with a complex geographic and climate history28. Individuals 

Variable Inertia %Variation df F p

Microsatellite

 Geographic Distance 2.16 1.2% 1,264 5.20 <0.001

 Habitat Resistance 0.89 0.5% 1,264 2.12 <0.001

 Latitude 2.04 1.2% 1,264 4.91 <0.001

 Longitude 1.06 0.6% 1,264 2.52 0.003

 Geographic Distance | Habitat Resistance 2.16 1.2% 1,263 1.99 0.020

 Habitat Resistance | Geographic Distance 0.82 0.5% 1,263 5.07 <0.001

Mitochondrial DNA

 Geographic Distance 49.12 52.9% 1,188 265.09 <0.001

 Habitat Resistance 6.66 7.2% 1,188 16.21 <0.001

 Latitude 25.04 26.9% 1,188 79.90 <0.001

 Longitude 10.38 11.2% 1,188 26.53 <0.001

 Geographic Distance | Habitat Resistance 45.53 46.8% 1,187 241.08 <0.001

 Habitat Resistance | Geographic Distance 1.07 1.2% 1,187 5.94 <0.001

Table 3.  Redundancy analysis models examining the effect of geographic distance, habitat resistance, latitude, 
and longitude on microsatellite and mtDNA genetic differentiation. Conditional tests were conducted to test 
the effect of geographic distance on genetic variation while controlling for habitat resistance along with the 
reciprocal test. Total variance (Inertia), percent of the variation explained (% Variation), degrees of freedom 
(df), F-Ratio (F), and p-values (p) are presented for each model.
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from Washington clustered with southern Oregon and California populations based on microsatellites and with 
Coast Range/Cascades/Rocky Mountain populations based on mtDNA. These contrasting patterns indicate a 
previously undescribed contact zone between western and eastern populations. Several other taxa show concord-
ant genetic breaks in this area presumably following common vicariance events28–31. Outside of Washington, we 
found little evidence to suggest contemporary gene flow between eastern and western populations, in contrast to 
Manthey et al.25. Differences in genetic patterns between the two studies may reflect differences in the evolution-
ary history, as well as the resolution of the markers. Despite the subtle differences in genetic patterns, the overall 
pattern of Washington, southern Oregon, and California being genetically distinct from Coast Range/Cascades/
Rocky Mountain populations was apparent in both studies.

Our combined analyses indicate geographic distance has a greater influence on genetic differentiation than 
habitat discontinuities, although both of these factors explained a relatively low portion of variation for microsat-
ellite loci. This result is surprising as habitat discontinuities correspond to genetic differentiation in two closely 
related species with similar dispersal potential: chestnut-backed chickadees (Poecile rufescens)32 and black-capped 
chickadees (Poecile atricapillus)23. Perhaps contemporary mountain chickadee habitat is not as isolated as that of 
these two sister species, however, this seems unlikely. Mountain chickadees are specialists inhabiting dry conifer-
ous forests at high elevation, so their distribution range may be more disjunct than it appears. Therefore we must 
also consider that although our sampling is adequate enough to detect isolation by distance, it may be too coarse 
of a scale to detect isolation by habitat resistance. Thus a more appropriate sampling scale at a regional scale may 
be required to detect a pattern of isolation by habitat resistance.

Habitat resistance was a strong predictor of variation for mtDNA; this pattern likely reflects the glacial history 
of western North America8. Large portions of the mountain chickadees present distribution were covered by 
ice sheets and alpine glaciers resulting in habitat fragmentation and restricted movement between eastern and 
western groups26,33. Further, large, arid, treeless basins are present within the range of this species, separating 
populations in southern and south-central California from central California. These arid, treeless basins restrict 
dispersal, as evident by a north/south break in that area in a variety of species34–37. Finally we cannot rule out the 
possibility that geographic distance may be masking the effects of habitat fragmentation. Mountain chickadees 
exhibit strong philopatry and limited altitudinal migration and these behaviours may amplify the effect of isola-
tion by distance in our study.

MtDNA patterns indicate historical isolation of mountain chickadee populations and continued isolation 
of maternal lineages, as we found no shared haplotypes between western and eastern populations. Further, we 
found clear north/south divisions within the western clade, as indicated by pairwise ΦST comparisons, a pattern 
that was undetected or incomplete in previous mtDNA studies of mountain chickadees25,38. Differences between 
studies partially reflect differences in markers and sampling. Although ND2 and control region have the same 
genealogical histories14, the control region exhibited greater resolution (as has been reported in other studies39) in 
our study than the ND2 marker used by Spellman et al.24.

In addition to genetic patterns indicating historical isolation, our results also suggest evidence for recent iso-
lation in mountain chickadees. For example, a fourth genetically distinct group was detected with microsatel-
lite data in Idaho. Idaho was completely distinct from other populations based on Structure and pairwise FST 
comparisons despite being with all Coast Range/Cascades/Rocky Mountain populations based on mtDNA data. 
Adams and Burg23 found that black-capped chickadee populations in Idaho were genetically distinct from north-
ern population in British Columbia and Alberta, as well as populations in Montana and southern Alberta. They 
attributed this pattern to reduced connectivity between forested areas as a result of mountain ranges and large 
canyons, restricting gene flow between populations. Therefore biogeographic features in this region may explain 
the isolation of this population.

The reduced genetic differentiation between Colorado, Utah, northeast Oregon, and central Oregon may 
be indicative of increased contemporary gene flow in mountain chickadees as suggested by Manthey et al.25. 
Sex-biased dispersal may explain differences between mtDNA and microsatellites40, although female-biased dis-
persal is more common in avian species20.

The mountain chickadee exhibits strong phylogeographic and population genetic structure. Our inclusion 
of Pacific Northwest populations revealed a contact zone between southern Oregon and California populations 
and Coast Range/Cascades/Rocky Mountain populations based on contrasting patterns for mtDNA and micro-
satellite data. MtDNA and microsatellite patterns were primarily concordant, indicating that both historical and 
contemporary gene flow are restricted between populations. Although isolation by distance exhibited a greater 
effect than habitat resistance in our analyses, we cannot discount the effect of habitat on genetic patterns. Overall 
our study indicates the important effects that Pleistocene glaciations have had on genetic patterns, especially in 
resident species like the mountain chickadee. Further our study highlights the complex biogeographic history of 
northwestern North America where the interaction between historical process, barriers to dispersal, and habitat 
configuration have influenced genetic diversity and divergence28. Further work is necessary to determine the 
variables that shape contemporary genetic patterns within this diverse region.

Methods
Sampling.  A total of 266 blood and tissue samples from 17 sampling sites were collected across the contem-
porary mountain chickadee range (Fig. 1; Table 1). Birds were captured using mist nets, and blood and/or feather 
samples were collected from 200 individuals during the summer of 2008 to 2010 and stored in ethanol (95%). 
All samples at a single sampling site (hereafter referred to as a population) were collected within a 50 km radius. 
Sixty-six samples collected within the last 20 years were obtained from museums (see acknowledgements). DNA 
was extracted from whole blood or tissue using a modified chelex method38,40. All protocols were approved by the 
University of Lethbridge animal care board, and all methods in this study were performed in accordance with the 
relevant guidelines and regulations.



www.nature.com/scientificreports/

8SCiEntifiC ReporTs | (2018) 8:11846 | DOI:10.1038/s41598-018-29982-7

MtDNA amplification and sequencing.  Two PCR primers, H1015 (5′-CGCGGGTTTAACGAATGTGG-3′)  
and LmochCR1 (5′-CAGGGTATGTATGTCTTTGCATTC-3′; designed this study), were used to amplify a 
765 bp product within Domains I and II of the control region for 190 samples. The polymerase chain reaction 
(PCR) was carried out in an Eppendorf Mastercycler. PCR consisted of approximately 100 ng of template DNA, 
1 μM of each primer, 200 μM dNTP, 2.5 mM MgCl2, 1 unit of Taq DNA polymerase (Crimson) and PCR buffer 
(Crimson or Promega) in a final volume of 25 μl. Amplification consisted of one cycle at 95 °C for 2 min, 54 °C for 
45 s, and 72 °C for 60 s; 37 cycles of 94 °C for 30 s, 54 °C for 45 s, and 72 °C for 60 s; and one final cycle at 72 °C for 
5 min. The PCR products were sequenced using an Applied Biosystems 3130 Genetic Analyzer or sent to Genome 
Quebec for sequencing (McGill University, Montreal, QC, Canada). MtDNA chromatograms were checked and 
sequences manually aligned in MEGA v5.039.

Microsatellite genotyping.  Seven microsatellite primer pairs isolated from other passerine species (Escu4, 
Escu6, Pat14, Pdo5, Ppi2, Titgata02 and Titgata39) were used for genotyping41–45. All forward primers were mod-
ified with the addition of M13 sequence to the 5′ end to allow for direct incorporation of a fluorescently labeled 
M13 primer. PCR reactions consisted of approximately 100 ng of template DNA, 0.5 μM of each microsatellite 
primer and 0.05 μM M13 tag, 200 μM dNTP, 1–2 mM MgCl2 (see below), 0.5 units of Crimson Taq DNA poly-
merase (New England BioLabs) and PCR buffer in a final volume of 10 μl. MgCl2 concentration varied depending 
on the locus (2 mM for Escu4, Titgata02, Titgata39 and Pat14, 1.5 mM for Escu6 and Ppi2, and 1 mM for Pdo5) 
and 1% formamide was added to the PCR for Escu4 and Ppi2. All loci were amplified using a two-step annealing 
procedure: one cycle for 2 min at 94 °C, and 45 s at TA1, 1 min at 72 °C; 7 cycles of 1 min at 94 °C, 30 s at TA1, 45 s at 
72 °C; 31 cycles of 30 s at 94 °C, 30 s at TA2, 45 s at 72 °C; and one final extension of 5 min at 72 °C. For loci Escu4 
and Pdo5 TA1 = 45 °C and TA2 = 48 °C, and for the other five loci TA1 = 50 °C and TA2 = 52 °C. The PCR was car-
ried out in an Eppendorf Mastercycler and PCR products were run on a 6% acrylamide gel using a Li-COR 4300 
(Li-COR Inc.) with appropriate controls and size standards. All microsatellite genotypes were visually scored 
independently by two people (JAH and TMB). Finally we re-amplified and ran a subset of individuals to ensure 
that we accurately scoring across gels.

Genetic diversity analyses.  To measure genetic diversity for mtDNA, we calculated the number of haplo-
types (H), haplotype diversity (Hd), and nucleotide diversity (π) using DnaSP v5.1046.

We tested all microsatellite loci x population combinations for deviations from Hardy-Weinberg equilibrium 
(HWE) and linkage disequilibrium (LD) using GENEPOP 4.0.1047,48. We found no significant linkage disequi-
librium between loci (p > 0.77), but following corrections for multiple tests six of 119 population x locus com-
parisons deviated from HWE: western Montana at locus Pdo5 (p < 0.001), southern Oregon at Ppi2 (p < 0.001), 
Washington at Titgata02 (p = 0.030), south-central California at Pat14 (p = 0.003) and southern California for 
Pdo5 (p < 0.001) and Titgata39 (p = 0.017). As no locus or population showed consistent deviations from HWE, 
we used all seven loci for subsequent analyses. We calculated observed heterozygosity, expected heterozygosity, 
and allelic richness for each population using Fstat 1.249. Finally, we compared microsatellite genetic diversity 
between populations using an Analysis of Variance in PAST version 350.

Rather than using single genetic metric (e.g. observed heterozygosity) to arbitrarily measure genetic diver-
sity51, we followed the methodology of Ficetola et al.27 and performed a principal component analysis (PCA) to 
estimate genetic diversity at each population for both our mtDNA and microsatellite datasets. For our mtDNA 
dataset we included nucleotide diversity and haplotype diversity in our PCA; the first principal component (Eigen 
value = 1.69) explained 84.43%. For our microsatellite dataset, we included allelic richness, observed heterozygo-
sity, and the number of private alleles; again we retained only a single principal component (Eigen value = 1.47), 
which explained 48.88% of the variance.

To compare patterns of genetic variation between new populations (populations in previously glaciated areas) 
and old populations (areas that were ice free during the LGM; refer to Fig. 1), we plotted genetic diversity against 
latitude. For this analysis we constructed two separate models, using the first principal component for summariz-
ing mtDNA genetic diversity and the first principal component summarizing microsatellite genetic diversity as 
our response variables, and latitude as our fixed variable; we analyzed the phylogeographic relationship between 
genetic diversity and latitude using linear regression models with the lme4 package in R52. For these analyses we 
only included populations with more than eight samples and therefore we excluded northwest British Columbia, 
British Columbia Revelstoke, and Arizona.

To further examine the relationship between genetic diversity and latitude, we performed a Redundancy anal-
ysis models53. RDA extends on multivariate linear regression approaches by examining the effects of explana-
tory variables on a given response variable. As opposed to providing a correlation coefficient, RDA follows an 
ANOVA approach and provides F-ratios and variance explained by each explanatory variable, thereby allowing a 
more nuanced interpretation of results54. For these analyses, we used the first principal component summarizing 
mtDNA genetic diversity and the first principal component summarizing microsatellite genetic diversity as our 
response variables and latitude as our explanatory variable. We performed this analysis using the Vegan package 
in R.

Phylogeographic and population structure.  Two different phylogenetic approaches, statistical parsi-
mony and maximum likelihood, were used to determine the phylogeographic relationship among the 190 chick-
adee mtDNA sequences. A statistical parsimony network was constructed using the program TCS55 with gaps 
treated as a fifth character state. The program jModeltest56 was used to select the model of sequence evolution that 
best fit the sequence data (HKY + G + I; AIC = 3959.94), and a maximum likelihood (ML) tree was constructed 
in MEGA using the same substitution model (discrete gamma categories n = 4) and nearest neighbor interchange 
heuristic model, with 1000 bootstrap replicates to evaluate robustness.
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We calculated pairwise ΦST (mtDNA) and FST (microsatellite) values for all populations with at least eight sam-
ples (Table 1). Pairwise ΦST values were calculated in Arlequin v3.0 (10 000 permutations)57, while pairwise FST 
was calculated from microsatellite data using GENODIVE v2.0b20 (10, 000 permutations)58. All p-values were 
corrected for multiple tests using the Benjamini-Hochberg false discovery rate (FDR) correction59,60. We used 
FDR corrections, given that previous studies have indicated that Bonferroni corrections often result in an increase 
of Type II errors, where the number of significant pairwise comparisons is underestimated60.

We used three different approaches to examine population structure based on our mtDNA dataset. First we 
used a Principal Coordinate Analysis (PCoA) to examine if haplotypes clustered geographically. For this analysis 
we created a distance matrix using our pairwise ΦST values and then performed a PCoA using GenAlEx 6.5 61. 
Next we used the Bayesian clustering program BAPS 5.362 to estimate the number of clusters. We conducted 
10 runs with the maximum number of possible clusters set at 17; we did not use sampling location as a prior. 
Individuals were assigned to the cluster with the highest average Q value (ancestry coefficient) from the 10 runs at 
the optimal K. Finally, we conducted a spatial analysis of molecular variance using SAMOVA63 to identify groups 
of sampling sites that are geographically homogenous and maximally differentiated from each other. SAMOVA 
uses a simulated process to define groups maximizing the proportion of total genetic variance due to differences 
between groups and, unlike AMOVA and SAMOVA, does not require groups to be defined a priori.

We examined genetic differentiation for microsatellites using the Bayesian clustering program Structure 
v2.364. To estimate the most likely number of clusters, we ran each K (1–10) for 10 iterations, using a burn-in of 
50,000 and a run of 100,000 steps65. We ran this analysis for all 17 populations using the admixture model, cor-
related alleles, and sampling location as priors. We estimated K by calculating ΔK65 in Structure Harvester66 and 
examining posterior probabilities as suggested by Pritchard et al.64. Following our initial STRUCTURE analyses, 
we explored the potential for hierarchical structure by performing subsequent runs on each of the identified clus-
ters. We found no evidence of further population substructure in any of the subsequent runs.

Habitat Resistance Analysis.  To get a measure of habitat connectivity and resistance between sampled 
individuals of mountain chickadee, we used graph theory to calculate distance and routes as implemented in 
the package gdistance in R67. It uses a raster (cell values) that represent a property of the landscape, in this case, 
tree-habitat. We created a least cost resistance matrix using latitude and longitude of all sampled mountain chick-
adees, and we used a global map of tree diversity68 to extract habitat tree density (habitat) values for each coor-
dinate point. The global map of tree diversity was restricted to the distribution of the mountain chickadee in the 
USA and Canada. The resistance values calculated for each pair of individuals was used to explain genetic varia-
tion for both microsatellites and mtDNA. All geographic analyses were done in R statistical program.

Isolation by distance and habitat resistance analyses.  Similar to our analyses of genetic diversity, 
we used Redundancy analysis Models to examine the effect of distance and habitat resistance on genetic differ-
entiation53. For these analyses, we specifically used distance based-Redundancy Analyses (dbRDA) to examine 
the effects of geographic distance, habitat resistance, latitude, and longitude on individual genetic variation for 
both microsatellite and mtDNA data. We analyzed each dataset individually and used the capscale function in the 
R-package VEGAN to perform all analyses52. We calculated the Cavalli-Sforza chord distance in GENODIVE for 
our microsatellite data and for our mtDNA data set we calculated Nei’s genetic distance using GenAlEx for our 
response variables. For our explanatory variables we used the decimal degree geographic coordinates (longitude 
and latitude) of each individual to test the effect of geographic distance. Next, we reduced the habitat distance 
matrix (as described above) to a single continuous variable using a Principal Coordinate Analysis in GenAlEx, 
retaining the first significant Principal Coordinate which explained 57% of the variation; p < 0.05 as our explan-
atory variable. We tested the effect of latitude and longitude separately to determine if north-south or east-west 
differences influenced genetic variation. In addition to testing the explanatory variables separately, we performed 
conditional tests where we controlled for the effect of geographic distance on habitat resistance, as well as the 
reciprocal test to determine which factors primarily influence genetic variation.

All microsatellite genotyping will be archived in Dryad and all mtDNA sequences will be archived in 
GenBank.
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