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Abstract

Background: Frugivorous primates are known to encounter many problems to cope with habitat degradation, due to the
fluctuating spatial and temporal distribution of their food resources. Since lemur communities evolved strategies to deal
with periods of food scarcity, these primates are expected to be naturally adapted to fluctuating ecological conditions and
to tolerate a certain degree of habitat changes. However, behavioral and ecological strategies adopted by frugivorous
lemurs to survive in secondary habitats have been little investigated. Here, we compared the behavioral ecology of collared
lemurs (Eulemur collaris) in a degraded fragment of littoral forest of south-east Madagascar, Mandena, with that of their
conspecifics in a more intact habitat, Sainte Luce.

Methodology/Principal Findings: Lemur groups in Mandena and in Sainte Luce were censused in 2004/2007 and in 2000,
respectively. Data were collected via instantaneous sampling on five lemur groups totaling 1,698 observation hours. The
Shannon index was used to determine dietary diversity and nutritional analyses were conducted to assess food quality. All
feeding trees were identified and measured, and ranging areas determined via the minimum convex polygon. In the
degraded area lemurs were able to modify several aspects of their feeding strategies by decreasing group size and by
increasing feeding time, ranging areas, and number of feeding trees. The above strategies were apparently able to
counteract a clear reduction in both food quality and size of feeding trees.

Conclusions/Significance: Our findings indicate that collared lemurs in littoral forest fragments modified their behavior to
cope with the pressures of fluctuating resource availability. The observed flexibility is likely to be an adaptation to Malagasy
rainforests, which are known to undergo periods of fruit scarcity and low productivity. These results should be carefully
considered when relocating lemurs or when selecting suitable areas for their conservation.
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Introduction

One of the imperative goals of conservation biology is to

determine how animals react to habitat degradation and

fragmentation. This knowledge is particularly urgent for forest

dwelling primates because of the alarming rate of habitat

alteration and the scarce ability of most species to move between

forest fragments [1]. Habitat loss and fragmentation can alter

both quantity and quality of food resources available to primates

[2–5]. Logging affects density, size, and distribution of plant

species in forest fragments [6], changing the availability of

preferred resources for primates, while edge effects result in high

mortality of primary forest trees [7–9]. However, the primate

response to habitat degradation seems to vary depending on

species and forest type and no clear generalizations emerge

[10,11].

As a general rule, habitat degradation seems to affect to a lesser

extent folivorous primates, since secondary growth may produce

higher food quality, i.e. leaves with higher protein and lower fiber

content, compared with those found in mature forests [12215]. By

contrast, frugivorous primates encounter more problems, due to

the fluctuating spatial and temporal distribution of fruiting trees,

the need to obtain proteins and minerals from alternative food,

and larger home range requirements [16–18]. Since frugivorous

primates are important seed dispersers and therefore fundamental

to catalyze the regeneration of degraded habitats, this vulnerability

has major implications for the maintenance of forest diversity

[13,19221]. According to evolutionary life history analyses,
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animals have the option to optimize their energy budget by either

minimizing the time spent on food intake (time minimizers) or

maximizing the energy intake at the expense of time requirements

(energy maximizers) [22]. Different primate species adopt one of

the two strategies even though there seem to be some flexibility

[23].

Although Madagascar is experiencing a dramatic habitat loss,

how lemurs react to forest degradation and logging is not yet clear

[24,25]. Similar to other primates, frugivorous lemurs seem to be

particularly vulnerable [26]. This disadvantage is amplified by the

unpredictability of fruiting patterns which characterizes the

island’s environment [27–29]. Frugivorous ruffed lemurs, Varecia

species, for example, are the first to disappear when forest are

logged ([30] but see [31]). Also, frugivorous rainforest brown

lemurs, Eulemur fulvus rufus, are forced to migrate during lean

seasons in order to find fruits and meet their energy requirements

[26,32]. On the other hand, some flexibility has been observed

and a number of mainly frugivorous lemurs may switch to lower

quality foods during lean periods (E. f. rufus [33], Lemur catta [34],

V. variegata [35]), modify their activity and ranging patterns (L. catta

[36], E. macaco flavifrons [37], E. collaris [38–39]), or use food

patches of different size and split into subgroups (E. f. fulvus [40], V.

rubra [41–42], V. variegata [43], Propithecus diadema [44]). Thus,

adaptations to fluctuating ecological conditions may have

potentially selected for the ability of lemurs to cope with degraded

habitats. However, the question about the limits of tolerance of

frugivorous lemurs to secondary and/or degraded habitats and

about which strategies they use to deal with these conditions

remain unresolved [25,45]. Moreover, specific nutritional analyses

comparing food items selected in degraded/logged versus intact

habitats to assess diet quality have been rarely carried out in

Madagascar [13].

The littoral forest of southern Madagascar offers an excellent

opportunity to test the flexibility of frugivorous lemurs to degraded

habitats. In 2000 the entire population of collared lemurs, E.

collaris, of the Mandena region (MAN) was moved from a forest

fragment burned by human activity to a protected, though

partially degraded fragment, affected by past logging and edge

effect due to its small size [46]. Previously published data indicate

that the animals increased body mass on average 15% and their

reproductive rate did not differ compared to populations of

collared lemurs living in intact habitats. However, the low average

group size observed in MAN after the translocation might

represent a strategy to reduce feeding competition [47].

Here, we want to assess whether and how MAN collared lemurs

modified their group size, activity budget, diet, and habitat use as a

response to habitat degradation. To achieve our goal, we

compared the behavioral ecology of MAN groups with data

previously collected on lemur groups in the more intact habitat of

Ste Luce (STL), a large forest fragment 20 km north of MAN. We

predict that:

1. MAN lemurs reduce intra-group feeding competition by

maintaining a group size smaller than that observed in intact

forests.

2. MAN lemurs modify their time-budget by increasing feeding

and moving effort because of the lower density and quality of

food resource in the degraded habitat. Alternatively, resting in

MAN lemurs may be increased in order to save energy.

3. We also predict that the diet of MAN lemurs is nutritionally

poorer and has a higher representation of fall-back species due

to the expected lower food availability in the degraded forest.

4. Finally, we expect the animals in MAN to modify their habitat

use by increasing ranging areas and/or number of feeding trees

as a response to increased difficulties in fulfilling nutritional

requirements.

Materials and Methods

Ethics Statement
This study was conducted with the authorization of the

Commission Tripartite of the Direction des Eaux et Forêts de

Madagascar (Autorisation de recherche #023 MINENVEF/SG/

DGEF/DPB/SCBLF/RECH ) and the University of Pisa (Animal

Care and Use Board). In accordance with the recommendations of

Weatherall report, trapping of the lemurs was conducted entirely

under anesthesia using a hypnotic (5 mg/kg of ketamine

hydrochloride or tiletamine hydrochloride), so that the animals

would not suffer/recall the capture process. Captures were carried

out by an experienced Malagasy technician, Enafa Efitroaromy,

via a blow-pipe darting. All animals recovered from anesthesia

within 1.5 hours and were not moved from the capture area nor

kept in a cage, but were followed until regaining full mobility.

There were no injuries as a consequence of the captures.

Study Sites and Species
This comparative study was conducted in the littoral forests of

MAN and STL near Fort Dauphin in south-eastern Madagascar

(Figure 1). Data were first collected in STL in 2000 (fragment S9)

and then in MAN in 2004 and 2007 (fragments M15 and M16)

(fragment numbering system proceeds from East to West). This

region is characterized by a tropical wet climate, with average

monthly temperatures of 23uC (range: 18.2–25.9; n = 30), annual

rainfall ranging from 1600–2480 mm, and no clear dry season

[48].

The conservation zone of MAN, 11 km North-West of Fort

Dauphin (24u95’S 46u99’E) is located on sandy soils at an altitude

0–20 m above the sea level [49]. The two largest forest fragments

in MAN, M15 and M16, cover an area of 148 hectares of

degraded littoral forest [50]. Approximately 82 ha of interspersed

marsh and swamp connect the two fragments. Because collared

lemurs used the swamp for travelling, feeding and resting, we

considered these two forest fragments as a single area in this study.

M15/M16 are the only two forest fragments where collared

lemurs are still present at this site [47]. The average canopy height

is 8.964.4 m and the understorey is dense [46]. In addition to E.

collaris, four nocturnal (Microcebus murinus, Cheirogaleus medius,

Cheirogaleus major, Avahi laniger), and one cathemeral lemur species

(Hapalemur meridionalis) are found in this area.

The protected forests of STL, around 30 km north of Fort

Dauphin (24u45’S 47u11’E), are among the most intact littoral

ecosystems in Madagascar and possess a very high vegetation

diversity [51]. The 377 ha forest block S9 is one of two fragments

where collared lemurs still occur in the STL area [38]. The

average canopy height is 14.764.3 m with a clearly stratified

structure [46]. In addition to E. collaris, four lemur species

(Microcebus rufus, Cheirogaleus medius, C. major, Avahi laniger) are found

in this area.

Floristically MAN and STL littoral forests are very similar,

suggesting that these two areas were once connected [46].

However, structural differences indicate that at the time of study,

the forests of MAN represent degraded forms of the vegetation

type in STL [46]. This deduction is also suggested by the

disappearance of some tree families known to be logged in MAN

but not in STL [46]. Forest degradation was evaluated in the two

areas by estimating the percentage of surface area occupied by the

canopy. This analysis resulted in the two categories of ‘‘intact to

Lemur Flexibility to Habitat Degradation

PLoS ONE | www.plosone.org 2 May 2011 | Volume 6 | Issue 5 | e19807



slightly degraded’’ and ‘‘degraded to highly degraded’’ for S9 and

M15/M16, respectively [49] .

Phenological records from the region [48] show that there is a

distinct peak in fruit production during the hot-wet season

(December-February), while fruit availability is particularly low

during the cool-wet season (June-August).

Collared lemurs are arboreal strepsirrhines living in multi-male,

multi-female groups [38]. Mean body mass is 2.1560.25 kg and

mean body length is 46.162.6 cm (n = 11). Median group size in

intact littoral forest is 7 (range: 2–17; n = 13) [38] and in intact

rainforest is 5 (range: 2–7; n = 11) [Johnson, pers. comm.]. This

lemur species is cathemeral and its dietary regime is mainly

frugivorous [38].

Census Data
In order to record group size variations, the total population of

E. collaris in MAN was counted by complete censuses in 2004 and

2007. For this exercise, 20 people spaced at 10 m intervals,

spanning the width of the M15/M16 forest, walked the entire

length of the forest. Surveys usually took one day. In STL, we

estimated average group size via line transects [52]. Existing trails

that ran in parallel were used as transects when possible to

minimize disturbance of the forest. A pair of observers walked four

transects (range: 1.5–2.2 km) at a rate of 1 km per hour between

the hours of 5am–7am or 4pm–6pm, stopping briefly to scan the

forest for indicators of lemur presence. Twelve days per month

were spent conducting systematic line transect surveys. A contact

time with primate groups of 10 minutes was targeted during line

transect censuses.

Behavioral Data
Diurnal ethological data were collected on five E.collaris groups

with different size, 3 in MAN and 2 in STL (Table 1). In MAN

data were collected from May to December 2004 and from August

to November 2007, while in STL from December 1999 to

February 2001. Given the different time window of data

collection, to allow comparisons in STL we limited the analyses

to the same months when the animals were followed in MAN.

Moreover, since nocturnal observations were not possible in

MAN, the analysis was limited to the diurnal phase. Overall, 782

observation hours in MAN were compared with 916 hours in

STL.

A total of 3 days per month was spent with each group. Each

day of observation consisted of 12 consecutive hours of data

collection from 6am to 6pm. Individual identification of each study

animal was made using nylon collars and colored pendants, and

one individual per group was radio-collared. Behavioral data were

collected by the instantaneous sampling method with a 5- minute

interval [53]. Focal animals were chosen from adult individuals in

both study groups, and were rotated every 3 hours, so that all

adult group members were evenly sampled at the end of 3

observation days (12 observation hours/day). Instantaneous data

collected consisted of animal activity, food type, feeding and

resting trees. Activities included feeding (food ingestion), foraging

(food exploration), resting, moving, social, and other activities.

Food types were noted as fruits, unripe fruits, leaves, young leaves,

flowers, invertebrates, and other (bark, stems, roots, mushrooms,

decayed wood). Differentiation between unripe/ripe fruits and

mature/young leaves was based on differences in color, size, and

texture. We estimated lemur diet by using the proportion of

feeding records, as the poor visibility conditions in dense littoral

forests precluded a reliable quantification of the absolute amount

of food items consumed. Although temporal measures of diet may

produce significant distortions of actual food intake [54,55], since

we focus on the relative proportion of food items between the two

forests and not on the absolute quantification of food consumed,

this method can be considered adequate for our purposes.

The Shannon index was used to determine the dietary diversity

of each population and calculated using the formula:

H 0~{
Xs

i~1

pi ln pi

where s is the number of species consumed, pi is the relative

abundance of each species in the diet (records spent feeding on

species i over the total feeding records). The greater the dietary

diversity, the greater is H’. This measure is particularly useful

when comparing similar dietary regimes, as it considers both the

number of food species and their evenness in the diet.

Habitat Use
All feeding trees (i.e. trees where animals were observed feeding

at least in one instantaneous record) were marked with a flag and

numbered to be found on a subsequent day. After behavioral data

were collected, the observer returned to the trees with the help of

an assistant to identify the species and to record diameter at breast

height (DBH). DBH has been shown to be one of the most

Figure 1. Location of sites. Study forest fragments are numbered
(modified from [47]). North is up.
doi:10.1371/journal.pone.0019807.g001
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accurate proxies to estimate fruit production of trees and has low

inter-observer variability [9]. The latitudinal and longitudinal

coordinates of the feeding trees were recorded with a GPS and

used to determine the size of the ranging area via the minimum

convex polygon method performed after having loaded the data in

the software RANGES VII.

Nutritional Analyses
Biochemical analyses on food items eaten by the two lemur

populations were conducted at the Department of Animal Ecology

and Conservation of the Hamburg University in 2001 (for STL

samples) and 2005–2007 (for MAN samples). Food samples were

weighed with an electronic balance (fresh weight), dried in an oven

for a standard period, weighed again (dry weight), ground and

dried again at 50–60uC before the analyses. The lipid content was

determined by extraction using petroleum ether, followed by

evaporation of the solvent. Soluble proteins were assessed by

BioRad after extraction of the plant material with 0.1 N NaOH for

15 h at room temperature. Soluble carbohydrates and procyanidin

(condensed) tannins were extracted with 50% methanol. Concen-

trations of soluble sugars were determined as the equivalent of

galactose after acid hydrolisation of the 50% methanol extract.

Samples were analysed for neutral (NDF) and acid (ADF)

detergent fibers. NDF represents all the insoluble fiber (cellulose,

hemicellulose and lignin), partly digestible in species with hindgut

fermentation. ADF represents the fiber fraction containing

cellulose and lignin, which are mostly indigestible for Eulemur

spp. Polyphenolic concentration was estimated as equivalents to

pyrogallic acid units. A detailed review of the procedures and their

biological relevance is provided by [56].

We performed separate nutritional comparisons for fruits and

leaves/flowers, due to the expected different contents between these

food categories. Additionally, since collared lemurs are mainly

frugivorous, in order to focus on potential differences between

primary and marginal fruits we compared separately species on

which the animals spent at least 1% of their feeding time (primary)

and the rest of the sample (marginal). Conversely, since leaves and

flowers are used marginally in terms of feeding time, we included in

that comparison all items eaten during the study period.

Data Analysis
Because of the small sample size and severe deviation from

normality, we used the nonparametric Mann-Whitney test to

evaluate the differences between median group size recorded at

the two sites in 2000, 2004, and 2007. The records of the different

activities were weighted by the total number of instantaneous

records. Daily average activity frequencies were calculated for

each animal during the day. Then, data were pooled by month,

and daily grand means per month were obtained at each site. A

one-way ANOVA was used to evaluate differences between the

two study sites in terms of food nutritional contents. To account

for the differences between the two study sites (MAN versus STL),

after having controlled for the effect of group size, we used a one-

way ANCOVA entering site as independent factor and group size

as covariate [57]. For the covariate we used monthly group size

after log transformation in order to improve linearity for the

regression and then we tested for normality via the Kolmogorov-

Smirnov nonparametric test. Units of analysis for the dependent

variable were monthly proportions of different activities, monthly

proportion of time spent eating different food categories, monthly

dietary diversity, monthly ranging areas, monthly average of the

daily number of feeding trees, monthly average DBH of feeding

trees. Dependent variables were also log-transformed both for the

ANOVA and for the ANCOVA. We performed all tests with

STATISTICA for Windows, version 6.0 and we considered

p,0.05 as the significant level.

Results

Group Size
Average group size was larger in STL in 2000 (median: 7,

range: 2–17, n = 13 groups) than in MAN both in 2004 (median: 3,

range: 1–6; n = 11 groups; U = 11, p,0.001) and in 2007 (median:

2, range:1–7; n = 5 groups; U = 7.5, p = 0.010) (Figure 2). Since

group composition changed over the study period, data from

MAN in 2004 and 2007 were analyzed separately.

Table 1. Site, observation period, and composition of each group.

Mandena Ste Luce

Group A Group B Group C Group A Group B

Month/Year of observation May-Dec 2004
Aug-Dec 2007

May-Dec 2004
Aug-Dec 2007

May-Dec 2004
Aug-Dec 2007

May-Dec 2000 May-Dec 2000

Adult females 1–2 2 1 3 1

Adult males 2 1–2 2 5 2

Sub-adults 0–1 0–1 0 0–2 0–1

Juveniles/Infants 0–1 0–1 0 0–5 0–2

Total 4–5 3–5 3 8–13 4–6

doi:10.1371/journal.pone.0019807.t001

Figure 2. Group size at the two study sites during the three
years of data recording. Values are medians and ranges. STL: Sainte
Luce; MAN: Mandena. * p,.05; ** p,.001.
doi:10.1371/journal.pone.0019807.g002
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Time-Budget
Both in STL and in MAN, resting occupied most of the time

(X6SE: 60.861.1%), followed by feeding (14.960.8%), moving

(13.160.1%), social activities (5.660.6%), foraging (4.462.3%),

and other activities (1.260.1%) (Figure 3). MAN groups moved

significantly more than STL groups (Site effect: F1,21 = 4.566,

p = 0.044), once we accounted for the effect of large groups to

move more than small groups (Group effect: F1,21 = 12.403,

p = 0.002). MAN groups fed significantly more than STL groups

(Site effect: F1,21 = 5.014, p = 0.036), once we accounted for the

effect of large groups feeding more than small groups (Group

effect: F1,21 = 8.293, p = 0.009). Also, STL groups foraged

significantly more than MAN groups (Site effect: F1,21 = 12.307,

p = 0.002). Though resting and other did not differ between the

two sites, small groups rested more and performed in other

activities less than large groups (Group effect: F1,21 = 7.601,

p = 0.012 for resting; Group effect: F1,21 = 14.892, p,0.001 for

other) (Table 2).

Diet
Collared lemurs were mainly frugivorous (ripe fruits X6SE:

65.768.1%; unripe fruits: 4.861.1% of total feeding time) at the

two sites during the study periods, complementing their diet with

flowers (15.767.2%), leaves (mature leaves: 5.464.5%; young

leaves: 4.461.5%), invertebrates (4.060.8%), and other items

(1.260.9%) (Figure 4). However, MAN lemurs spent significantly

more time eating mature leaves than STL animals (Site effect:

F1,21 = 6.690, p = 0.017) (Table 2).

Collared lemurs in STL fed on a total of 75 plant species during

the study period while MAN animals used 64 species. Preferred

plant species (used for more than 1% of feeding time) accounted

for 71% and 89% of feeding time for STL and MAN groups,

respectively (Table 3). Monthly dietary diversity evaluated by the

Shannon index (H’, X6SD: 2.1660.59 in MAN and 1.7860.29

in STL) did not differ significantly between sites (Site effect:

F1,21 = 2.374, p = 0.138) and there was no influence of group size

(group effect: F1,21 = 0.117, p = 0.736).

Nutritional Content of Food
Fruits eaten during more than 1% of feeding time were

considered ‘‘primary’’, those eaten for less than 1% of the time

were classified as ‘‘marginal’’. Due to the small sample size, this

distinction was not possible for flowers and leaves.

Nutritional analyses indicate that primary fruits in STL

contained a significantly greater proportion of carbohydrates

and a lower proportion of lipids as compared to MAN fruits. In

contrast, marginal fruits in MAN contained a significantly greater

proportion of tannins, fibers, and lipids, and a lower proportion of

polyphenolics when compared to STL fruits (Table 4).

As for leaves and flowers consumed, these items in STL

contained a significantly greater proportion of carbohydrates and

a lower proportion of fibers (both NDF and ADF) than in MAN

(Table 4).

Habitat Use
MAN groups used monthly ranging areas larger than those used

by STL groups (Site effect: F1,21 = 9.606, p = 0.005) after controlling

for the effect of large groups to use larger areas (Group effect:

F1,21 = 10.201, p = 0.004). Mean monthly ranging areas were

(X6SD) 28.11613.28 ha in MAN and 21.1569.41 ha in STL.

Additionally, MAN lemurs used a significantly higher number

of feeding trees per day (Site effect: F1,21 = 10.475, p = 0.004), after

controlling for the effect of large groups to use more feeding trees

(Group effect: F1,21 = 8.716, p = 0.008). The mean daily number of

feeding trees was (X6SE) 14.2563.06 in MAN and 11.9163.83

in STL.

Figure 3. Time-budget of collared lemurs at the two study
sites. Upper quadrant: monthly percentages of instantaneous records.
Lower quadrant: residuals of log-transformed time budget controlling
for log-transformed group size. Values are means and standard errors.
STL: Sainte Luce; MAN: Mandena; * p,.05; ** p,.001.
doi:10.1371/journal.pone.0019807.g003

Table 2. Effects of site and group size on lemur time-budget
and diet according to one-way analyses of covariance.

Time-budget SITE Group size

Resting 1.069 7.601*

Moving 4.566* 12.403**

Feeding 5.014* 8.293*

Foraging 12.307** 4.140

Social 0.387 0.677

Other 3.969 14.89**

Diet Site Group Size

Ripe fruits 0.886 0.268

Unripe fruits 1.572 0.512

Flowers 0.009 1.759

Mature leaves 6.690* 0.144

Young leaves 0.338 0.416

Invertebrates 1.264 0.003

Other 1.125 0.005

Analyses were performed on log-transformed data. Values are F-values.
*p,0.05.
**p,0.01.
doi:10.1371/journal.pone.0019807.t002
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A total of 734 feeding trees used by the lemur groups in MAN

and 1423 in STL were marked and measured. The analysis of the

size of feeding trees showed that MAN groups fed on significantly

smaller plants, in terms of DBH, as compared to STL groups (Site

effect: F1,21 = 6.065, p = 0.023), while group size had no effect on

the size of feeding trees (Group effect: F1,21 = 0.076, p = 0.785).

The mean monthly DBH of the feeding trees used by the collared

lemurs was (X6SE) 16.6063.81 cm in MAN and 21.0262.78 cm

in STL.

Discussion

In the littoral forest fragments of south-eastern Madagascar

collared lemurs exhibited a high degree of social and ecological

flexibility. In the degraded area, lemurs were able to modify group

size and several aspects of their feeding strategies, by increasing

moving and feeding time, ranging areas, and number of feeding

trees. Considering that body mass did not differ between the two

areas [47], the above strategies were apparently able to counteract

a reduction in both nutritional quality of food items and size of

feeding trees in MAN. Our findings are in line with other studies

on lemurs that show a relative tolerance to a certain degree of

habitat degradation and fragmentation [44,45,25,13,50]. Howev-

er, these results contain relevant implications and potential

recommendations for collared lemur conservation in rainforest

habitats. First, when living in or moved to degraded habitats these

lemurs require much larger ranging areas than in intact or semi-

intact forests. Second, in order to counteract intra-group

competition they split into small groups with potential effects for

demographic dynamics. Though some dietary flexibility has been

observed, the above phenomena seem to be the consequence of

the incapability of these lemurs to shift to a more folivorous diet, in

contrast to what has been observed in other brown lemur

populations [33,58].

Our results suggest that the observed reduction in group size in

the degraded MAN forest fragment compared to the more intact

STL fragment was more likely a consequence of a reduction in

habitat size and quality. This response is well known from studies

on lemurs and other primates [40–44,59,60]. Predation pressure,

the other main factor influencing group size, seems to have

Table 3. Scientific name, family, part eaten (frm: ripe fruits,
fru: unripe fruits, flo: flowers, yle: young leaves, ml: mature
leaves), percentage in the diet (%), i.e. percentage of time
spent by collared lemurs at the two sites feeding on the plants
visited during .1% of total feeding time.

Genus and species Family Part eaten % in diet

Mandena

Uapaca ferruginea Euphorbiaceae frm,fru 27.8

Canarium boivinii Burseraceae frm 7.1

Cynometra cloiselii Fabaceae flo,frm,yle 6.6

Acanthostyla aff. Longistylus Pandanaceae frm, yle 5.6

Ravenala madagascariensis Streliziaceae flo 4.8

Brexia madagascariensis Celastraceae flo 4.8

Uapaca littoralis Euphorbiaceae frm,fru 4.5

Sarcolaena multiflora Sarcolaenaceae fru,flo 4.1

Canthium sp. Rubiaceae frm,fru 3.8

Drypetes madagascariensis Euphorbiaceae frm 3.0

Vitex bracteata Lamiaceae frm 2.6

Vepris elliotii Rutaceae frm,fru 2.3

Dichaepetalium sp. Dichaepetaliaceae yle, ml 2.1

Eugenia sp. Myrtaceae frm,fru 1.8

Mammea sessiliflora Clusiaceae frm 1.6

Dillenia triquetra Dilleniaceae frm, yle, ml 1.6

Pandanus dauphinensis Pandanaceae frm 1.4

Anthocleista longifolia Gentianaceae frm 1.2

Ludia sp. Salicaceae frm 1.0

Ste Luce

Syzigium sp. Myrtaceae frm 20.0

Uapaca ferruginea Euphorbiaceae frm,fru 9.8

Cynometra cloiselii Fabaceae flo,frm,yle 7.7

Olea sp. Oleaceae frm 5.3

Vepris elliotii Rutaceae frm,fru 5.1

Pandanus dauphinensis Pandanaceae frm 4.9

Eugenia sp. Myrtaceae frm,fru 4.4

Uapaca littoralis Euphorbiaceae frm,fru 3.5

Cinnamosna madagascariensis
var. namorensis

Canellaceae frm 2.0

Canthium variistipule Rubiaceae frm,fru,yle 2.0

Acanthostyla aff. longistylus Pandanaceae frm 1.4

Tambourissa purpurea Monimiaceae frm 1.3

Homalium albiflorum Flacourtiaceae flo 1.1

Ocotea sp. Lauraceae frm 1.0

doi:10.1371/journal.pone.0019807.t003

Figure 4. Time spent by collared lemurs eating on the various
food categories at the two study sites. Upper quadrant: monthly
percentages of feeding records. Lower quadrant: residuals of log-
transformed feeding records controlling for log-transformed group size.
Values are means and standard errors. STL: Sainte Luce; MAN: Mandena;
* p,.05.
doi:10.1371/journal.pone.0019807.g004
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represented a less urgent priority for these collared lemurs. In fact,

we would expect a larger group size in MAN than in STL,

considering that the fossa (Cryptoprocta ferox), the main lemur

predator, has not been reported in the latter area in two decades,

while it visits MAN occasionally [47]. By the end of 2003 until

2007, some of these carnivores had been seen regularly in the

forest. In 2004 only, at least four E. collaris were killed by C. ferox in

MAN [47]. The disappearance of several other E. collaris in MAN

during the study period may indicate that predation pressure was

probably much higher than in STL. Small groups might also have

suffered higher predation risk from large diurnal raptors, such as

Polyboroides radiatus and Accipiter henstii, both present in the two

areas, although attacks were rarely reported [47].

The increased feeding activity of the MAN lemurs concomitant

with greater time spent feeding on leaves or less nutritious food is

consistent with patterns observed on other frugivorous-folivorous

primates living in fragmented/degraded areas. Howling monkeys

(Alouatta palliata) in forest fragments visit more food sources when

feeding from more leaves, which results in more traveling and

feeding and less resting [3,61,62]. Low habitat quality is associated

with increased feeding and decreased resting in baboons

(Theropithecus gelada [63], Papio cynocephalus [64]), while an increased

feeding on leaves or some fall-back food is also observed in

guenons (Cercopithecus cephus [5]), macaques (Macaca tonkeana [65]),

and lemurs (Propithecus diadema [66]) living in fragments.

Not surprisingly, the augmented feeding effort recorded in this

study seems to have been a direct consequence of spending more

time eating mature leaves and low quality food in a habitat

impoverished of large fruiting trees. This hypothesis is well

supported in our case by the nutritional analyses of all food items,

both fruits and leaves/flowers, which showed a drop of

carbohydrates and, thus, of available energy for MAN lemurs.

Thus, the strategy followed by collared lemurs may have been an

increase of feeding efforts in response to a decrease in food energy.

This tactic is not a paramount behavioral response, however, and

site-specific factors may lead to different choices, even when

looking at the same species. Indeed, time-budget differences were

not observed in other primates (A. palliata [67,68], Colobus guereza

[11]) when logged and continuous forests are compared. The

opposite strategy has also been observed, with decreased feeding

and increased resting in other C. guereza groups [69], in Procolobus

rufomitratus [70], and in Macaca silenus [71] living in fragmented

forests.

Interestingly, another factor possibly accounting for the

difference in feeding efforts between MAN and STL may have

been the processing time of different food items. We could not

collect specific data on processing time, but the top food item in

MAN were the drupes of Uapaca ferruginea, which need to be

opened to swallow the pulp discarding the husk. Conversely, the

top food item in STL were the small berries of Syzigium sp., easily

and quickly swallowed without processing. Food processing time is

an aspect which deserves further investigation when comparing

lemur time-budgets.

Increased feeding on mature leaves, as observed in our lemurs,

may also require a greater effort to meet specific nutritional

requirements [72] and to avoid an overload of toxins or

digestibility reducing compounds [73,74]. This fact would be

particularly important for animals with no adaptations for a strictly

folivorous diet, such as for Eulemur species [75]. We do not have

data on presence/dosage of secondary compounds, tannins and

polyphenolics excepted, but an overall tendency for a higher

content of the former and a lower content of the latter was

Table 4. Phytochemical characteristics as average percentage of dry matter of primary fruits (.1% feeding records), marginal
fruits (,1% feeding records), and leaves/flowers eaten by collared lemurs.

Lipids Proteins Sugars P.Phenolics Tannins NDF-fibers ADF-fibers

MAN 5.04 2.04 8.59 0.67 0.80 41.78 26.83

(14) 3.78–7.09 1.64–2.59 4.34–13.96 0.45–2.02 0.62–0.94 38.31–62.49 22.37–47.06

PRIMARY

FRUITS STL 2.69 3.74 18.48 1.60 0.18 42.98 31.04

(15) 1.71–4.91 1.84–4.25 7.49–35.67 0.85–3.21 0.00–1.07 30.91–49.11 22.99–37.81

F 4.691* 2.097 4.413* 1.316 0.399 0.238 0.064

MAN 4.02 2.53 10.78 0.59 0.84 44.25 29.42

MARGINAL (31) 2.33–9.63 1.75–3.48 3.98–16.77 0.44–0.87 0.64–1.14 38.62–53.29 20.58–38.27

FRUITS

STL 2.54 3.24 15.18 1.74 0.17 33.26 21.71

(32) 1.29–3.78 1.95–5.21 5.56–32.21 0.94–3.10 0.00–0.36 23.33–48.94 16.85–34.97

F 5.653* 2.137 2.153 21.781** 23.895** 5.452* 2.382

MAN 2.09 3.10 4.66 1.65 0.97 43.22 29.10

LEAVES (18) 1.64–3.09 0.86–3.75 2.50–6.48 0.73–3.68 0.68–1.12 33.51–61.15 24.28–40.50

&

FLOWERS STL 2.35 3.34 9.33 2.45 0.24 33.22 23.07

(24) 1.34–4.61 1.79–6.02 6.87–15.79 1.37–4.27 0.00–1.01 25.70–41.46 16.29–29.12

F 0.030 0.687 13.062** 1.138 1.814 5.718* 4.965*

P.Phenolics: polyphenolics are indicated as units per 100 gr of dry matter. MAN: Mandena; STL: Sainte Luce. Values are medians (in bold) and quartiles. (n) is the sample
size. Statistics are F values based on one-way ANOVA on log-transformed data.
*p,.05.
**p,.01.
doi:10.1371/journal.pone.0019807.t004
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observed in MAN food items. These differences were significant in

marginal fruits. Tannins, in particular, are known to bind proteins

and reduce their digestibility [76], therefore limiting tannin

ingestion might be necessary for MAN lemurs, since their food

was extremely poor in proteins (see table 4). The need to limit

tannin ingestion may also have restricted the possibility for a more

dramatic shift to leaves in our lemurs, since in rainforests leaves are

known to contain more secondary compounds and lower protein

to fiber ratios, due to their long life-span [77,78]. As a matter of

fact, Eulemur species in western deciduous forests have been

observed to shift to a folivorous diet during some periods of the

year [58,79,80] or even year-round [33], which does not seem to

be an option for their congenerics in the eastern rainforests

[26,32,38]. This seems to be the case for our collared lemurs, as

the overall time spent feeding on leaves was relatively low in both

study areas, though significantly greater in the degraded fragment.

Avoiding tannins may be important also when lemurs remain

mainly frugivorous, considering the high tannin content and low

protein content of the marginal fruits eaten by the MAN lemurs.

In support of our findings, a low fruit protein content seems to be a

general rule in Madagascar as compared to other continents [81].

The analysis indicated that, once the effect of group size was

removed, collared lemurs in MAN visited more and smaller food

trees than those living in the intact forest of STL, which, in turn,

resulted in increased ranging areas. This phenomenon may be

linked to the fact that MAN groups were not able to feed from

large trees, which generally contain more resources and are

depleted more slowly [9]. Large trees are in fact the most

vulnerable to fragmentation, forest degradation [7], and human

exploitation [4]. The loss of the largest food patches is a general

syndrome faced by primates in fragmented forests [1,3,58,82–84],

and it might have been the driving force for the observed group

size reduction in MAN.

Group fission as a response to changes in food patch size has

already been recorded for a number of lemur species [41–44]. In

this respect, Eulemur species are not an exception [40]. In

particular, a 46% decline in average group size of E. f. rufus has

been associated with decreased fruit availability in Ranomafana

[26]. However, long-term data on this genus from continuous

rainforests indicate that habitat shifting is the main response of

Eulemur species to severe food scarcity [26,32,85]. In Ranomafana

E. f. rufus are the only lemurs known to migrate up to 5 km away

from their home-ranges when fruits are scarce in their habitat

[26]. This strategy theoretically allows groups to remain cohesive

while they are forced to range further in search for food [23].

Although real migrations have not yet been observed in collared

lemurs, the STL largest group was able to expand considerably its

monthly ranging area from 23 to 56 ha during the lean season

[86]. Such an option was not a choice for the lemurs living in the

small MAN fragment, thus possibly forcing animals to split into

small subgroups in order to reduce feeding competition.

Interestingly, however, groups of lemurs were observed on several

occasions to cross the savannah after their translocation into the

MAN area, although it is not clear whether this behavior was a

response to low food availability or a kind of homing.

Malagasy rainforests are known to naturally experience long

periods of fruit scarcity [28,48]. Additionally, fruiting tree cycles

are irregular [27] and productivity is relatively low due to poor

soils and erratic climate [14,29]. This ecological scenario has set

the matrix for lemur communities to evolve strategies to deal with

periods of food scarcity [27,87]. In this respect, frugivorous lemurs

are expected to be more resilient to a certain degree of habitat

alteration compared to their ecological equivalents in other

primate communities [45,50,75]. Our data indicate that collared

lemurs in littoral forest fragments were actually able to modify a

number of aspects of their behavioral ecology. However, responses

to habitat degradation may change among habitats, species, or

even populations [23,25]. Additionally, given the potential

variation in food availability between years [48], our conclusions

have to be taken with caution until more long-term simultaneous

data will be available. Nevertheless, our results contain relevant

implications for brown lemur conservation. The observed

flexibility in feeding, social, and ranging patterns should be

carefully considered when relocating frugivorous lemurs or when

selecting suitable areas for their in situ conservation.
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