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Abstract
In recent years, neuroimaging research in cognitive neuroscience has increasingly used multivariate pattern analysis (MVPA) to
investigate higher cognitive functions. Here we present DDTBOX, an open-source MVPA toolbox for electroencephalography
(EEG) data. DDTBOX runs under MATLAB and is well integrated with the EEGLAB/ERPLAB and Fieldtrip toolboxes (Delorme
and Makeig 2004; Lopez-Calderon and Luck 2014; Oostenveld et al. 2011). It trains support vector machines (SVMs) on patterns of
event-related potential (ERP) amplitude data, following or preceding an event of interest, for classification or regression of experimental
variables. These amplitude patterns can be extracted across space/electrodes (spatial decoding), time (temporal decoding), or both
(spatiotemporal decoding). DDTBOX can also extract SVM feature weights, generate empirical chance distributions based on
shuffled-labels decoding for group-level statistical testing, provide estimates of the prevalence of decodable information in the
population, and perform a variety of corrections for multiple comparisons. It also includes plotting functions for single subject and
group results. DDTBOX complements conventional analyses of ERP components, as subtle multivariate patterns can be detected that
would be overlooked in standard analyses. It further allows for a more explorative search for information when no ERP component is
known to be specifically linked to a cognitive process of interest. In summary, DDTBOX is an easy-to-use and open-source toolbox
that allows for characterising the time-course of information related to various perceptual and cognitive processes. It can be applied to
data from a large number of experimental paradigms and could therefore be a valuable tool for the neuroimaging community.
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General Introduction

In recent years, the use of multivariate pattern analysis (MVPA)
techniques for neuroimaging data has rapidly increased.

Beginning with Edelman and colleagues' (1998) and Haxby and
colleagues' (2001) seminal studies, applicationsofMVPAtofunc-
tional magnetic resonance imaging (fMRI) data have become in-
creasingly popular, leading to a strong trend towards investigating
representations and predicting Binformation^ (i.e. the content of
cognition) in cognitive neuroscience (for reviews and comments
see: Davis and Poldrack 2013; Haynes 2015; Haynes and Rees
2006; Heinzle et al. 2012; Hogendoorn 2015; Mur et al. 2009;
Norman et al. 2006; Kriegeskorte et al. 2006; Tong and Pratte
2012;Woolgar et al. 2014, 2016) and to the publication of several
toolboxes (Hanke et al. 2009a;Hebart et al. 2015;Oosterhof et al.
2016). Most variants of MVPA have in common that (usually
supervised) classifiers are trained to predict the content of cogni-
tive processes directly from local spatial activation patterns, as
measured by the blood-oxygen-level-dependent (BOLD) signal.
Due to the poor temporal resolution of fMRI, however, it is often
difficult to track any fast decision processes in time, and to deter-
mine the timecoursewith which predictive information regarding
these processes is represented in neural data.
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One potential solution to this problem is to apply MVPA to
electroencephalography (EEG) data, as EEG has a far better
temporal resolution in the range of milliseconds, as opposed
to seconds in fMRI (o the r t echn iques such as
magnetoencephalography, MEG, will not be discussed here;
for reviews see King and Dehaene 2014; Grootswagers et al.
2016). Multivariate analysis techniques were already applied to
EEG data to investigate cognition several decades ago (Gevins
et al. 1979), but are currently experiencing a strong revival (for
reviews and technical comments see: Bai et al. 2007; Blankertz
et al. 2011; Contini et al. in press; King and Dehaene 2014;
Parra et al. 2005; Sajda et al. 2009; Stokes et al. 2015). By
taking advantage of the multivariate nature of EEG signals,
multivariate analysis techniques can, for example, predict the
outcomes of decisions, parameters of decision models, and de-
cision errors directly from activity patterns (e.g., Blank et al.
2013; Bode et al. 2012, 2014; Bode and Stahl 2014; Boldt and
Yeung 2015; Charles et al. 2014; Chung et al. 2015; Das et al.
2010; Parra et al. 2002; Philiastides and Sajda 2006;
Philiastides et al. 2006; Ratcliff et al. 2009; Tzovara et al.
2015; Van Vugt et al. 2012; for related approaches see: El El
Zein et al. 2015; Wyart et al. 2012, 2015). Others have used
similar techniques to investigate visual awareness (Hogendoorn
et al. 2015; Hogendoorn and Verstraten 2013; Fahrenfort et al.
2017), multisensory integration (Chan et al. 2017), and auto-
matic processing of semantic features of task-irrelevant stimuli
(Bode et al. 2014). MVPA has also been extensively used for
constructing brain-computer interfaces (BCIs; e.g., Müller et al.
2004, 2008).

We present a novel open-source toolbox for MATLAB—
the Decision Decoding ToolBOX (DDTBOX)—that performs
MVPA on the high-temporal-resolution EEG data typically
analysed using univariate analyses of event-related potentials
(ERPs). However, instead of analysing signals at single elec-
trodes (i.e. channels), or averaging across a group of selected
electrodes, for which ERP components have been described
and linked to specific cognitive processes (e.g., Luck 2005),
MVPA is applied to data from all electrodes in a predefined
analysis time window, which thereby serves as multivariate
input to a classifier (Parra et al. 2005). Such patterns of am-
plitude data can be extracted across space (e.g., from data
averaged over a time window for each channel: spatial
decoding), time (e.g., from all timepoints for each channel
separately: temporal decoding), or both (from all timepoints
for all channels: spatiotemporal decoding). This approach is
arguably often more data- rather than hypothesis-driven com-
pared to conventional ERP analyses, and has several benefits:
First, even subtle multivariate EEG patterns that differ be-
tween experimental conditions can be detected that would
otherwise be overlooked (Bode et al. 2012). Second, single-
trial patterns of activity can be directly linked to parameters in
decision models (e.g., Philiastides and Sajda 2006; Ratcliff
et al. 2009; Tzovara et al. 2015), or used to predict subjective

properties of stimuli such as arousal (e.g., Bode et al. 2014).
Finally, MVPA on ERPs allows for a more explorative search
for information when no ERP component is known to be
specifically linked to the cognitive process of interest; it does
not require a priori knowledge of the location and timing of an
effect, which can vary substantially across experiments
(discussed in Groppe et al. 2011).

We will now introduce the functionality of DDTBOX,
which can be applied to data from a variety of experimental
paradigms (and is by no means restricted to decision-making
research). DDTBOX requires minimal experience with
MATLAB coding, and integrates well with EEGLAB/
ERPLAB (Delorme and Makeig 2004; Lopez-Calderon and
Luck 2014) and FieldTrip (Oostenveld et al. 2011), allowing
users to prepare data using standard pre-processing pipelines
for ERP analyses with onlyminimal additions. DDTBOX can,
however, also use data preprocessed with many other com-
mercially available software packages. In the following, we
will first briefly discuss basic principles of classification ap-
proaches for the study of EEG signals. Then, we will provide
an overview of the general architecture of the DDTBOX,
complementing our detailed online user manual (https://
github.com/DDTBOX/DDTBOX/wiki). This will be
followed by a user-oriented introduction to using DDTBOX,
covering the general principles and features, the functional
structure of the toolbox, and a section on how to prepare
EEG data and how to configure analyses in DDTBOX. We
will then provide examples of research which has already used
beta-versions of DDTBOX, as well as limitations of analyses
offered by DDTBOX. Finally, we will conclude by giving an
outlook into planned future developments and extensions, as
well as options for users to directly contribute to the toolbox.
Where relevant, we will make reference to the detailed, more
technical documentation available online, which is designed
as an additional hands-on guide to the DDTBOX. We have
also provided an example dataset online that can be
downloaded to learn how to use DDTBOX, available at
https://osf.io/bndjg/. This dataset is under a GNU General
Public License (GPL) 3.0, which guarantees user rights to
share and modify the data.

Classification Based on ERP Data

Machine learning has recently gained strong popularity in
systems neuroscience. In particular, a supervised-learning ap-
proach using support vector machines (SVMs) has proved to
be a powerful tool for neuroimaging analysis (e.g., Haynes
2015; Grootswagers et al. 2016). The power of this approach
is derived from the fact that in most experiments, experi-
menters know the categories of interest a priori. These cate-
gories of interest typically correspond to different experimen-
tal conditions or participant response types (e.g., participants
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make decisions regarding object categories, make errors ver-
sus correct responses, report different subjective experiences,
etc.). The aim for analysis is then to find patterns of neural
activity that distinguish these categories. For multivariate
EEG signals, this would correspond to finding patterns in
the signal across time and space (electrodes) that distin-
guish the categories of interest. While this approach is still
correlative, in the sense that it seeks to identify patterns of
covariance between neural data and latent cognitive vari-
ables, its great advantage is that the structure of the neural
data need not map straightforwardly to known aspects of
the cognitive variables. Instead, it is sufficient that the EEG
signal patterns predict the cognitive variables, thereby per-
mitting researchers to conclude that information regarding
cognitive variables is present in the neural data, either
decodable from specific electrodes, or from specific pro-
cessing time windows (Yarkoni et al. 2017).

A detailed description of SVMs has been provided else-
where (Cortes and Vapnik 1995; Burges 1998; Hastie et al.
2001). Put simply, the general principle of SVM classification
is to construct a hyperplane (i.e. a decision boundary) in mul-
tidimensional feature space to optimally separate exemplars
into different categories (i.e. neural data mapping onto differ-
ent experimental conditions). The nearest exemplars to this
hyperplane from each category are known as the support vec-
tors. The further away these exemplars are from the separating
hyperplane, the better the classification. To avoid circularity
(Kriegeskorte et al. 2009), estimation of the hyperplane must
be performed on data independent from test data (left-out data
from the same experiment, or new data from an identical ex-
periment), which is subsequently used to evaluate the model
by assigning category Blabels^ to each exemplar in the test
data set. This usually involves k-fold cross-validation, in
which the data are divided into k subsets. The classifier is
trained on k-1 subsets and tested using the left-out subset.
This procedure is then independently repeated with each sub-
set serving as the test data set once while training on the others
(for an example see Meyers and Kreiman 2011). The average
accuracy across all cross-validation steps, often referred to as
Bclassification accuracy^ or Bdecoding accuracy ,̂ can then be
treated as an index for whether information about the catego-
ries of interest was represented in this specific pattern of brain
activity. Statistically, this question can be assessed by submit-
ting classification accuracy values to statistical testing, either
against a theoretical chance performance level (e.g., with two
balanced classes, the expected chance level = 50%), or against
an empirical test distribution, e.g., by comparing against re-
sults of analyses using randomly-shuffled condition labels
(e.g., Stelzer et al. 2013). Although SVM classification is
binary in nature, it can easily be extended to more complex
multi-class classification problems by combining results from
all pair-wise class combinations or performing one-vs.-other
comparisons.

DDTBOX can also perform a type of generalisation anal-
ysis, testing whether patterns of information that discriminate
between categories are stable across experimental contexts.
For this, the classifiers are trained on data from one context
(e.g., correct and error responses in task A) and used to predict
the classes from data from another context (e.g., correct and
error responses in task B). Such an approach is known as a
cross-condition classification analysis. This can reveal wheth-
er the neural patterns that discriminate between outcomes are
consistent across different task or stimulus presentation con-
ditions, as the classifier should only be able to generalise from
one to the other if patterns are highly similar (for an example
from fMRI, see Bode et al. 2013).

For cognitive variables of interest that are continuous rather
than categorical (such as response times), an alternative to
SVM classification is support vector regression (SVR). SVR
allows for trial-by-trial values of a continuous variable to be
mapped to predicted values of that variable. DDTBOX offers
both options, as we will outline below.

General Principles of DDTBOX

In order to perform a classification analysis, DDTBOX first
requires the user to define discrimination groups, correspond-
ing to categories of interest. These could be experimental con-
ditions (e.g., different object categories) but also participants’
behaviour (e.g., correct and incorrect responses). The event-
locked ERP data, which is used for the analysis, has under-
gone all pre-processing steps such as artefact correction and is
epoched into time periods of interest as for conventional ERP
analyses. Events can be either exogenous, such as stimulus
presentations, or endogenous, such as behavioural responses.
The epochs of ERP data are then sorted with respect to the
categories of interest, and each epoch is assigned a class label
corresponding to its category.

SVM Back-End Software, Types of Analysis,
and Kernels

DDTBOX’s main function is to prepare exemplars of patterns
of ERP data for each participant for SVM classification or
regression analyses. To perform such analyses, DDTBOX in-
teracts with existing machine learning software packages to
perform classification/regression (similar to The Decoding
Toolbox for fMRI; Hebart et al. 2015). The user can choose
between the LIBSVM package (Chang and Lin 2011), which
has been used by other toolboxes in the field (e.g., Hebart et al.
2015), and LIBLINEAR (Fan et al. 2008), a less flexible but
faster implementation of commonly-used SVM classification
and regression algorithms (see the online documentation for
details). Several SVM analysis options are available, includ-
ing different SVM fitting methods and kernels. We refer to the
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websites of these software packages for detailed explanations
of these options (LIBSVM: https://www.csie.ntu.edu.tw/
~cjlin/libsvm; LIBLINEAR: https://www.csie.ntu.edu.tw/
~cjlin/liblinear). For most research questions requiring
classification, C-SVM (as implemented in LIBSVM) with a
linear kernel and a default regularising parameter C = 1 ap-
pears to be adequate and standard in the field, and is therefore
the default option in DDTBOX. For multivariate regression,
DDTBOX uses SVR in LIBSVM with a linear kernel and
regularisation parameter C = 0.1 as the default option.

Analysis Time Window Width

DDTBOX performs analyses using a moving window ap-
proach: the signals of interest during a prespecified analysis
time window are extracted and analysed, and the analysis time
window is then moved by a specified step-size through the
epoch (depicted in Fig. 1A). The user can specify the analysis
window width and step-size. The optimal analysis time win-
dow width depends on the research question of interest, as
information relating to some cognitive processes might be
better captured by longer analysis time windows, while other
short duration cognitive processes might be better captured
using short analysis time windows. Our own previous work
has successfully utilised analysis time windows ranging from
10 ms (e.g., Bode and Stahl 2014) to as long as 80 ms (e.g.,
Bode et al. 2012).

Analysis Time Window Step Size

The analysis time window is moved through the trial at a user-
defined step size, independently repeating decoding analyses
each time with data from the new time window (depicted in
Fig. 1A). The step size could be the same as the analysis
window width to achieve non-overlapping analysis time win-
dows (e.g., 10 ms windows moved in steps of 10 ms).
Alternatively, the step size could be finer than the window
width (e.g., 20 ms windows moved in steps of 10 ms), leading
to partial overlap of analysis time windows. This can be use-
ful, for example, when one is interested in relatively fast cog-
nitive processes, which might occur with a finer temporal
resolution than the window size and therefore be captured
only partly by two consecutive larger analysis time windows.

Spatial and/or Temporal Analyses

DDTBOX users can elect to run spatial analyses (Fig. 1B),
which involve averaging across all data points included in the
chosen analysis time window for each channel. This proce-
dure results in one data point per channel (number of channels
× 1 activity pattern). Alternatively, the user can choose to
disregard spatial patterns and perform temporal analyses
(Fig. 1C) using data from single channels. In this case, all

other channels are ignored, and the data points for the selected
channel that are included in the analysis time window (num-
ber of data points × 1) are treated as the activity pattern of
interest. This analysis does not investigate spatially distributed
information, but instead focuses on information distributed in
time for a given channel. This approach is complementary to
spatial classification, but it does not make use of all available
(spatial) information. Finally, one can consider both spatial
information (over channels) and temporal information (over
timepoints) within a chosen analysis time window as the ac-
tivity pattern (spatiotemporal analyses; number of data points
x number of channels), as shown in Fig. 1D.

Averaging

DDTBOX further provides the user with the option to average
across separate sets of exemplars first before training the clas-
sifier. The standard option is not to average, which means that
usually each experimental trial (or a part of such) is treated as
one exemplar for one of the classes of interest. This usually
has the advantage of maintaining a large number of exemplars
for training and testing. However, if data from a large number
of trials are available, one might consider averaging across
subsets of trials for the same reasons that averaging is per-
formed to obtain grand average ERPs: to optimise the
signal-to-noise ratio. For example, if the experiment was split
into 10 separate blocks, one could use block-averaged data for
each class instead of single trials (e.g., see Bode et al. 2012).
This is similar to first obtaining beta-estimates, or ‘regressors’,
for separate functional ‘runs’ in fMRI, and then performing
MVPA on these estimates (representing the run-averaged
model fit of a general linear model) instead of on single vol-
umes from all trials. Averaging usually results in estimates of
exemplars with a higher signal-to-noise ratio, and can improve
classification performance in some cases (see Isik et al. 2014;
Grootswagers et al. 2016).

Feature Weight Analyses

DDTBOX allows users to extract and analyse feature weights
from the fitted SVM classifiers. Much as regression coeffi-
cients describe the contribution of each predictor to the depen-
dent variable, feature weights in SVM describe the contribu-
tion of each feature in determining the decision boundary, i.e.
separating classes. As such, feature weights are used in
DDTBOX to estimate the relative importance of different fea-
tures (e.g., channels in spatial decoding analyses) for classifi-
cation or regression. Accordingly, feature weights are
analysed in DDTBOX to identify sources of information that
the classifier uses to distinguish between experimental catego-
ries of interest. The ‘raw’ feature weights derived from SVMs
are prone to erroneous interpretations regarding the sources of
information used for decoding, as they can be affected by
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other statistically independent signals (such as noise generated
by muscle activity, which as a feature may be strongly weight-
ed but irrelevant). However, this can be corrected in
DDTBOX by employing the algorithm described by Haufe
et al. (2014).

In spatiotemporal analyses (see above) the features are
single timepoints within the analysis time window for each
channel. In DDTBOX feature weights are averaged across
timepoints within each analysis window to output an averaged
feature weight value for each channel (in consequence, group
level feature weight analyses are only implemented for spatial

and spatiotemporal analyses). Furthermore, as the sign of the
feature weights indicate the importance of each feature for one
or the other (arbitrary) category, and since the sign of each
feature weight is therefore arbitrary, DDTBOX computes ab-
solute feature weights, which indicate the importance for the
classification in general (i.e. for either category). However, the
advanced user can also access the original signed feature
weights at individual timepoints within each analysis window.
Lastly, feature weights from each analysis step are z-
standardised to make them comparable between analyses.
Hence, the final output is one absolute, z-standardised feature

Fig. 1 Decoding approaches in
DDTBOX. (a) Example of the
windowed analysis approach.
DDTBOX performs MVPA on
time windows of EEG data (time
windows outlined in blue). For
each analysis the time window is
moved through the trial by a
predefined step size. (b) Example
of spatial decoding. For each
channel EEG data is averaged
across timepoints within the
analysis time window, resulting in
one value per channel used for
MVPA. (c) Example of temporal
decoding. MVPA is performed
using data from each timepoint
within the analysis time window,
for each channel separately. (d)
Example of spatiotemporal
decoding. All timepoints at all
channels are used in combination
for MVPA
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weight value for each channel for each analysis time window.
These are used for group-level statistical testing (see below).

Statistical Testing

The result of each single analysis for each participant is a
percentage value of correct classifications for all exemplars
contained in the test-data set (for classification analyses), or
a Fisher-Z transformed correlation between the predicted la-
bels and the true labels (for regression analyses). Then, after
the k-fold cross-validation procedure, all k outcome values are
averaged to index the overall accuracy. As it is theoretically
possible that accuracy estimates were inflated by chance due
to the random assignments of exemplars to training and test
sets, the default option in DDTBOX is to re-compute the sets
m times (i.e. a new, fully independent draw of k sets) and to
repeat all analyses for a user-specified number of iterations.
The default is to repeat all cross-validated analyses with inde-
pendently drawn sets ten times. For example, choosing k = 10
for cross-validation, and m = 10 iterations will result in 10 ×
10 = 100 analyses, and the final accuracy will be the average
of all 100 analyses. This procedure is designed to optimise
reliability of results rather than accuracy values.

Statistical testing at a group level is then performed on
average accuracy values obtained from the same analysis time
window across participants. DDTBOX offers the option of
testing against theoretical chance level (e.g., 50% for a bal-
anced two-class classification, 33% for balanced 3-class clas-
sification, etc.). However, this approach has been criticised
recently (Combrisson and Jerbi 2015). For example, increases
in sample variance of accuracy values will also increase the
chance of rejecting the null hypothesis when testing against
theoretical chance (Allefeld et al. 2016). The default option in
DDTBOX is therefore to estimate the empirical chance distri-
bution by running decoding analyses on data with permuted
condition labels. Specifically, DDTBOX repeats all original
analyses (e.g., m iterations of a k-fold cross-validation proce-
dure) with exactly the same data and the same category labels,
but with assignment of labels to exemplars independently
randomised for each iteration. This means that any potential
biases in the original data (such as unbalanced numbers of ex-
emplars across categories) also affect the permuted-label analy-
ses. The original and the permuted-label analyses are otherwise
completely identical, and the results of the permuted-label anal-
yses can then be statistically compared to the original results.

Finally, group decoding accuracy at each analysis time
window can be tested for statistical significance using either
paired-samples t-tests or a group-level analysis method de-
scribed inAllefeld et al. (2016) based on theminimum statistic
(Friston et al. 1999). Importantly, both testing approaches do
not provide population inference as do t-tests on univariate
measures, but instead test the null hypothesis that there are
at least some individuals within the sample that show above-

chance decoding (i.e. is a fixed-effect analysis; discussed in
Allefeld et al. 2016). However, the method based on the min-
imum statistic also provides lower bound estimates of the
prevalence of decodable information in the population.

Analyses run in DDTBOX typically involve a large number
of individual tests, requiring corrections for multiple compari-
sons to control the family-wise error rate. The number of tests
performed depends on the number of analysis time windows,
which can be minimised by selecting a restricted search space
prior to running decoding analyses. DDTBOX offers a variety
of correction techniques for multiple comparisons, some of
which exploit temporal autocorrelation of the classification ac-
curacy results across time windows to preserve statistical pow-
er. Available corrections include the Holm-Bonferroni method
(Holm 1979), maximum statistic and cluster-based permutation
tests (Blair and Karniski 1993; Maris and Oostenveld 2007),
generalised family-wise error rate control (Korn et al. 2004) and
false discovery rate control (e.g. Benjamini and Hochberg
1995; Benjamini et al. 2006). In addition, the distributional
assumptions for paired-samples t-tests are often violated for
samples of classification accuracy scores (Stelzer et al. 2013).
DDTBOX can therefore also perform analyses using Yuen’s
paired-samples t-test (Yuen 1974;Wilcox 2012), which is more
robust against violations of normality.

DDTBOX further offers group-level statistical testing of
feature weights using paired-samples t-tests, with corrections
for multiple comparisons over channels. Feature weights can
be averaged over a number of analysis time windows before
statistical testing, if required.

Display Options

DDTBOX allows plotting of the decoding performance and
feature weight results at various stages. First, users can plot
decoding accuracy scores (averaged over cross-validation
steps and independent analyses) for individual subjects, for
all analysis time windows (spatial and spatiotemporal
analyses) or for all channels within a single time window
(temporal analyses). For spatial and spatiotemporal analyses
this is an ‘information time-course’, displaying the average
accuracies (y-axis) for each chosen analysis time window (x-
axis). Results of permuted condition labels analyses can also
be plotted. This could be useful to quickly visually inspect the
results for appropriateness of the chosen parameters (such as
the window widths or step size), and also to confirm that the
shuffled-label control analysis produces chance results. By
contrast, temporal analysis results are plotted as a spatial
map of accuracies for each channel, which are plotted as a
heat map with a topographic projection onto the scalp.

Similarly, at a group level information time-course plots
can be generated for spatial and spatiotemporal analyses,
displaying the group-level accuracies (and optionally the per-
muted labels analysis results in the same plot) with error bars
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denoting standard errors of the mean. Users also have the
option to include a vertical bar indicating the timing of the
event of interest, as well as automatic marking of statistically
significant analysis time windows based on a user-specified
alpha level. Axis labels are automatically generated (based on
the included baseline period and sampling rate, as well as
minimum and maximum accuracy values) but can be manu-
ally modified, if desired. The temporal analyses group results
are again heat maps displaying the colour-coded average
group-level accuracy for each channel (note that standard er-
rors are not included in this plot).

For the display of group-level feature weight maps (spatial
and spatiotemporal analyses), two options are available.
Firstly, a matrix of z-standardised, absolute feature weights
per channel (y-axis) can be displayed for user-selected analy-
sis time windows (x-axis). Secondly, the z-standardised, ab-
solute group-level feature weights can be displayed for single
analysis time windows or averages of user-specified analysis
time windows. Feature weights can also be plotted as maps
thresholded by statistical significance. All figures are plotted
using MATLAB plotting routines, can be manually modified
if desired, and exported to file formats including TIFF, JPG,
PDF, EPS, and many others.

Functional Structure of DDTBOX

The functional structure of DDTBOX is extensively described
in the wiki (https://github.com/DDTBOX/DDTBOX/wiki/
DDTBOX-Code-Structure) and will not be repeated here in
detail. The order of data processing steps in DDTBOX
for MVPA on single subject datasets is displayed in
Fig. 2A. The operations performed in DDTBOX for
group-level statistical testing are illustrated in Fig. 2B.
Advanced users, who might want to gain access to data
after specific processing steps, or who are considering
expanding the toolbox at specific stages according to
their needs, can use this information to easily navigate through
the code.

The following section will only provide a brief overview of
the functional structure, which is divided into phases:

Data Preparation (Phase 1). Includes preparation of the
epoched data (see Section 5.1 below), as well as configuration
of classification/regression analyses (as covered in the previ-
ous section).

Reading the data (Phase 2). This data is transformed into a
MATLAB cell array with the following format:

whereby run refers to the experimental block (if no
separate blocks exist in the data, run will be 1), cond is

the category/condition for classification (only one condi-
tion is used for support vector regression), timepoints are
the single data points, channels the included EEG chan-
nels, and trials the single trials of the experiment. This is
the general format for data storage, and each processing
step will create a similar variable after the specified
manipulations.

Reduction of data (Phase 3). Next, the data is reduced to
the user-specified categories / conditions, which are used for
the discrimination group of interest. This has the advantage
that DDTBOX can operate within the memory constraints of
most desktop computers.

Balancing the number of included trials (Phase 4). A fre-
quent problem with classification analysis is that one might
end up with an unequal number of trials per condition. This
might be due to paradigms in which one condition is over-
represented (e.g., oddball paradigms, flanker tasks, or any
other paradigm that requires more or less frequent events),
responses of interest are not balanced (e.g., errors and correct
responses, or most decision-making paradigms), or simply
because by chance more trials are lost during EEG data pre-
processing for one than for another condition.While this is not
necessarily a problem for classification analyses, DDTBOX
takes a conservative approach and equalises the number of
trials per category / condition before classification.

Calculating block-average trials or pooling all trials
across blocks (Phase 5). The next step involves averaging
across trials (i.e. exemplars) within each experimental block,
if this option was chosen. Alternatively, if there exist multiple
blocks, but the user chose to treat them all as one long exper-
iment, trials from each block are pooled at this stage.

Sorting for classification (Phase 6). The data is now sorted
for the classification or regression process. For this, all trials
(or block-averaged trials) will be divided into the user-
specified number of k sets (the default is k = 10), which also
specifies the number of cross-validation sets to be executed.
For each full cross-validation cycle (repeated m times; the
default is m = 10; see section 3.7 Statistical testing) trials are
randomly assigned to one of the sets with the restriction that
no set can have more trials than the others (left-over trials are
excluded for this cycle). Of these sets, k – 1 are randomly
assigned to the training data variable while the left-out set is
assigned to the test data variable. All k combinations are
stored before the random assignment of trials to sets and their
sorting into training data and test data is performed again for
all m iterations. For SVR, an additional matrix containing one
value (the condition label) for each trial is used and substitutes
for the class labels.

Vector preparation (Phase 7): After sorting data into train-
ing and test sets, DDTBOX extracts data from within the
analysis time window and reshapes data from each trial into
a single vector. These vectors are then used for training and
testing the SVM classification or regression model.
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Using DDTBOX

Preparing and running MVPA in DDTBOX involves four
stages: preparing the data, configuring and running the
decoding analyses, configuring and running group-level anal-
yses, and plotting and interpreting the group results. Each of
these are briefly described below.

Preparation of EEG Data

For decoding analyses DDTBOX uses epoched data, as de-
scribed in section 4. Each participant dataset is saved as a
separate data file. Epoched EEG data must be sorted by ex-
perimental condition and run/block, and then stored in this
array. If applicable, SVR labels are stored within a separate
cell array, with labels ordered in the same way as the corre-
sponding epochs in the EEG data array. A function for auto-
matically converting EEG data epoched using EEGLAB or
ERPLAB is provided with the toolbox. This function can also
extract epoched independent component activations in addi-
tion to EEG amplitudes. This function can further generate
SVR labels files for each condition. Other data types (such
as behavioural or steady-state visual evoked potential data)

can, in principle, also be organised within the same cell array
structure for use with DDTBOX by advanced users (for more
information see the online documentation).

Configuring and Running the Decoding Analyses

DDTBOX uses a decoding analysis configuration script for
defining all relevant parameters and running decoding analy-
ses. Within this script the user can define single subject data
filepaths, EEG dataset information, experimental conditions
and discrimination groups, and a wide variety of multivariate
classification/regression analysis parameters. Finally, the sub-
jects and discrimination groups for analyses are defined, and
the DDTBOX core decoding functions are called from this
script. Users can copy and adapt these scripts for their own
experiments; all parameters are clearly explained in the code
comments of the script.

Once all the configuration parameters have been specified,
the user can run decoding analyses by executing the
MATLAB configuration script. SVM classification/
regression performance and feature weights information will
be stored in a separate file for each subject.

Fig. 2 Functional structure of DDTBOX. (a) The single subject data
decoding functions accept epoched data and analysis configuration
parameters. Epoched data is extracted for selected analysis time
windows, and sorted for SVM classification or regression, for each
cross-validation step and each independent analysis (full set of cross-
validation steps). SVM classification/regression is performed in
LIBSVM or LIBLINEAR. (b) Group-level statistical analysis functions

accept single subject MVPA results and group analysis configuration
parameters. Decoding performance and feature weights are aggregated
over single subjects and are statistically tested at the group level. Multiple
comparisons corrections are applied as specified by the user. After anal-
yses, DDTBOX can plot the group decoding accuracy and feature
weights results
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Configuring and Running Group-Level Analyses

Group-level statistical analyses of classification/regression
performance and feature weights are configured and run
using a group-level analysis configuration script. Within
this script the user must define the filepaths of decoding
results files, EEG dataset information, group-level statisti-
cal analysis and plotting parameters, and must specify the
subjects and discrimination groups to use for analyses.
Running this configuration script will perform all specified
group-level statistical analyses on classification/regression
performance and feature weights, which can also be plotted
at this stage if desired.

Plotting and Interpreting the Group Results

DDTBOX offers a variety of plotting options for classification/
regression performance and feature weights results at the group
level. These may be performed when running group-level sta-
tistical analyses, and can be replotted using a separate set of
easy-to-configure plotting scripts.

For spatial and spatiotemporal decoding analyses group
average classification/regression performance is plotted for
each selected time window in the epoch, for results of both
original and permuted labels decoding analyses (Fig. 3A). For
temporal decoding analyses group average performance for a
single analysis time window is plotted as a topographic heat
map (Fig. 3B). Feature weights are also plotted in this way,
and can also be plotted as a map thresholded for statistical
significance (Fig. 3C).

Toolbox Validation Using Simulated Data

To demonstrate that the toolbox functions correctly we ran
single subject decoding analyses using simulated EEG data.
These analyses were designed to show that the basic functions
of the toolbox work properly, rather than to evaluate all capa-
bilities of the toolbox. We created a subject dataset consisting
of 100 timepoints, 64 channels and 1000 epochs. Samples for
each timepoint and channel in each epoch were sampled from
independent Gaussian random noise (mean = 0, standard de-
viation = 1). A second dataset was created in the same way,
except that a signal value of 0.05 was added to the first 10
channels for timepoints 51–100. Three more datasets were
generated in this way, instead adding values of 0.1, 0.2 and
0.3. All datasets contained Gaussian noise only at timepoints
1–50, but differed (due to the addition of the signal values) at
timepoints 51–100. We note that temporally independent
noise is not typical of real EEG data, but it sufficient for the
purposes of our simulations.

We then performed spatial decoding using DDTBOX func-
tions and C-support vector classification as implemented in

LIBSVM to compare the first dataset to each of the other
datasets with added signals. We used window and step sizes
of 10 ms, 10-fold cross-validation and 10 independent repeti-
tions of cross-validated analyses. We also calculated absolute
SVM feature weights corrected using the Haufe et al. (2014)
method.

Fig. 4 displays the results of the validation analyses, show-
ing chance-level classification performance during the first
50 ms of the simulated epoch where there are no systematic
differences between the datasets. Classification accuracy then
increases above chance from 51 to 100 ms according to the
amount of signal (relative to the noise) in each dataset. Plots
of feature weights for the time window 51-60 ms (when the
signals were present) show that only the first 10 features (those
containing the signal) have large weights, and that feature
weights are larger for datasets with higher signal-to-noise ratios.

Examples of Research Using DDTBOX

In this section, we briefly review some studies that have used
DDTBOX to investigate cognitive functions. We will use
these to illustrate some recent research questions for which
MVPA analysis has been profitably applied to ERP data; how-
ever, there are many other potential research questions for
which DDTBOX could be used.

DDTBOX owes its name to its first application in perceptual
decision-making (Bode et al. 2012). In this EEG study, images of
pianos and chairs were presented after a 100 ms forward mask
and longer backward mask (500 ms minus the duration of the
target stimulus, which was either 16.7 ms, 33.3 ms, 50 ms, or
66.7 ms). A randomised response mapping screen was shown
after the backward mask, circumventing early motor preparation.
DDTBOX was used to predict the displayed object category, as
well as participants’ category choices, at all four discriminability
levels. First, a spatial classification approach was applied, using
80 ms analysis time windows moved in steps of 20 ms. It was
found that the spatial patterns of EEG data predicted the
displayed as well as the chosen category during the presentation
of the poststimulus mask, with decreasing accuracy and fewer
predictive time windows with decreasing discriminability of the
objects (Bode et al. 2012). The study also presented phase-
randomised visual noise images at the shortest presentation du-
ration (16.7 ms), but participants believed themselves to be
guessing real object categories. Participants’ choices could be
predicted from activity patterns from the pre-stimulus time peri-
od. This was interpreted as brain activity reflecting pre-existing
decision biases resulting from carry-over effects of decisions in
previous trials. To identify channels likely to contain this predic-
tive information, complementary temporal classification analy-
ses, using data from each channel separately, were performed for
selected time windows showing high group classification accu-
racy in the spatial decoding analysis. Temporal decoding
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analyses showed that channels predominantly over the visual
cortex encoded object information early after stimulus presenta-
tion, while prefrontal channels did so during later stages before
response preparation. For the pure-noise condition, decision-

related information was found for both channels over visual cor-
tex and prefrontal cortex during the pre-stimulus period. Taken
together, these results demonstrate that the classification analyses
as implemented in DDTBOX can indeed detect subtle decision-
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Fig. 3 Examples of group-level results outputs produced by DDTBOX.
(a) Group average classification accuracy scores by time window from
response onset. The black line represents the actual decoding results, blue
line is the permuted-labels analysis results. Error bars represent standard
errors of the mean. Shaded time windows are statistically significant after
correction for multiple comparisons. (b) Temporal decoding results. A
single time window was selected for temporal decoding analyses (100-
300 ms from response onset). This time range approximates the timing of
the error positivity ERP component in Bode and Stahl (2014). The left

scalp map plots group average classification accuracy for each channel.
The map on the right highlights in red the channels showing decoding
accuracy scores that were statistically significantly above zero. (c) Feature
weights results averaged over time windows spanning 100-300 ms from
response onset. The left scalp map displays group averages of z-
standardised absolute feature weights. The map on the right highlights
in red the feature channels with feature weights with z-scores that were
significantly above zero

36 Neuroinform (2019) 17:27–42



related information, which would have gone unnoticed in con-
ventional ERP analyses. In contrast to theMVPA results, no ERP
components selected for analyses showed differential activity
related to piano and chair decisions, or differences in prestimulus
baseline activity by category decision for the pure noise condi-
tion. This is likely due to subject-specific patterns of EEG activity
that differ in response to pianos and chairs, which may not be
consistent across subjects and ‘average-out’ in conventional uni-
variate ERP analyses.

In another EEG study, spatiotemporal classification was per-
formed using DDTBOX to predict whether an upcoming re-
sponse for a parity decision in a speeded digit flanker task was
correct or erroneous (Bode and Stahl 2014). Participants were
asked to indicate, using one of two response buttons, whether a
central digit on the screenwas odd or even, in the presence of two
flanker digits on each side that were also odd or even, thereby
creating congruent or incongruent decision conditions. For
MVPA 10 ms analysis time windows were used, moved in steps
of 10 ms through the trial, approaching the behavioural response
onset. MVPA revealed that EEG activity patterns from 100 ms
before response execution already predicted whether the upcom-
ing response would be erroneous, while conventional ERP anal-
yses found that the error-related negativity (ERN), which follows
a response by 80-100ms, was the first ERP component to predict
decision errors (Bode and Stahl 2014). Follow-up analyses of
feature weights suggested that this early information originated
from channels over visual and motor cortices. In this study clas-
sification analyses performed using DDTBOX provided infor-
mation related to decision errors preceding the participants’ re-
sponses, and informed theories of how information about up-
coming decision errors could accumulate over time to support
online error monitoring processes (Bode and Stahl 2014).

DDTBOX has also been used to investigate percep-
tual categorisation of faces (Quek and Rossion 2017)
and multi-sensory integration in elderly and younger

adults (Chan et al. 2017). Another application of
DDTBOX has been the use of SVR to predict post-
experimental ratings of affective and abstract stimulus
attributes of task-irrelevant images to inform theories
of automatic processing of stimulus features during pas-
sive exposure (Bode et al. 2014; Turner et al. 2017).
These latter examples demonstrate that DDTBOX is by
no means restricted to applications in decision-making.
On the contrary, it lends itself to many possible ques-
tions for which conventional ERP analyses might not be
suited, such as cases in which the specific encoding
patterns and the timing of these patterns are unknown
prior to the experiment.

Versioning and Release Management

To denote releases we use semantic versioning with the ver-
sion number format X.Y.Z (https://semver.org/spec/v2.0.0.
html). X denotes the major version number (e.g. v.1.0.0, v2.
0.0). Changes to X indicate backwards-incompatible changes
to the structure of the toolbox code. Changes to Y denote a
minor version release (e.g. v1.1.0, v1.2.0) indicating added
features or capabilities. Changes to Z denote the patch version
releases (e.g. v.1.0.1, v1.0.2) which include bugfixes and code
documentation modifications. The current toolbox release is v.
1.0.3, which incorporates minor bugfixes following the initial
public release.

The numbered releases are tracked via Zenodo (https://doi.
org/10.5281/zenodo.593871), which archives a snapshot of
the code and assigns each release a DOI, allowing for users
to cite specific versions and guaranteeing the later availability
of those versions. This serves to support reproducible
analyses.
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Fig. 4 Results of toolbox validation analyses using simulated data. (a)
Classification accuracies for four separate analyses, each classifying
between one noise dataset (consisting of independent samples of
Gaussian noise, mean = 0, SD = 1) and one signal dataset consisting of
Gaussian noise plus a signal. This signal consisted of values 0.05, 0.1, 0.2
or 0.3 added to the first 10 channels during timepoints 51–100. Accuracy

scores were averaged across 10 cross-validation steps and 10 analysis
repetitions. (b) Absolute SVM feature weights during time window 51-
60 ms, averaged over cross-validation steps and analysis repetitions.
Larger feature weights are visible for channels 1–10 in datasets with
larger signals relative to the noise
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Comparisons to other Packages
for Time-Series Multivariate Data Analysis

Other toolboxes have also been developed for MVPA
on EEG and neuroimaging data. Below we outline the
most influential toolboxes in the field and offer broad
comparisons to DDTBOX in terms of analysis options
and compatibility with EEG datasets. Given that there is
active development of DDTBOX and other toolboxes,
any limitations of each toolbox may be overcome in
the near future.

CoSMoMVPA (Oosterhof et al. 2016) is a toolbox
for MVPA of fMRI and M/EEG data running in
MATLAB and OCTAVE. CoSMoMVPA offers support
for a wide variety of MVPA methods, including some
classification-based analyses not yet available in
DDTBOX, such as temporal generalisation and repre-
sentational similarity analysis (Kriegeskorte et al.
2008). However, CoSMoMVPA does not offer multivar-
iate regression methods such as SVR or analyses of
feature weights. DDTBOX also offers more extensive
functionality for visualising results and performing
group-level analyses. CoSMoMVPA has extensive doc-
umentation and tutorial material, but requires more ad-
vanced programming skills compared with DDTBOX.
MNE-Python (Gramfort et al. 2013) also provides sup-
port for single-subject MVPA analyses, with direct sup-
port for temporal generalization and spatial decoding via
spatial filters (Common Spatial, Effect-Matched-Spatial
Filter). MNE-Python has extensive documentation and
tutorial material; however, it is nearly all focused on
single-subject analyses with a strong MEG bias. While
MNE-Python offers great flexibility it also requires ad-
vanced programming skills.

In addition, there are several MVPA toolboxes specialised for
fMRI data with a more extensive range of analysis options than
DDTBOX, including The Decoding Toolbox (Hebart et al.
2015), The Princeton MVPA Toolbox (http://code.google.com/
p/princeton-mvpa-toolbox/), Pattern Recognition of
Neuroimaging Toolbox (PRoNTo; Schrouff et al. 2013) and
the RSA Toolbox (Nili et al. 2014) written in MATLAB, and
PyMVPA (Hanke et al. 2009b)written in Python. These could, in
principle, be applied to EEG data by those with advanced pro-
gramming skills. However, these toolboxes currently offer limit-
ed options for visualisation of time series MVPA results and
preparation of EEG data for decoding analyses.

Limitations, Future Developments
and Extensions

Although it includes a range of analysis options, the current
version of DDTBOX is still limited in several ways. The

first notable limitation is the support for MVPA using dif-
ferent types of input data. At this stage, DDTBOX can per-
formMVPA on frequency domain and time-frequency data,
as well as component activations from principal compo-
nents analysis (PCA) or independent components analysis
(ICA). However, DDTBOX does not yet offer result plot-
ting capabilities, or automatic conversion to DDTBOX-
compatible data files, for these data types. Future support
for these data types will widen the applicability of
DDTBOX for use with different experimental designs, for
example studies examining multivariate patterns of steady-
state visual evoked potential (SSVEP) data (e.g., Jacques
et al. 2016). In particular, decoding with principal or inde-
pendent components may also help improve decoding ac-
curacy compared to EEG amplitudes (Grootswagers et al.
2016).

Another current limitation of DDTBOX is its restric-
tion to using the same analysis time window for train-
ing and testing. Others have suggested that one strength
of the multivariate approach is that the temporal
generalisability of patterns across time can be investigat-
ed (Meyers et al. 2008; Carlson et al. 2011; King and
Dehaene 2014; Fahrenfort et al. 2017). For this, a clas-
sifier could be trained on data from one time window
and then tested at other time windows to assess the
duration for which the same training data successfully
predicts the cognitive process (or content) of interest.
By using all possible combinations of training and test
data, a full generalisation matrix can be compiled that is
informative about the temporal dynamics of cognition
(c.f. Fig. 3 in King and Dehaene 2014; see also
Hogendoorn 2015). Temporal generalisation analyses
will be added to a future version of DDTBOX.

A final noteworthy limitation is that the user is re-
quired to extract epoched data from EEGLAB/ERPLAB,
and to create a configuration script containing all nec-
essary information about the study and planned analy-
ses, before using DDTBOX. While we provide a user-
friendly wiki, example configuration scripts, and func-
tions for automatically extracting data epoched using
EEGLAB/ERPLAB, the use of DDTBOX nevertheless
requires some basic knowledge of MATLAB. Our aim
is that the next release will also function as a plug-in
for EEGLAB, providing users with a graphical user in-
terface (GUI) within the EEGLAB environment to input
all DDTBOX configuration parameters, and the option
to use data directly from EEGLAB. However, we are
confident that the current release will be of great benefit
for the research community, and our toolbox can easily
be handled without a GUI.

In addition to extensions planned by the core devel-
opers, user-contributed features are welcome and en-
couraged. DDTBOX users have actively contributed to
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the toolbox since the initial public release. Users have
suggested new features, reported bugs and contributed
code to extend toolbox capabilities. Procedures and
guidelines for submitting community-contributed code
are available at https://github.com/DDTBOX/DDTBOX/
wiki/Contributing-to-DDTBOX.

To preserve the stability and usability of toolbox code we
will also add a suite of unit tests to a future DDTBOX release.
This test suite will input simulated data into each function and
ensure that the code runs without errors, and that the function
outputs match predetermined expected values. All user- and
developer-made code modifications will need to pass these
unit tests before they can be incorporated into the toolbox.

User Support

Technical support for DDTBOX users is available via our mail-
ing list (https://www.freelists.org/list/ddtbox). Questions and
discussion points can be posted to this list and will be
answered by the core developers as well as the broader
community of DDTBOX users. Bugs and requests for new
features can also be reported via the issue tracker on Github
(https://github.com/DDTBOX/DDTBOX/issues).

Summary

To conclude, DDTBOX is a freely available, open-
source toolbox for MATLAB that can be used for mul-
tivariate pattern classification and regression analyses on
spatial, temporal and spatiotemporal patterns of EEG
data. It is useful for investigating cognitive processes
related to decision-making, object categorisation, percep-
tion, and potentially many other cognitive phenomena.
This class of predictive methods can be used in a more
explorative and data-driven fashion than conventional
ERP analyses. DDTBOX has been used in several pub-
lished studies and allows for detecting even subtle in-
formation that might be overlooked by standard ERP
analyses. DDTBOX incorporates a variety of statistical
tests, and the option to perform permuted-labels analy-
ses to generate empirical chance distributions. It also
generates feature weight maps, which provide useful
estimates of the origins of the decodable information.
DDTBOX is released under a GNU General Public
License (GPL) v.2.0, meaning that users are free to
share, modify and extend the toolbox as desired.

DDTBOX and the respective documentation is available
at: https://github.com/DDTBOX/DDTBOX.

The developers are working on improving DDTBOX on a
regular basis. Users can subscribe to our mailing list and will be
regularly updated about new releases and features. As the code is

openly-available on GitHub, we invite all users to contribute to
DDTBOX by submitting their own extensions and improve-
ments. Authors of accepted contributions will be acknowledged
in future releases. With DDTBOX, we are hoping to provide a
useful toolbox for multivariate EEG analysis that can grow with
the needs of researchers and new directions in the field, driven
and developed further by an active community of users.

Information Sharing Statement

DDTBOX (RRID:SCR_015978) is freely-available at https://
github.com/DDTBOX/DDTBOX with the respective software
documentation at https://github.com/DDTBOX/DDTBOX/wiki.
Data used for generating Fig. 3 are available for download at
https://osf.io/bndjg/. DDTBOX runs on MATLAB, available at
http://www.mathworks.com/products/matlab.
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