
rspb.royalsocietypublishing.org
Research
Cite this article: Flasche S, Edmunds WJ,

Miller E, Goldblatt D, Robertson C, Choi YH.

2013 The impact of specific and non-specific

immunity on the ecology of Streptococcus

pneumoniae and the implications for

vaccination. Proc R Soc B 280: 20131939.

http://dx.doi.org/10.1098/rspb.2013.1939
Received: 24 July 2013

Accepted: 11 September 2013
Subject Areas:
ecology, health and disease and epidemiology,

computational biology

Keywords:
Streptococcus pneumoniae, carriage,

competition, coexistence, immunity,

vaccination
Author for correspondence:
Stefan Flasche

e-mail: stefan.flasche.work@gmail.com
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rspb.2013.1939 or

via http://rspb.royalsocietypublishing.org.
& 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
The impact of specific and non-specific
immunity on the ecology of Streptococcus
pneumoniae and the implications for
vaccination

Stefan Flasche1,2,3, W. John Edmunds3,1, Elizabeth Miller1, David Goldblatt4,
Chris Robertson2,5,6 and Yoon Hong Choi1

1Immunisation, Hepatitis and Blood Safety Department, Public Health England, 61 Colindale Avenue, Colindale,
London NW9 5EQ, UK
2Department of Mathematics and Statistics, Strathclyde University, 26 Richmond Street, Glasgow G1 1XH, UK
3Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine,
Keppel Street, London WC1E 7HT, UK
4Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
5Health Protection Scotland, 5 Cadogan Street, Glasgow G2 6QE, UK
6International Prevention Research Institute, 95 Cours Lafayette, Lyon 69006, France

More than 90 capsular serotypes of Streptococcus pneumoniae coexist despite

competing for nasopharyngeal carriage and a gradient in fitness. The under-

lying mechanisms for this are poorly understood and make assessment of

the likely population impact of vaccination challenging. We use an individ-

ual-based simulation model to generalize widely used deterministic models

for pneumococcal competition and show that in these models short-term

serotype-specific and serotype non-specific immunity could constitute the

mechanism governing between-host competition and coexistence. We find

that non-specific immunity induces between-host competition and that sero-

type-specific immunity limits a type’s competitive advantage and allows

stable coexistence of multiple serotypes. Serotypes carried at low prevalence

show high variance in carriage levels, which would result in apparent out-

breaks if they were highly pathogenic. Vaccination against few serotypes can

lead to elimination of the vaccine types and induces replacement by others.

However, in simulations where the elimination of the targeted types is

achieved only by a combination of vaccine effects and the competitive pressure

of the non-vaccine types, a universal vaccine with similar-type-specific effec-

tiveness can fail to eliminate pneumococcal carriage and offers limited herd

immunity. Hence, if vaccine effects are insufficient to control the majority of

serotypes at the same time, then exploiting the competitive pressure by

selective vaccination can help control the most pathogenic serotypes.
1. Introduction
Streptococcus pneumoniae is a major global health problem [1], with an estimated

14 million serious cases of pneumococcal disease and 735 000 deaths annually

in young children [2]. It is also a major cause of morbidity and mortality in

adults, in both the developed and developing world alike. A perplexing feature

of pneumococcal ecology is the co-circulation of over 90 known capsular sero-

types despite their competition for the same ecological niche (the nasopharynx)

[3] and differences in the duration of carriage which pose an advantage for per-

sistence of some types [4]. With the introduction of conjugate vaccines that have

proved efficacious preventing nasopharyngeal colonization [5–7] to many

national vaccination schemes, this ecologic puzzle has become a public health

issue, as use of the first seven-valent pneumococcal conjugate vaccine (PCV7,
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targeted at the seven most prevalent serotypes among inva-

sive pneumococcal disease isolates in the USA) successfully

reduced carriage and disease related to these types, but

also resulted in replacement carriage and disease by non-vac-

cine types [8–14]. This replacement is thought to be an

inevitable effect of vaccinating against subpopulations of

pathogens which are competing with each other [3,15] and

has stimulated the development and use of higher valency

vaccines (PCV10, 13, 15 and a protein vaccine targeting all

serotypes).

With the rolling out of these newer higher valency vaccines

across the world [16,17], and the prospect of a valency arms-

race emerging, there is an urgent need to: (i) understand the

mechanisms that lead to competition between serotypes but

which also permits the coexistence of many types with varying

fitness, and (ii) be able to infer the likely population impact of

vaccination. Mathematical models have been used for these

purposes, but they have tended to model only two types and

have imposed between-host competition of serotypes as an

artificial factor reducing susceptibility against one serotype

while colonized with another [15,18]. These approaches are

likely to artificially increase coexistence [19], whereas those

that incorporate between-host competition in a more meaning-

ful way need both types to have a similar rate of secondary

infections for coexistence at population level to be possible [20].

The mechanism ensuring persistence of the variety of

pneumococcal serotypes in a competitive environment is lar-

gely unknown. A decreased likelihood of serotype-specific

colonization following acquisition of the respective serotype

(serotype-specific immunity) could support coexistence [21].

Data on natural acquired immunity against pneumococcal

carriage are sparse, but longitudinal carriage studies have

provided evidence for both serotype-specific and serotype

non-specific immunity following acquisition [22–25]. In

these, the probability for colonization with the homologous

or heterologous serotype respectively was found to be

reduced after previous colonization [22,23], suggesting exist-

ence of both a serotype non-specific immune response and a

serotype-specific immune response against acquisition of

pneumococcal colonization.

We use this information to generalize widely used determi-

nistic approaches and present a parsimonious mechanistic

model incorporating possible underlying means of immunity

induced by acquisition of colonization. The model is able

to reproduce many of the epidemiological and ecological fea-

tures of pneumococcus carriage, i.e. coexistence, competition,

epidemic and endemic patterns of disease, and serotype repla-

cement. Moreover, we use this model to assess the impact of

vaccination and show that high valency vaccines under some

circumstances may not be optimal.
2. Methods
We generalize deterministic approaches to the aspect of serotype

competition of the pneumococcus [15,18,26–28] by using an

individual-based model to describe the dynamics of up to 20

serotypes, which differ in their average duration of carriage. Full

details of the model are given in the electronic supplementary

material, appendix. In brief, acquisition of colonization induces

both a purely serotype-specific and a serotype non-specific

immune response. The duration of these and the duration of car-

riage are assumed to follow negative binomial distributions.

Immunity as considered in the model is fully protective directly
after acquisition and short-lived; the effect of repeated exposure

and maturation of the immune system is accounted for through

an exposure-independent and serotype non-specific decreasing

risk of transmission and carriage duration by age. To simulate

different fitness of serotypes, the mean duration of carriage in chil-

dren younger than 2 years of age was varied from eight weeks for

model serotype 1 to 3.25 weeks for model serotype 20 [29,30]. For

each serotype, independently, an individual can be in any of the

following four states: not colonized and susceptible; not colonized

and immune; colonized and susceptible; colonized and immune

(for a comparison with deterministic modelling approaches, see

the electronic supplementary material).

Data on two-way conversational contact patterns from a con-

tact survey, including the UK [31] were used to calculate

normalized age-specific contact rates for the age groups 0–1,

2–4, 5–9, 10–19, 20–39 and 40þ [32]. The risk of transmission

per contact was chosen to decrease by age in order to mirror

the decrease in prevalence with age in the UK [29] and to

cause the reproduction number (the average number of second-

ary colonizations caused by an average individual during the

course of carriage in a totally susceptible population, R0) to be

in the range of 1.1 to 2.7 for the different serotypes (low force

of infection (FOI) scenario), 2.2 to 5.4 (mid FOI scenario) or 4.4

to 10.9 (high FOI scenario).

We mainly considered two different vaccine scenarios: (i) a

vaccine providing immunity against the two most prevalent

types (bivalent vaccine), and (ii) a vaccine providing immunity

against all serotypes (universal vaccine). In both cases, one dose

of the vaccine was administered to children at two months of

age and offered a 65% chance for a 10 year protection against

the acquisition of any of the serotypes included in the respective

vaccine formulation [18,33–35]. We further investigate the merit

of the succession of the bivalent vaccine by the universal one

for which we allowed one additional infectious individual per

serotype to enter the population each month. The Cþþ model

code can be obtained from the corresponding author on request.
3. Results
(a) Competition and multiple carriage
The serotypes in the simulation model compete with each other

through colonization-induced immunity against acquisition of

all serotypes (non-specific immunity). After acquisition of a ser-

otype and during the infectious period, this leads to a reduced

pool of susceptibles available to other serotypes for onward

transmission; so with increasing duration of non-specific immu-

nity, less serotypes can coexist within the host and hence in the

population owing to increasing competition (figure 1a,c).

(b) Coexistence
Coexistence of multiple serotypes in the simulated commu-

nity is conditional on the existence of serotype-specific

immunity. If serotypes limit their own transmission only to

the same extent that they limit the spread of competing sero-

types, then coexistence is unlikely; in fact, if serotype-specific

immunity is shorter than or equal to non-specific immunity,

then one serotype will dominate, and the others will be

driven to extinction. With increasing duration of serotype-

specific immunity, the numbers of serotypes stably coexisting

increases as type-specific immunity frees an ecological space

for other serotypes (figure 1a,b). Coexistence of multiple ser-

otypes within the host eases coexistence on population level

but, in the presence of serotype-specific immunity, is not

essential. The extent of multiple colonization of the hosts in
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the model is largely dependent on the duration of serotype

non-specific immunity. In particular, if the duration of

serotype non-specific immunity exceeds the duration of

carriage, then no additional colonization is possible, and a

short duration of non-specific immunity permits additional

acquisition before the colonising serotype is cleared.
(c) Variance of low prevalence serotypes
The variance of the standardized carriage prevalence increases

with decreasing prevalence levels, i.e. the serotypes at the verge

of extinction show high variance (figure 2). This finding is

robust to the model assumptions on immunity duration, the
FOI and the variance in duration of carriage (see the electronic

supplementary material, figure S2). The corresponding peaks

can stretch over multiple years. For those low prevalence types

that have a high propensity to cause invasive disease, this effect

would be amplified and picked up in the invasive pneumoccal

disease surveillance as an apparent epidemic of this serotype.
(d) Prevalence of carriage and the force of infection
Higher forces of infection generally lead to higher prevalence

of carriage. However, in the presence of between-host compe-

tition, this effect is marginal, as increasing the FOI in the model

leads to greater competition between serotypes, which acts to
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counterbalance the effect of a higher FOI on prevalence

(see the electronic supplementary material, figure S3). A

more important factor determining the rate of colonization is

the duration of non-specific immunity. It is not, therefore,

possible to conclude which of the FOI scenarios is more

likely: indeed, it may well be that different settings are charac-

terized by very different epidemiologies.
(e) Vaccination
Introducing infant vaccination against the two most prevalent

serotypes into the model leads to extinction of these types in

both the vaccinated and, through herd immunity, the unvacci-

nated individuals. Replacement with non-vaccine types in

(figure 3) occurs according to the level of competition induced

by serotype non-specific immunity. Paradoxically, vaccination

against all serotypes—at the same efficacy and coverage—does
not necessarily cause extinction of all types in the unvaccinated

population and the benefits from indirect effects depend largely

on the associated FOI. Indeed, under the high FOI scenario, the

bivalent vaccine is more effective at reducing adult carriage than

the universal vaccine. If the universal vaccine succeeds the biva-

lent one, re-emergence of previously controlled types can occur.

This effect arises, because the vaccine effects in the model are

insufficient to meet the herd immunity threshold and control

all serotypes simultaneously, in particular the more prevalent

ones, whereas for bivalent vaccination vaccine serotypes are con-

trolled by a combination of vaccination effect which reduces the

number of transmission events by reducing the number of sus-

ceptibles and between-host competition from the non-vaccine

types (see the electronic supplementary material for further

details). When the competition is lessened, through the use of

a universal vaccine, and the effect of vaccination on its own is

not large enough to prevent effective transmission of all types,
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4. Discussion
We present here a parsimonious mechanistic model, devel-

oped as a generalization of existing deterministic models of

pneumococcal transmission, which is capable of reproducing

many of the distinct features of S. pneumoniae. We show that

the means of non-specific and specific immunity are capable

of governing the patterns of between-host competition and

coexistence, and that stochastic effects in low prevalent sero-

types may result in apparent epidemics, if these serotypes

also have a high propensity to cause invasive disease (as

has been observed in several countries with serotype 1, for

instance). We further show that high carriage prevalence

observed in developing country settings [25] and in native

populations [36] might arise from a less effective immune

response (owing to malnutrition, genetic differences or other

factors) rather than differences in the number of contacts

alone. Moreover, we use the model to assess the impact of

vaccination, and contrast a vaccine targeted at the most preva-

lent serotypes with a broad-based vaccine (e.g. a protein-

based one), with the same level of efficacy and coverage. Para-

doxically, we show that the low-valency vaccine can lead to

greater indirect effects (herd immunity), if the high prevalence

(most fit) serotypes are eliminated by a combination of vaccine

protection and between-host competition. This benefit over

the universal vaccine would be amplified in invasive pneumo-

coccal disease if the types included in the low-valency vaccine

are of high pathogenicity. Releasing the competition in the

model, by using a broad valency vaccine, can further lead

to a rebound in the previously controlled types.

The biological basis for protection against colonization and

clearance of carriage of S. pneumoniae is poorly understood.

However, from the patterns of pneumococcal acquisition of

colonization, clearance and re-acquisition found in longitudinal

carriage studies conducted over 1 and 2 years, respectively, the

existence of serotype-specific and non-specific protection can be

inferred [22,23]. This is reflected in the model as a short-term

fully protective immunity to acquisition of colonization. With

these two mechanisms, we were able to generate the specific

ecological and epidemiological patterns of the pneumococcus.

Short-term specific and non-specific protection might arise

from a combination of both the innate and the adaptive

immune response. While an activated innate response which

is associated with increased macrophage or other myelomono-

cytic cellular activity might limit initial growth of the

pneumococcus in the mucosa, the innate response is short-

lived and unlikely to be the main effector for clearance of

pneumococcal colonization which may persist for prolonged

periods (up to five months) before clearance [37]. However,

the innate response probably has the role of activating an adap-

tive immune response that develops to both serotype-specific

capsule and conserved surface proteins that produce cross-

reactive antibodies. These responses could be mediated by

locally produced antibody from mucosal B cells which persist

after the pneumococcus has been cleared and prevent initial

growth or enhance clearance in the event of a subsequent heter-

ologous exposure (via non-specific antibody) or homologous

exposure (both non-specific and serotype-specific antibody).

Although essential in murine models, the role of T-cells in
clearance in the human is yet unclear [38,39]. We did not include

a mechanism in the model to track colonization events over an

individuals’ lifetime to infer long-term immunity which could

be mediated by both capsule-specific and non-specific antigens,

but chose to only include its observed effects; a serotype non-

specific decline in carriage duration and the probability for

transmission given contact by age. Including long-term immu-

nity induced via past history of exposure together with a

general maturation of the immune system would increase the

realism of the model, but cannot be realized in a deterministic

approach on which we build here.

Serotype non-specific immunity in the simulation model

acts to reduce the window of opportunity for other serotypes

to colonize the host and hence reduces acquisition rates.

This mechanism is supported by various studies [23,27,40].

Non-specific immunity and hence competition between the ser-

otypes could also act through increased clearance rates.

However, while a general decrease in the duration of carriage

by age has been identified [18,41], this could not be associated

directly with exposure to the pneumococcus [27] and was

reflected as such in this model. We chose a mostly data-free

approach and explored the effect of various parameter assump-

tions on simulated rates of coexistence, carriage oscillatory

patterns and multiple carriage (see the electronic supplemen-

tary material, figure S4). Most scenarios presented assumed

the duration of non-specific immunity to be nine weeks. This

was chosen on the basis of the rate of multiple carriage being

found to be very low using current standard detection methods

[8,42–45]. However, recently developed and yet to be estab-

lished methods yield higher rates of multiple carriage [46]. If

one accounts for that, then one would need to decrease the dur-

ation of non-specific immunity in the simulations, which would

further increase the likelihood of serotype coexistence.

Other models have studied between-host competition

between serotypes typically using competition as a factor

limiting the FOI for additional acquisition once colonized

in a deterministic two strain model [15,18,27]. While providing

a useful tool to estimate the degree of competition and thereby

inferring the possible effects of vaccination [47], questions

about model validity in the absence of an explicit underlying

mechanism have been raised [19,20]. We show that the

parameter choice ensuring coexistence (serotype-specific

immunity being longer than serotype non-specific immunity)

in this model provides a close match to the deterministic

approach most frequently used for modelling competition

of two types (see the electronic supplementary material,

appendix: model 4). The role of short-lived strain-transcending

immunity has been previously identified to be an important

determinant of the ecology of influenza by restricting the

strain diversity [48]. Similarly, Zhang et al. [26] identified

direct competition through physical presence or activated

innate immune response as the most likely source of compe-

tition of the pneumococcal serotypes. In our approach, short-

lived non-capsule-specific immunity induces competition

and hence limits strain diversity within the host and on popu-

lation level. However, we find that serotype-specific protection

can counterbalance this limiting factor and lead to the vast

diversity of pneumococcal serotypes.

Recently, Cobey & Lipsitch [21] published that the means

of serotype-specific and serotype non-specific immunity can

account for the observed diversity of the pneumococci,

which supports the conclusion we reach here. In their

work, serotype-specific immunity is represented as partially
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protective lifelong serotype-specific reduced susceptibility to

carriage acquisition induced by the first clearance of coloniza-

tion and an exposure driven reduction in carriage duration.

The authors consider serotype non-specific immunity to be

short-lived and partially protective, in particular the suscep-

tibility for acquisition of another serotype is reduced during

carriage according to the fitness rank of the most fit serotype

currently carried. Similar to Cobey and Lipsitch, we do con-

sider non-specific immunity short-lived, however fully

protective (see the electronic supplementary material for

details), and do not include a possible direct impact of immu-

nity on reducing infectiousness, only indirectly through

reduction of carriage duration. By contrast, we assume sero-

type-specific immunity to be short-lived rather than lifelong

and partially protective, and attribute the reduction in dur-

ation of carriage to serotype non-specific effects by age and

not exposure related. While there is evidence supporting

both their approach and the one presented here, in the absence

of established correlates of protection against pneumococcal

carriage neither of the approaches can be overwhelmingly

favoured. However, despite those differences in design, both

approaches are able to reproduce observed patterns of carriage

prevalence and multiple carriage as well as serotype replace-

ment following selective vaccination, and similar conclusions

are reached. Cobey and Lipsitch’s work supports our finding

that serotype-specific immunity may be the main driver for

the coexistence of serotypes and that stochastic effects alone

can account for apparent epidemics of serotypes carried at

low levels and with high pathogenicity. We add to this the dis-

cussion of our approach in the context of the feasibility and

possible underlying assumptions of deterministic modelling

approaches and their issue of neutrality, where we find that

serotype-specific immunity as modelled here could be the

underlying mechanism required to ensure serotype coexistence

in the model of Lipsitch [15], and also to be responsible for its

non-neutrality [19]. We further explored the impact of compe-

tition on vaccination contrasting vaccines with different

valencies and found that exploiting competition by selective

vaccination can help with the control of some serotypes

where vaccination would fail the herd immunity threshold

in the absence of competition.

Long-term temporal trends and cycles have been

observed in some serotypes via the surveillance of invasive

pneumococcal disease. Assuming that the pathogenicity of

the serotypes is unchanged, the source of these trends has

to be the changing abundance of these serotypes in nasophar-

yngeal carriage. Interestingly, this observation has been

mostly confined to infrequently carried serotypes, in particu-

lar serotype 1 [11,49,50] and has made the interpretation of

the epidemiology of the pneumococcus challenging. If not

accounted for, then outbreaks of highly pathogenic serotypes

can substantially distort the analysis of vaccine effects, as

such analyses generally attribute all changes in epidemiology

to the introduction of the vaccine. For example, this was

recently observed in the UK [11,51] where vaccine introduc-

tion coincided with a change in serotype 1 epidemiology.

In our simulation model, we study one potential cause of

this occurrence: long duration of serotype-specific immunity

causes cyclic prevalence patterns with regularly occurring

pronounced peaks (see the electronic supplementary

material). However, this effect is most pronounced in more

frequently carried types rather than the low prevalence

types. Hence, to reproduce the cyclic trends being restricted
to mainly low prevalence serotypes, these serotypes would

need to induce a considerably longer capsule-specific protec-

tion compared with the more frequently carried serotypes.

Similar to Cobey and Lipsitch, we find an additional poten-

tial cause of this epidemiologic occurrence which might

interact with or amplify trends owing to serotype-specific

immunity: infrequently carried serotypes are most prone to

high variance in standardized prevalence solely owing to sto-

chastic effects. Although the outbreak size can differ

depending on various factors, including population size,

inter-serotype differences in carriage duration and infection

pressure, we consistently find that stochastic effects alone

can lead to substantial differences in the prevalence for

those types which are carried stably but at the verge of extinc-

tion (compare the electronic supplementary material, figure

S2). This can result in peaks which spread over several

years. If these low carriage prevalence but high variance ser-

otypes are highly pathogenic (as is the case with serotype 1

[8]), then these hardly notable peaks in carriage prevalence

will be amplified and picked up by surveillance systems

which mainly monitor invasive pneumococcal disease.

Vaccination in the model framework with a bivalent vac-

cine formulation consisting of the two most prevalent

serotypes and an efficacy of 65% led to extinction of the tar-

geted types in all scenarios tested. However, the effect on

overall carriage was marginal owing to serotype replacement

by the untargeted types. No significant overall decline has

been observed in most nasopharyngeal carriage studies asses-

sing the impact of vaccination with the PCV7 [8,9], however,

some did [43,52]. This apparent difference to our model

could be due to various reasons, including the lack of power

in most studies to detect this rather small decline. Although

the effect on carriage was marginal, the introduction of

PCV7 to national childhood vaccination programmes around

the world led to substantial reduction in invasive disease,

because it targeted mainly highly pathogenic serotypes.

PCV10 and PCV13 are thought to have a similar effect [8].

The results on potential outcomes of vaccines with high

valency presented in this manuscript are based on a highly

simplified representation of pneumococcal transmission,

where important aspects of pneumococcal transmission are

missing, including the exclusion of partially protective immu-

nity and reduced transmissibility as a function of previous

exposure, which neglects a possible shift in carriage ranks in

older age groups. A further limitation is the assumption of

the model that immunity against carriage acquisition induced

by vaccination is substantially longer lasting than the serotype-

specific short-term immunity induced by colonization,

although there is no evidence from the design of the vaccine

that there should be any difference. Existing deterministic

approaches implicitly make similar assumptions. Here, a

model formulation of longer lasting but partially protective

serotype-specific immunity could prove superior and might

lead to different outcomes. Hence, our results regarding vacci-

nation cannot be interpreted as forecasts. Rather these results

illustrate a potential structural disadvantage of high valency

vaccines over vaccines which only target specific pneumococ-

cal serotypes: the loss of competitive effects induced by

non-vaccine serotypes which act to further limit the trans-

mission of the vaccine serotypes. The magnitude of this

disadvantage and the associated effects are conditional on

many aspects, including the strength of competition, the trans-

missibility of the serotypes and the vaccine effectiveness
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(including level of protection against carriage, coverage levels

and the duration of protection), and will need to be verified in

other model structures and ideally real-world scenarios. In

particular, a perfectly efficacious vaccine, delivered at high

coverage levels and inducing long-lasting protection is likely

to eliminate transmission of all targeted serotypes, irrespective

of the pneumococcus’ transmissibility and competition. How-

ever, our results suggest that a universal vaccine with similar

type-specific effectiveness to the bivalent one, which is set to

mirror observed vaccine effects of PCV7, may fail to eliminate

pneumococcal carriage and offer limited herd immunity,

because the beneficial effect of competition between types is

lost. Hence, the indirect effects of high valency vaccination

should be studied in detail before introduction of the vaccine

to avoid possible adverse effects. These results also mean

that—contrary to conventional wisdom—pursuing ever

wider serotype coverage (by the use of a protein-based vac-

cine, for instance) may not necessarily yield increased public

health benefits. Alternatively, vaccine formulations that only

include those serotypes with the highest likelihood of severe

disease given colonization could be an effective way to

reduce the burden of disease while only causing minor disrup-

tions to pneumococcal ecology and hence a limited probability

of causing adverse effects.

The concept of pathogens competing for the same ecologi-

cal niche and the implications for vaccine programmes might

be applicable to other settings too. For example, quadrivalent
meningococcal vaccines including the frequently carried but

relatively unpathogenic serogroup Y are at risk for reducing

potential competitive pressure to other serogroups, in particu-

lar serogroup B. Whether these vaccines will affect the

prevalence of either the other MenB strains or other meningo-

coccal serogroups remains to be seen. Inter-species competition

has also been reported. Reduced carriage of Staphylococcus
aureus in individuals colonized with the pneumococcus has

been detected, suggesting that there may be an increase of S.
aureus after introduction of the PCV [53–55].

We present a structurally simple model that includes

serotype-specific and non-specific immunity. We find that

this mechanism, which is likely to be a combination of the

innate and the adaptive immune response, is sufficient to

grant the key epidemiological features of the pneumococcus:

coexistence, between-host competition and multiple carriage,

and leads to the emergence of possible epidemic strains, as

well as serotype replacement following vaccination. Further-

more, we illustrate the effect of competition on vaccination

and show that selective vaccination can possibly exploit com-

petition to enhance vaccine effects on specific serotypes

where vaccine effects alone would not be sufficient to control

transmission via herd immunity effects.
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