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Abstract: Occupational Health and Safety (OHS) in agricultural activities is an issue of major concern
worldwide notwithstanding the ever stricter regulations issued in this sector. In particular, most
accidents are related to the use of tractors and the main causes of this phenomenon are due to the lack
of rollover protective structures (ROPSs). This happens especially when tractors are used in particular
in-field operations that are characterized by limited clearances between tractor and crop rows so that
farmers usually use tractors without ROPS (e.g., dismounting it). To solve such a problem, foldable
protective structures (FROPSs) have been proposed, which should augment the operator’s protection.
However, FROPS’s conventional solutions underestimate the operators’ risk-taking behavior and
the widespread misuse of FROPS due to the efforts needed to operate it. The current study aims at
contributing to the improvement of the latter issue proposing the development of a novel approach
for the implementation of partial assistance systems (PASs) that can reduce the physical effort of
the operator when raising/lowering the FROPS. The proposed methodology, which is based on a
reverse engineering approach, was verified by means of a practical case study on a tracklaying tractor.
Results achieved can contribute to expanding knowledge on technical solutions aimed at improving
the human-machinery interaction in the agricultural sector.

Keywords: machinery safety; ergonomics; human behavior; agricultural tractors; roll-over protective
structure (ROPS); partial assistance system (PAS); reverse engineering

1. Introduction

Occupational safety is a relevant aspect of the social pillar in sustainable development:
hence, safety research aimed at reducing occupational accidents can be valuable for the
practical implementation of sustainability at the company level. In such a context, it has
to be remarked that a safety problem of major concern worldwide is related to the use of
agricultural tractors. Actually, the unsafe use of this work equipment as well as the use of
unsafe tractors, i.e., tractors that are not in compliance with safety protection requirements,
are the cause of a large number of serious and fatal accidents in most countries [1–3].
This is particularly true with respect to the roll-over risk [4]: for example, considering the
Italian context, information collected by the national observatory of the Italian Workers
Compensation Authority (INAIL)—Research Department [5] on fatal accidents related to
the use of tractors confirms that most fatalities are due to roll-over. As shown in Figure 1,
the average value of fatalities due to in-field roll-over in the period 2010–2018 is 74.7%.

Additionally, it has to be considered that most fatalities occurred when the roll-over
protective structure (ROPS) was not installed, or when it was disabled, as in the case of
foldable ROPSs (FROPSs): the incidence of these cases is very large as reported by different
authors according to which from 30% to 50% of fatalities occurred due to the misuse of
tractor FROPS [6–8].
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To reduce such a phenomenon, a considerable effort has been made by public au-
thorities over the years, both promoting the installation of ROPSs on old tractors (e.g.,
by means of retrofit campaigns [9,10] or the provision of technical guidelines to support
retrofitting [11]), as well as introducing mandatory requirements for the ROPSs’ manufac-
turing and testing. Indeed, in many countries these obligations have significantly reduced
the fatal accidents resulting from roll-over, demonstrating the effectiveness of this safety
device combined with the use of seatbelts [12,13].
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However, despite such improvements, a difficulty remains when considering tractors
that are usually used in works where the clearances (both in height, and in width) between
tractor and crop rows are smaller than the usual ones, and the protective structure repre-
sents a hindrance for some works requiring the use of FROPSs. In these cases, the use of
tractors with unfolded ROPS is allowed during particular in-field operations only (e.g., in
vineyards, glasshouses, or orchards), since the low speed of these activities can reduce the
risk of roll-over anyway. Moreover, they can be folded down also for tractor storage. On
the contrary, they must always be kept upright when the tractor is used for other activities
(i.e., works where the ROPS’ dimensions do not represent a physical hindrance) and during
transfers (e.g., from one operation site to another, or from the storage place to fields).
Indeed, the most common behavior of farmers using this type of machinery consists of
leaving the ROPS always unfolded since the folding/unfolding operations require certain
stress and cause an interruption of working activities [14,15]. Such unsafe behavior is the
cause of numerous serious and fatal accidents worldwide, since, in the case of roll-over, if
the ROPS is unfolded the operator is fully unprotected.

Hence, on the one hand, work activities in contexts where the space is limited by
different types of obstacles require the use of tractors equipped with FROPSs, which is very
diffused also among non-professional farmers [16]. It has to be noted that these tractors
are not only those characterized by a reduced track width (i.e., the so-called narrow-track
tractors) but also other models equipped with both tires and tracklaying solutions (i.e.,
when the tractor is propelled and steered by endless tracks [17]). On the other hand,
albeit safety regulations from both the manufactures’ and entrepreneurs’ points of view
stress the necessity to take into account the “reasonably foreseeable misuse” or readily
predictable human behavior of machinery users [18], conventional solutions for foldable
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ROPS underestimate the operators’ risk-taking behavior, as well as the widespread FROPS
misuse due to the efforts needed to operate it [14,19].

In the literature, several studies have dealt with this problem proposing technical
solutions aimed at preventing the incorrect behavior of operators. For example, Silleli
et al. [6,20] developed an automatically deployable anchor mechanism to prevent continu-
ous rolling during sideways roll-over, protecting the operator from getting injured in case
of an overturn. Such a system, which in brief consists of a deployable bar mounted on the
top of the ROPS, can provide an increased clearance zone at the lateral direction in case of
overturning, allowing the reduction of the ROPS’ height that makes orchard and vineyard
work easier.

Ballesteros et al. [21] designed an automatically deployable front-mounted ROPS,
which is capable of being deployed in height and width, as well as being locked in its
operative position thanks to airbag inflators activated by roll-over sensors. Such a solution,
which was named Ejectable in Two Dimensions ROPS (E2D-ROPS) and does not require
the intervention of the tractor operator, was further developed [22], while other studies
have proposed similar automated deployable ROPS solutions [23–26]. These solutions can
certainly augment the safety level of the operators since they prevent them from making
a decision on whether and when to fold/unfold the ROPS. However, it has to be noted
that these solutions are mainly destined to equip new tractors, as they are unlikely to be
adapted to already-in-use tractors because of the costs and technical efforts required for
the installation.

Other research addressed the problem from an ergonomics standpoint. In particu-
lar, Cremasco et al. [14] highlighted that FROPS solutions hardly take into account the
users’ perspective since the human–tractor interaction in terms of FROPS’ reachability and
comfort in use is neglected. Actually, investigating the behavior of 20 farmers in dealing
with 16 models of tractors equipped with two-posts rear FROPS, they noted that unsafe,
uncomfortable, and awkward behaviors were mainly due to the FROPS technical features,
suggesting that further research on the development of more human-centered solutions
is necessary. Differently, Pessina et al. [27] investigated the effort needed to unfold/fold
FROPSs examining 19 different tractors equipped with two-posts front FROPSs. The au-
thors pointed out the need to reduce the handling load the tractor operators have to deal
with when using FROPSs.

In addition, it is worth mentioning other studies providing solutions that avoid the
intervention of the operator, such as the compact roll-over protective structure (CROPS), i.e.,
a modified four-posts ROPS for narrow-track tractors developed by Italian researchers from
the Italian Workers Compensation Authority (INAIL) in collaboration with the academia,
which provides a protective shell on the operator while reducing the height and width
of the system [28,29]. Despite their effectiveness in eliminating the risk of FROPS misuse,
these solutions can be applied to a limited number of tractor models due to their technical
features. Moreover, it should also be considered that if the ROPS’ type of a tractor already
on the market is changed, the tractor’s homologation needs to be obtained again as in most
countries (e.g., in the European Union), tractors are considered vehicles and thus undergo
specific regulations and approval procedures to be used in public areas such as roads [30].
Hence, their technical and economic feasibility in retrofitting/upgrading already-in-use
models is very limited.

Moreover, from interviews with ROPS’ manufacturers on the type of aftermarket
ROPS purchased by farmers to update their tractors, it emerged that the purchase of
automated systems for the FROPS handling is very rare due to the high cost of this type of
solution.

Finally, it has to be outlined that from the technical normative point of view, OECD
Codes provide technical information on the FROPS’ actuation forces only for narrow-track
wheeled tractors or tractors with tracks instead of wheels, while such ergonomic issues for
other types of tractor-FROPS combinations (i.e., tractors mounted with endless tracks) are
not foreseen. Thus, ROPS manufacturers have no reference frameworks when developing
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supportive systems for front-mounted FROPSs destined to tracklaying tractors (both new
and aftermarket vehicles), since the provision of a practical procedure to evaluate FROPS’
actuation forces, as well as the feasibility of partial assistance systems and their interaction
with the operator is missing in these cases.

Based on these considerations, despite representing an important issue in the field of
agricultural tractor safety [15,18], it is evident that the problem of retrofitting/upgrading
tractors with FROPS solutions is scarcely addressed, and also ergonomic issues related to
the operator-FROPS interaction are not investigated sufficiently. The current study aims
at reducing such research gaps proposing the development of a novel approach for the
implementation of partial assistance systems (PASs) that can reduce the physical effort of
the operator when raising/lowering front-mounted foldable ROPS, diminishing in this way
its misuse. In more detail, the research work carried out followed a reverse engineering
approach, which started from the analysis of ergonomic issues related to the movements
that operators have to make when folding/unfolding front-mounted FROPSs. To reduce
this stress facilitating the protective structure handling, the interaction FROPS-operator
was analyzed to determine the loads needed for the lowering/raising operations practically.
Accordingly, a procedure for the proper dimensioning and selection of a partial assistance
device capable of reducing the efforts of the operator was developed and its feasibility was
verified by means of physical prototyping and practical testing on a tracklaying tractor.

The remainder of the article is as follows: in the next section, the background analysis
is provided focusing on the safety requirements of foldable protective structures and
their grasping points. Then, in Section 3, the research approach is summarized, while its
practical application to the development of a partial assistance system destined to equip
the protective structure of a tracklaying tractor is presented in Section 4. The discussion
of results is reported in Section 5, while Section 6 concludes the paper addressing further
research goals.

2. Background Analysis

In the European Union for tractors put on the market from 1974, the European di-
rectives 74/150/EEC and 2003/37/EC were used. These directives were repealed by the
Regulation (UE) 167/2013 [30], which updated the legislative framework for tractor safety
and confirmed as a reference for ROPS’ testing criteria provided by the Organization for
Economic Co-operation and Development (OECD) standard codes [17]. Briefly, these codes
indicate that roll-over protection structures are safety devices aimed at ensuring an unob-
structed space inside them (i.e., a safety zone called “clearance zone” or “deflection limiting
volume” (DLV), depending on the tractor type and related standard code) large enough to
protect the operator in case of tractor’s overturning or tip-over. Such requirement is valid
both for ROPSs installed by the tractor manufacturer (i.e., before the tractor is put on the
market) and for those devices put on the market separately and intended for such vehicles.
To verify compliance with this requirement, the use of the OECD standard Codes as techni-
cal reference documents is foreseen. In particular, according to the OECD Code no. 6 [17],
narrow-track tractors are characterized by: a reduced height from the ground (ground
clearance of not more than 600 mm beneath the lowest points of the front and rear axles); a
reduced track width (fixed or adjustable minimum track width with one of the axles less
than 1150 mm fitted with tires or tracks of a larger size); a mass (i.e., the unladen mass
of the tractor, including the roll-over protective structure and tires or tracks of the largest
size recommended by the manufacturer) spanning from 400 kg to 3500 kg. To be precise,
OECD Code no.6 is related to criteria for the testing of front-mounted roll-over protective
structures on narrow-track agricultural and forestry tractors, while rear-mounted ROPSs
for these types of tractors are treated in OECD Code no. 7 [17]. Besides these technical
parameters, which are destined to tractors’ and ROPS’ manufacturers, ergonomic issues
aimed at taking into account the users of ROPSs’ point of view are addressed partially. In
fact, the recent updates of the OECD Code no. 6 and no. 7 have introduced an additional
procedure for testing FROPS solutions, which includes criteria for measuring loads in
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the manual operations of raising and lowering the FROPSs. In more detail, Section 3.8
of the OECD Code no. 6 (and Section 3.7 of the OECD Code no.7) introduces additional
requirements for FROPS, where the “grasping area” is intended as the portion of the FROPS
where the operator is allowed to carry out the raising/lowering operations. This part is
defined by the manufacturer and can include an additional handle fitted to the FROPS.
Based on this, it is also worth mentioning the definition of both the “accessible part of
the grasping area” (i.e., the area where the FROPS is handled by the operator during the
raising/lowering operations), and the “accessible zone” (i.e., the volume where a standing
operator can apply a force in order to raise/lower the FROPS).

To carry out folding/unfolding operations safely, three different accessible zones are
introduced, each characterized by a different amount of allowed force for raising/lowering
operations (Figure 2):

Zone I: comfort zone;
Zone II: accessible zone without forward leaning of the body;
Zone III: accessible zone with forward leaning of the body.
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These zones are defined with respect to the horizontal plane of the ground and the
vertical planes tangent to the outer parts of the tractor, which limit the position or the
displacement of the operator. According to the OECD Codes, the accessible area shall
be considered as “the envelope of the different accessible zones”. The position and the
movement of the operator are limited by those parts of the tractor representing an obstacle
(i.e., the wheels represent an obstacle in sideward movements, while the operator can
always move backwards) and defined by vertical planes tangent to the external edges of
the obstacle. In Table 1 the limits related to the raising/lowering forces provided by the
Code are reported.
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Table 1. Acceptable force limits foreseen by the OECD Code no. 6 for raising/lowering operations.

Zone I II III

Acceptable force (N) 100 75 50

It has to be noted that these limits represent the acceptable force for the actuation of
the FROPS in relation to the different accessible zones: such values can be augmented up
to 50% for lowering operations, while an increase up to 25% is allowed when the roll-bar is
fully raised or fully lowered. However, these values do not take into account the real loads
the operators have to deal with when raising/lowering the FROPS, as observed by Pessina
et al. [27], who carried out practical tests of 19 different tractors equipped with two-pillars
front FROPS. They argued that to be in compliance with these limits it is necessary to
apply at least a partial assistance device to reduce the operator’s required force. This
problem was outlined also by Franceschetti and Rondelli [31], who analyzed six two-post
FROPS mounted in front of the driver on six narrow-track tractors with different mass
and geometry. They brought to light that a proper definition of the force (torque) limits is
related to both the ease of access to the FROPS grasping area and to the tractor geometry,
while OECD Codes do not take into account that increasing the mass and dimensions of the
tractor, the operator’s required efforts for lowering/raising the FROPS increase not only
because of the heavier FROPS but also for the uncomfortable zone for these operations.
Similarly, Vigoroso et al. [32], analyzing the main criticalities in handling rear-mounted
FROPS by means of the involvement of a group of users, highlighted the necessity of
providing human-centered solutions capable of reducing the effort and stress of operators
to avoid FROPS misuse while working. Moreover, it is worth underlining that the above
force limits and the related criteria for the FROPS lowering/raising grasping areas are
addressed to two types of tractor-ROPS’ configurations only: the front FROPS on wheeled
narrow-track tractors (OECD Code no. 6) and rear-mounted FROPS on narrow-track
wheeled tractors (OECD Code no. 7). Differently, other types of configurations such as
the front-mounted FROPS on tracklaying tractors are not considered in spite of the large
diffusion of these models for multiple operations [33,34].

3. Research Approach

Based on the above considerations, a reverse engineering approach [3,13] was applied
to develop a technical solution for a partial assistance device capable of satisfying the
constructive requirements (i.e., the OECD Codes) and the practical needs of operators at
the same time. Indeed, reverse engineering allows for a bottom-up analysis capable of
providing solutions closer to the safety needs of workers [35]. As illustrated by Afeez
et al. [36], the reverse engineering approach is largely used in the development process
of products with ergonomic properties by means of the development of mathematical
models. This allows engineers to directly involve the users in the process by collecting
their feedback [37]. Accordingly, a four-phase approach was developed, characterized by
the following activities:

• Preliminary analysis: analysis of constructive requisites (OECD Codes) and ergonomic
issues (force and torque values for raising/lowering the ROPS).

• Concrete experience: practical tests of lowering/raising the ROPS to determine the
operator’s position due to the tractor’s features and the FROPS’ folding angles during
these operations, focusing the attention on the individuation of the grasping points
due to both the operator’s habits and the tractor’s geometrical features.

• Modelling: development of a partial assistance system (PAS) by means of CAD tools
and verification of geometrical and dynamical features of the system.

• Validation: prototyping and experimental testing of the system.

In particular, the modeling phase of our research approach consists of two main steps:
functional analysis and CAD modeling, where the former is based on the forces’ balance
that should be achieved in order to reduce the operator’s effort and discomfort while
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avoiding additional hazardous situations. With this goal in mind, a procedure to verify the
compatibility of the PAS was developed taking into account the following aspects related
to the interactions occurring between the PAS, the FROPS, and the operator:

1. Functional analysis, which is aimed at defining the interaction PAS-FROPS-operator.
2. Geometrical compatibility, i.e., the analysis of the physical and geometrical features

of the system and its adaptation on a front-mounted FROPS for tracklaying tractors;
3. Dynamical compatibility, i.e., the analysis of the forces and the related moments

involved in the FROPS handling to ensure safe and comfortable operations.

In Figure 3, the research approach is summarized, while its implementation and
verification are described by means of a practical case study.
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4. Case Study

Following the procedure shown in the previous section, a PAS for facilitating the
raising/lowering operations of a two-posts front FROPS to be used on tractors propelled
and steered by endless tracks was developed. The choice of using a tracklaying tractor was
made because of the diffusion of this type of equipment not only in the agriculture and
forestry activities, but also for other types of works such as earthmoving, and the numerous
cases of accidents due to the lack of ROPS or to the FROPS misuse [12]. In particular, as a
reference, a tracklaying tractor having the following characteristics was used: unballasted
mass (i.e., the weight of the tractor excluding optional accessories but including coolant,
oils, fuel, tools, plus the protective structure) 2.962 kg; overall length 2.78 m; wheelbase
1.53 m; track-width 1.66 m.

4.1. Preliminary Analysis

The starting point of the analysis consisted in analyzing the technical features of a
front-mounted FROPS for a tracklaying tractor. To understand the forces the operator
needs to exert to handle the FROPS, its weight and length have to be determined.

With reference to Figure 4, it has to be noted that the whole length of the FROPS
(HS) includes the length of the joint plate and that of the roll-bar (H): in other words, HS
represents the vertical distance between the horizontal plane tangent to the seat and the
upper part of the FROPS in the safe configuration. Needless to say, the weight of FROPS
depends on its dimensions, which are correlated to the tractor’s mass as per the OECD
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Codes. Consequently, the load to be balanced by the operator when raising/lowering the
protective structure can be calculated as the torque, i.e., the moment that should be applied
to the FROPS in its center of gravity (CG).
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complementary angle.

According to a market analysis and interviews with both ROPS’ manufacturers and
users, it emerged that most diffused tracklaying tractors have an unballasted mass ranging
from 2000 kg to 3500 kg, while the length of the FROPS’s foldable part (OH in Figure 5)
varies from 1100 to 1400 mm. Therefore, to evaluate the loads the operators have to deal
with, the center of gravity position (GC) has to be determined, which varies depending
on the height of the FROPS’ roll-bar (i.e., the HGC distance). More in detail, considering
the above values the weight of the FROPS can be determined following the dimensioning
rules proposed by the INAIL guidelines on ROPS’ retrofitting procedures [11] (Table 2).

Table 2. Examples of FROPS weights extracted from [11].

OH [mm] HGC Height [mm] P [kg]

1100 487 70.5
1200 515 72.4
1300 544 74.3
1400 575 76.4

These data confirm that the FROPSs’ weight is considerable despite their handling is
softened by the lever support represented by the hinge joint. Indeed, if considering the
ISO 11228-1:2003 standard [38], which provides technical guidance on manual lifting tasks
(i.e., moving an object from its initial position upwards without mechanical assistance),
the reference mass (i.e., the mass considered appropriate for use with an identified user
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population) for non-repetitive operations is 25 kg with both hands and in the case of adult
professional workers. Heavier objects can be lifted in special circumstances (up to 40 kg),
which require specific training and information. Additionally, it has to be noted that when
operating the FROPS the operator’s application force varies along with the roll-bar, based
on the FROPS folding angle. Hence, the operator’s efforts needed to exert the FROPS
can be considerable, augmenting not only the risk of accidents but also the exposure to
musculoskeletal problems. According to the OECD Code no. 6, the manufacturer first
shall evaluate the grasping area for FROPS’ raising/lowering and then verify that the
applied load values do not exceed the limit values (see Table 1). These force limits should
be considered valid in an optimal situation, i.e., when the operator handles the FROPS
from a standing position in one of the grasping points suggested by the OECD Code no. 6.
Moreover, as suggested by the ISO 11228-1:2003 standard, when lifting an object, it should
be kept as close to the body as possible and both hands should be used, while stooped
postures should be avoided. However, this situation hardly happens in practice due to
the features of the tractor (i.e., the obstacle represented by the tracks) and the operators’
incorrect habits [14].
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As far as the grasping area is concerned, the OECD Codes suggest that the force
necessary to raise/lower the FROPS has to be determined considering different points
that are within the accessible part of the grasping area. More in detail, with reference to
Figure 5, these points should correspond to:

• the extremity of the accessible part of the grasping area when the FROPS is fully
lowered (P1);

• the top of the accessible part of the grasping area when the FROPS is fully raised (P2);
• the position of P1 when reaching the top of the accessible part of the grasping area (P3).

Based on this, it is clear that the maximum forces in these points should not exceed the
acceptable force limits reported in Table 1, while their practical definition can be made by
measuring the torque needed to raise or lower the FROPS taking into account the distances
of the grasping points from the hinge joint.

4.2. Concrete Experience

The accessible area of a wheeled tractor (equipped with wheels or tracks, the front axle
is not connected to the rear axle) differs from that of a tracklaying one, since in the latter case
the operator does not stand in the space between the tires, but uses different grasping points
along the roll-bar length (Figure 6), as emerged from practical tests that were carried out to
determine the effective behavior of the operator when lowering/raising the FROPS. Such
an analysis of the operator–FROPS interaction was performed in collaboration with a group
of five different operators to better understand how they perform FROPS’ lowering/raising
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tasks in practice. It was found that during the lowering phase the operator changes the
grasping point from the most uncomfortable position (i.e., close to the hinge joint) to
the most comfortable one (i.e., the rest configuration). The opposite situation emerged
when analyzing raising operations. It has to be noted that usually the rest configuration
of FROPSs installed on tracklaying tractors corresponds to a folding angle of about 10◦

degrees. In fact, such a solution allows the use of FROPSs having a reduced length
and weight considering the dimensions of the tractor’s bonnet, while ensuring a proper
resistance of the protective structure. Starting from the rest position, the grasping point
gets closer and closer to the hinge joint until the FROPS reaches the safe configuration. It
was noted that during most operations the body of the operator is not close to the tractor’s
chassis due to the obstacle represented by the tracks. Hence, unlike wheeled tractors, in our
context the operator, when raising the FROPS from the rest configuration, starts from the
outer part of the tractor to avoid the track since this position is felt as the most comfortable
to raise the fully folded FROPS (Figure 6).
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Accordingly, in this context the accessible area differs from that of wheeled tractors
and the grasping points mentioned above should be considered as follows: P1 corresponds
to the position of the operator’s hand when starts the raising operation; P2 corresponds to
the position of the operator’s hand when starts the lowering operation; P3 represents the
position of the operator’s hand corresponding to a foldable angle of 45◦ degrees (Figure 7).

In particular, taking into account the worst situations when handling the FROPS, the
following grasping points were determined: P1 corresponds to the grasping point at the
hedge of the roll-bar, which can be estimated between 90% and 95% of the roll-bar full
length; P2 corresponds to the minimum height of the grasping point from the hinge joint
of the FROPS just above the connection plate; and P3 corresponds to the position of the
operator’s hand when the FROPS is half-raised (i.e., when the FROPS’ folding angle is
equal to 45 degrees). It has to be noted that in most tracklaying tractors, as in our case study,
the rest configuration of the FROPS corresponds to a folding angle α = 10◦, because of the
constructive features of the bonnet. In practice, the following measures of the grasping
points were obtained:
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• P1: a distance l1 = 1150 mm should be considered when raising the roll-bar from the
rest configuration (FROPS lowered with a folding angle α = 10◦).

• P2: a distance l2 = 596 mm should be considered when lowering the roll-bar from the
safe configuration (FROPS fully raised).

• P3: a distance l3 = 803 mm should be considered when lowering the roll-bar, when the
FROPS’ folding angle is α = 45◦).
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4.3. Modelling

The definition of a partial assistance system (PAS) to reduce the efforts of the operator
when handling the FROPS was based on the consideration of a gas spring model, due to its
widespread availability on the market and reduced costs.

4.3.1. Functional Analysis

In this step, the evaluation of the interactions between the PAS, the FROPS, and the
operator was carried out taking into account the following elements:

• the PAS anchorage points;
• the support dimensions;
• the performances of the PAS.

The anchorage points’ determination is influenced by two main factors: the excursion
of the gas spring and the presence of interferences of the lifting system with other tractor
parts (e.g., bonnet, filters, etc.). This first analysis can be carried out practically, i.e., shifting
the anchorage devices of the gas-spring around the roll-bar joints to verify whether the
folded and raised positions of the roll bar are compatible with the stroke of the PAS
elements. The interference with other parts of the tractor determines the need to change
the FROPS configuration. In this case, also the anchor points and the PAS elements have to
be changed. The selection of the PAS model also depends on the required forces to operate
the FROPS roll-bar, avoiding the forces’ values being too high or insufficient, which can
lead in both cases to additional risks for the operator.

As far as the PAS performances are concerned, the forces involved in the raising and
lowering tasks have to be investigated, depicting the following moments:

• MW, representing the moment of the weight force of the roll-bar, which varies de-
pending on the horizontal distance of the gravity center (GC) from the axis of the
hinge joint.
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• MPAS, representing the moment of the PAS, which varies based on the PAS type and
the forces it can exert on the roll-bar, considering the distance between the anchorage
points and the hinge axis to determine the arm lever.

Accordingly, the efforts the operator has to deal with can be expressed as follows,
distinguishing between the raising (MRAI in Equation (1)) and the lowering (MLOW in
Equation (2)) tasks:

MRAI = MW −MPAS (1)

MLOW = MPAS −MW (2)

It should be considered that the weight force assumes the maximum value (MWMAX)
in the rest configuration of the roll-bar and represents the force to be countered by the
operator supported by the PAS to raise the FROPS. This is the reference value to select a
proper PAS. On the one hand, a low force value makes the use of the PAS ineffective. On
the other hand, the choice of a PAS capable of exerting an excessive force on the roll-bar
can have a negative impact on the operator, mainly in the lowering phase (i.e., starting
from the safe configuration when the FROPS is unfolded), as the operator can be hit by the
FROPS. Hence, its proper dimensioning is crucial from the ergonomics and safety point
of view.

The maximum force the operator can exert on the FROPS in a comfortable manner
can be depicted by the values suggested by the OECD Code no. 6, indicating the limits
of the acceptable force for the actuation of the FROPS (see Table 1). This assumption is
made taking into account that the operator’s handling efforts are similar in the case of
front-mounted FROPS, regardless of the tractor type. However, because of the different
features of these types of tractors, the worst conditions should be considered. Hence,
the accessible Zone II was always taken into account (see Figure 3) and consequently the
acceptable force limit is FOECD = 75 N (Table 1), adding the force limit augmentations
foreseen by the OECD Code no. 6 in the following three situations:

(1) raising the roll-bar when the FROPS is fully lowered (rest configuration);
(2) lowering the roll-bar when the FROPS is fully raised (safe configuration);
(3) lowering the roll-bar when the FROPS is not fully raised nor fully lowered.

Consequently, to measure the torque values needed in these situations, the corre-
sponding three lever arms were calculated considering the output of the previous analysis:

• l1 representing the distance between the hinge point and the point where the operator’s
force is applied to raise the roll-bar in case of fully lowered FROPS.

• l2 representing the distance between the hinge point and the point where the operator’s
force is applied to lower the roll-bar in case of fully raised FROPS.

• l3 representing the distance between the hinge point and the point where the operator’s
force is applied to lower the roll-bar when the FROPS is not fully raised nor fully
lowered.

Accordingly, the limits of the moments exerted by the operator on the FROPS in the
worst situations are the following:

• MMAX1 = (FOECD + 25%) × l1 (raising from the rest configuration)
• MMAX2 = (FOECD + 25%) × l2 (lowering from the rest configuration)
• MMAX3 = (FOECD + 50%) × l3 (lowering when the FROPS is not fully raised nor fully

lowered).

Based on the above considerations, a procedure (schematized in Figure 8) for the
proper PAS dimensioning and selection can be derived, consisting of the following steps:
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1. Definition of the maximum value of MW (rest configuration of the FROPS).
2. Selection of a PAS model taking into account the following features:

a. PAS geometrical features;
b. PAS dynamical features (exercisable force in raising/lowering operations);

3. Verification of the geometric compatibility of the PAS;
4. Definition of the forces’ limits and the related acceptable moments in worst situations

calculating MMAX1, MMAX2, and MMAX3 as suggested above.
5. Definition of the combined effects of the operator, the PAS, and the FROPS weight in

the three worst situations suggested above:

• MOP1 = MW − MPAS, i.e., the moment exerted by the operator in raising the
FROPS supported by the PAS when the FROPS is fully folded (rest configuration);

• MOP2 = MPAS −MW, i.e., the moment exerted by the operator in lowering the
FROPS supported by the PAS when the FROPS is fully raised (safe configuration);

• MOP3 = MW −MPAS, i.e., the moment exerted by the operator in lowering the
FROPS supported by the PAS when the FROPS is not fully raised nor folded.
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6. Verification of the forces’ compatibility, comparing the combined effects of the opera-
tor, the PAS, and the FROPS weight in the three worst situations to MMAX1, MMAX2,
and MMAX3 respectively, where the following conditions should be satisfied:

• MMAX1 ≤MOP1
• MMAX2 ≤MOP2
• MMAX3 ≤MOP3

4.3.2. Geometrical Compatibility

The further step of the PAS development consisted in dimensioning both the FROPS
and the PAS and verifying their compatibility by means of CAD modeling. In particular,
the FROPS’ roll-bar is made of steel tubulars with a squared hollow section (70 mm ×
70 mm and thickness 5 mm). Its main features are: height from the hinge joint 1210 mm
and weight 72.37 kg. Such a FROPS can equip a tracklaying tractor having an unballasted
mass up to 3500 kg. Due to the forces involved in these operations, a gas-spring system
was chosen.

Firstly, the characteristics of the anchorage points were determined by means of CAD
tools (Figure 9).
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In more detail, the hinge joint consists of two parallel plates (Plate1 in Figure 9)
anchored to the mountings of the ROPS and a movable plate (Plate2 in Figure 9) inserted
between them. The roll-bar is essentially made by square section tubes, welded together
and with Plate2. Plate1 has two holes, the lower hole is for the hinge pin, the upper one
is used to lock Plate2, and so the roll-bar in the rest or safe configuration by means of a
movable pin. In Figure 10, the details of the gas-spring assembling points are shown.

Once the moving point of the gas spring, its extended length, and its stroke are defined,
the fixed point can be determined.

4.3.3. Dynamical Compatibility

To select the gas spring model the dynamical analysis of the PAS was performed.
Firstly, MWMAX has to be considered, which corresponds to the maximum moment of the
FROPS due to the weight force calculated using the following equations where P is the
weight of the FROPS; d represents the distance between GC and the hinge axis; α is the
folding angle that in this case is equal to 0◦ degrees (FROPS fully lowered):

Mw = P × b (3)
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This value allows the preliminary definition of the gas-spring model since the gas-
spring nominal force (FPAS) can be derived from the following equation:

FPAS = (P × b)/(d) (4)

where (P × d) is the maximum value of Mw as defined above, while b is the lever arm
of the spring (i.e., the distance between the hinge point of the FROPS and the anchoring
point of the gas-spring on the FROPS) as shown in Figure 11. The value of FPAS is the
sum of the force exerted by the gas springs fitted on each side: if two gas springs of equal
force are applied, the value of FPAS shall be divided by two; in the case of two gas springs
with the same geometrical features and different forces, their sum shall be at least equal to
FPAS. In our case study, two equal gas springs were chosen, which satisfy the above criteria.
In detail, a couple of gas springs having the following main characteristics was selected:
minimum force: 1150 N; stroke: 146 mm; extended length: 385 mm; and a ratio of 1.32.

It has to be noted that since a couple of gas springs is used (one gas spring for each
FROPS mounting), the moment exerted by the gas-springs (MPAS) is the sum of the moment
of each gas spring:

MPAS = (FPAS × 2) × d (5)

Besides, the limits of the moments that can be exerted by the operator on the FROPS
in the worst situations are the following:

• MMAX1 = (75 N + 18.75 N) × 1.150 m = 107.81 Nm (raising operation from the rest
configuration).

• MMAX2 = (75 N + 18.75 N) × 0.596 m = 55.88 Nm (lowering operation from the safe
configuration).

• MMAX3 = (75 N + 37.5 N) × 0.803 m = 90.34 Nm (lowering operation when the FROPS
is not fully raised nor fully lowered: in this case, a folding angle of 45◦ should be
considered).

To verify the dynamic compatibility of the PAS, these values were compared to the
moments determined by the FROPS’ weight (MW) and the moments exerted by the selected
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gas-springs (MPAS) calculated for different FROPS’ positions (i.e., different values of the
folding angle α), as shown in Table 3.
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Table 3. Moments’ comparison table, where the last column indicates the limits that should not
be exceeded.

α [deg] b [m] MW
[Nm] d [m] FPAS

[N]
MPAS
[Nm]

Stroke
[mm]

MOP
[Nm]

MMAX
[Nm]

10 0.466 360.14 0.114 1531.15 350.39 249.53 9.75 107.81
20 0.449 346.99 0.116 1470.45 340.32 269.67 6.66 90.34
30 0.419 323.29 0.114 1410.01 320.36 289.73 2.93 90.34
45 0.349 269.64 0.105 1323.23 279.16 318.52 −9.52 90.34
60 0.256 197.62 0.093 1244.72 231.25 344.57 −33.64 90.34
75 0.145 112.12 0.077 1177.51 181.35 366.87 −69.23 90.34
85 0.065 50.5 0.054 1133.4 125.74 379.28 −75.24 90.34
90 0.035 27.02 0.035 1150 80.50 384.18 −53.48 55.88

Additionally, in the last two columns of Table 3, the values related to the balance of
the moments (MOP = MW − MPAS) and the limits of the moments (MMAX) are reported,
where the former represents the practical loads the operator has to deal with to operate
the FROPS for a certain angle (MOP), while the latter is the maximum theoretical load
the operator can bear (MMAX) avoiding excessive stress and discomfort. The comparison
between them has to be made considering the absolute values of moments, while the
positive values of the moments represent the ones concordant to the lifting angle. The
torques behavior is schematized in Figure 12, where MW, MPAS, and MOP are compared for
different FROPS angles.

4.4. Validation

A prototype was manufactured and practical tests were carried out in the laboratory
(Figure 13). From this analysis, it was confirmed that after 27◦ of rotation (corresponding to
a folding angle α = 37◦) the PAS is able to complete the raising phase by itself (Figure 13b),
i.e., no further efforts by the operator are needed. In addition, the gas springs are able to
keep the FROPS in the safe configuration (Figure 13c) and the operator can lock the FROPS
by means of the lateral joints safely (e.g., it might happen that if the gas springs are too
weak, the FROPS might fold down due to an improper maneuver of the operator, who can
be hit by the mounting).
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Conversely, in the initial stage of the lowering phase, the value of the force needed to
lower the FROPS is slightly higher than the maximum value foreseen by the OECD Code
no. 6 (Figure 14a), but the corresponding moment is below the limit value calculated above.
After that, the lowering phase is not strenuous for the operator since the operating force to
handle the roll-bar decreases up to the zero value near the rest configuration thanks to the
weight force (Figure 14b,c).

In addition, it is noteworthy mentioning that the combined effects of MW and MPAS
assure a reduced rotation speed of the FROPS, diminishing the risk that the operator can
be hit during lowering/raising operations. The inclusion of additional plates to fix the
PAS avoids the reduction of the structural strength of the FROPS, enabling the installation
of such a system also on already-in-use tractors. It should also be remarked that the
installation of this type of PAS on already-in-use FROPS has a cost of about EUR 150, while
its implementation by the tractor manufacturer—new novel models—can be much cheaper.
Moreover, this cost is at least ten times cheaper than the cost of an automated system.

Finally, it has to be noted that the PAS was installed on a tracklaying tractor to test
its practical usability. For this purpose, two tractor users were asked to use the tractor
and operate the FROPS several times to mimic real infield operations (Figure 15). The



Int. J. Environ. Res. Public Health 2021, 18, 8643 18 of 22

first feedback from the operators was positive since they declared that the PAS makes the
FROPS handling easier for both operations (raising and lowering) and they confirmed that
if this system will be available on the market in the future, they will be eager to apply
it to their tractors. Therefore, although the number of interviewed farmers is not large,
these preliminary tests can be considered valid as they are in line with similar tests among
farmers on the FROPS’ use, such as the research by Cremasco et al. [39].
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5. Discussion

The achievement of safe human interaction with technical systems requires the inte-
gration of safety and ergonomic issues in the design and management of work equipment
in a practical manner [40,41]. Following such a research cue, the current study was aimed
at investigating the problem of the use of tractors equipped with front-mounted foldable
protective structures. In particular, it was found that, although safety regulations concern-
ing work equipment require that they should be designed taking into account the risks
of accidents arising from their foreseeable misuse, a few studies have investigated the
FROPS’ misuse providing technical solutions to reduce this occurrence. Accordingly, the
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implementation of a PAS was carried out taking into account the users’ behavior. As a
result, this analysis allowed us to achieve the following outputs.

A procedure to support the definition of the grasping points of front-mounted FROPS
for tracklaying tractors was developed, reducing the lack of technical references on the
ergonomic handling of foldable structures for this type of tractors. The definition of these
points was obtained by merging practical experience and CAD modeling considering
the worst situations when handling the FROPS. Such an approach is in line with other
studies [42,43] fostering the inclusion of worst-case scenarios when designing products
focusing on the human factors perspective. Starting from this point, the acceptable limits
of the moments that the operator can exert on the FROPS were determined, providing a
reference basis for the definition of the acceptable limits of forces and moments involved in
handling the FROPS. In such a context, it is noteworthy to mention that focusing only on
the handling force limits provided by the OECD Codes when selecting the PAS dynamic
features might lead to an unsafe situation when the fully raised FROPS has to be blocked.
Therefore, a more thorough analysis that includes the evaluation of the moments exchanged
between the operator on the one hand, and the system (i.e., the combination of the FROPS
and the PAS) on the other, during all handling operations, is necessary. Additionally,
another finding of this study consists in the definition of a grasping area adapted to
tracklaying tractors since the operator’s behavior when handling the FROPS differs from
that in the case of wheeled tractors.

Based on these considerations, we believe that such outputs can contribute to expand-
ing knowledge on ergonomic features of protective structures destined to equip tractors
to be used not only in the agricultural context but also in other sectors where this type of
machinery is common (e.g., construction and mining works) [44]. Such a finding can also
contribute to involve human factors in safety research on agricultural machinery by means
of procedures aimed at reducing workers’ OHS risks [45].

Moreover, this study allowed us to implement a procedure for the selection of a
PAS for the FROPS that can also be used at a practical level to update already-in-use
tractors, providing a feasible solution both from the technical and economical point of view,
responding to the research needs outlined by several studies [46,47]. The results achieved,
accomplish the findings of Caffaro et al. [48], who pointed out the need to consider both the
user and producer standpoint to augment the safety level of dangerous work equipment.
In addition, it has to be stressed that researching on ergonomic and safety issues of farmers
represents a step forward to augment the social features of sustainable agricultural systems,
in line with recent research trends [49,50].

Finally, it is worth noting that to augment the validity of the proposed procedure,
additional applications on different tractor types are needed. In particular, this can improve
the reliability of the criteria proposed for the definition of the grasping points of the FROPS
mounted on tracklaying machinery, on the one hand, refining the selection process of the
gas-spring models to further reduce the operator’s efforts in the lowering phase without
compromising the safety level on the other. In addition, practical tests with a larger group
of operators are also needed in order to better analyze the usability and practicality of
the system.

6. Conclusions

The study analyzed the use of foldable protective structures for tractors with the goal
of providing a partial assistance system aimed at reducing their misuse by the operators.
Accordingly, a procedure for the proper PAS selection was proposed and verified by means
of a practical case study on a tracklaying tractor. The results achieved can contribute to
expanding knowledge on technical solutions aimed at improving the human-machinery
interaction in the agricultural sector. However, although such an output is more relevant
in this sector, it can also contribute to advance scientific knowledge on the improvement of
machinery safety and ergonomics in other domains. Therefore, further research is expected
to extend the validity of the research findings beyond the analyzed case study.
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