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Predicting functional outcomes after an Ischemic Stroke (IS) is highly valuable for patients
and desirable for physicians. This facilitates physicians to set reasonable goals for patients
and cooperate with patients and relatives effectively, and furthermore to reach common
after-stroke care decisions for recovery and make exercise plans to facilitate rehabilitation.
The objective of this research is to apply three current Deep Learning (DL) approaches for
6-month IS outcome predictions, using the openly accessible International Stroke Trial
(IST) dataset. Furthermore, another objective of this research is to compare these DL
approaches with machine learning (ML) for performing in clinical prediction. After
comparing various ML methods (Deep Forest, Random Forest, Support Vector
Machine, etc.) with current DL frameworks (CNN, LSTM, Resnet), the results show
that DL doesn’t outperform ML significantly. DL methods and reporting used for
analyzing structured medical data should be developed and improved.
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INTRODUCTION

Stroke is one of the leading causes of death and permanent disability in the last 20 years globally
(Global Burden of Disease Collaborative Network, 2018; World Health Organization, 2018). In
China, the number of patients diagnosed with stroke each year is approximately 2 million, and the
mortality rate is 11.48% (Chen et al., 2017). Stroke is mainly subtyped into ischemic (85%) and
hemorrhagic types (15%) (Caplan, 2016). IS occurs when a cerebral artery is blocked (Park, 2017).
Long-term physical disabilities after IS can create enormous mental and financial burdens for
families and society. Proper exercise and early rehabilitation definitely improve recovery of patients
and reduce disabilities (Veerbeek et al., 2011). Predicting a patient’s functional outcomes precisely
after a stroke will help physicians in managing an appropriate long-term plan for early rehabilitation.
In addition, it guides clinicians in setting realistic goals, provides accurate information to patients
and their caregivers, and facilitates the creation of an early discharge plan (Veerbeek et al., 2011).
Now, endovascular treatment (EVT) is widely used for IS. Accurate prediction of functional
outcomes and reperfusion may potentially improve stroke care, as it can guide selecting the
most beneficial treatment option for the individual patient: to perform or to refuse EVT.
Recently, clinical variables and radiological image biomarkers are utilized in studies on outcome
prediction strategies in ischemic stroke patients after EVT (Venema et al., 2017; Van Os, 2018). More
works have been devoted to predicting functional outcomes after stroke (Stinear, 2010; Meyer et al.,
2015; Lin et al., 2020). Several medical communities have created and developed scores and methods
that can predict the patient’s functional outcomes after a stroke effectively by only using data readily
collected at admission (Ntaios et al., 2012; Hilbert et al., 2019). The score statistically analyzes the
data and identifies the most relevant predictors from a set of covariates selected by domain experts.
The method uses deep learning to predict the functional outcome of patients with acute IS after EVT.
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Recently, machine learning methods have been ubiquitously used
to solve complex problems in many scientific fields, especially in
medical science. Medical diagnosis and prognosis prediction are
fulfilled in this way (Lin et al., 2018; Van Os, 2018; Debs et al.,
2020; Fang et al., 2020).

Recently, DL frameworks have attained great success in
various applications, particularly in image processing and
natural language processing (NLP) (Hinton et al., 2012;
Krizhenvsky et al., 2012), leading to the hot wave of DL
(Goodfellow et al., 2016). Though DL frameworks are
powerful, they have apparent deficiencies. For example, large
scale training data is always required for training, restricting the
direct application of DL to tasks with smaller scale data. It is well
known that DL is a supervised learning. But nowadays the data of
many real tasks are still not sufficiently and correctly labeled due
to the high cost of labeling. Because of this, DL frameworks
always perform inferiorly in tasks with poor quality data. DL
frameworks, especially modern deep neural networks, always
possess too many hyper-parameters, and careful tuning of
them directly can mainly influence the learning performance
of DL. Recently, it is used to diagnose and predict prognosis in the
clinical medical field (Ge et al., 2019; Hilbert et al., 2019; Debs
et al., 2020). But it is seldomly used to analyze structured clinical
medical data. In this paper, currently used DL frameworks are
tested to predict stroke outcomes. Furthermore, several ML
methods, especially Deep Forest (DF) (Zhou and Feng, 2019),
are used to analyze IST dataset and are compared with several DL
frameworks. The DF is proposed based on gcForest (multi-
Grained Cascade Forest), which is a novel ensemble method
of decision tree. This method generates a deep forest ensemble,
with a cascade structure which enables gcForest to do
representation learning (Zhou and Feng, 2019). Its
representational learning ability can be further enhanced by
multi-grained scanning when the inputs are with high
dimensionality, potentially enabling gcForest to be contextual
or structural aware (Zhou and Feng, 2019). In their experiments,
the training time cost of DF is smaller than that of DL; even so, DF
attains highly superior performance to DL. Herein, the DF and
other ML methods are compared with DL to analyze structured
clinical medical data. The results show that there are no evidences
of superior performance of DL over ML.

MATERIALS AND METHODS

Data
The data used in this paper is The International Stroke Trial (IST)
dataset. The IST, including the pilot phase between 1991 and
1993, was conducted between 1991 and 1996 and is a large,
prospective, randomized controlled trial, with 100% complete
baseline data and over 99% complete follow-up data. The
objective of the trial is to know whether early administration
of aspirin, heparin, both, or neither influenced the clinical course
and outcome of acute IS (Sandercock et al., 2011). The dataset
analyzed in this study is downloaded from the IST website.
Patients in this trial are identified only by an anonymous
code. They were treated more than 20 years ago, and many

have died. Hospitals are also identified by an anonymous code.
There are no identifying data such as name, address, or social
security numbers appearing. Patient age has been rounded to the
nearest whole number. Thus, usage of the dataset definitely can’t
present material risk to confidentiality of patients.

The following baseline data: time from onset to
randomization, gender, age, aspirin administration within
3 days prior to randomization, systolic blood pressure at
randomization, presence or absence of atrial fibrillation (AF),
level of consciousness, and neurological deficit, are all included in
the dataset. Neurological deficits are classified as one of the
Oxfordshire Community Stroke Project (OCSP) categories:
posterior circulation syndrome (POCS), partial anterior
circulation syndrome (PACS), total anterior circulation
syndrome (TACS), and lacunar syndrome (LACS). A total of
19,435 patients from 467 hospitals in 36 countries are
randomized within 48 h of symptoms onset, of whom 13,020
take a CT scan before randomization, 5,569 are first scanned after
randomization, and 846 were not scanned at all. Entries with
missing data are deleted, with 18,128 entries left. We exclude
patients who are not finally diagnosed as IS. The variable of 6-
month outcome is taken as a target. It is represented as 1-dead, 2-
dependent, 3-not recovered, 4-recovered, and 8 or 9-missing
status. The entries of 6-month outcome with missing status
are also deleted. Six-month outcome of 2-dependent and 3-not
recovered are merged as one category (not recovered) due to their
similarity, and then the target includes three categories (0-dead,
1-not recovered, 2-recovered). At last, 16,403 patients are left. The
data of these 16,403 patients finally diagnosed as IS are used to
predict the outcome of IS using ML and DL.

METHODS

This paper investigates the ability of some supervised ML
methods to predict IS outcomes. Classic ML methods such as
support vector machine (SVM) (Cristianini and Shawe-Taylor,
2000), random forest (RF) (Liaw and Wiener, 2002), and deep
forest (DF) (Zhou and Feng, 2019) are explored for comparison
to DL frameworks such as convolutional neural network (CNN)
(LeCun et al., 1998), long- and short-term memory network
(LSTM) (Hochreiter and Schmidhuber, 1997), and residual
neural network (Resnet) (He et al., 2016). Developing logistic
regression models is the usual approach to analyze the stroke
outcomes; however, an alternative of ML methods has been
proposed, particularly for large-scale and multi-institutional
data. The prominent advantage of ML is that it can easily
incorporate newly available data and improve prediction
performance (Hamed et al., 2014). Nowadays, DL frameworks
are prevalent and succeed in the field of image processing and
natural language processing (NLP). In this paper, classical ML
methods are compared to popular DL frameworks to exhibit their
respective performances.

The workflow of the study consists of three sections. Firstly,
features collected at the beginning of and on 14 days of
randomization in the refined IST dataset (including 16,403
patients) are used. Features, such as date and comments, are
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removed manually (features are definitely not related to IS
outcome). Six-month outcome is kept as the target feature in
the dataset. Features that overlap with 6-month outcome are
deleted manually. Then, 50 features are kept and used. These
features are utilized to predict long-term prognosis (6-month
outcome) of acute IS. Based on previous research (Fang et al.,
2020), feature selection carried out using recursive feature
elimination with cross-validation (RFECV) don’t eliminate
explicitly less important features in the whole IST dataset.
Thus, all initially chosen features are used to predict. Secondly,
a simple CNN framework which consists of three convolutional
layers and two fully connected layers is built, and the first
convolutional layer is one dimensional convolution. The used

LSTM framework is a two-layer LSTMwith just one direction and
added into a one-dimensional convolutional layer before it. The
last layer of the LSTM framework is a fully connected layer. The
Resnet lacking bottleneck blocks which consists of eight residual
blocks is also added into a one-dimensional convolutional layer as
the first layer. This manipulation allows these DL frameworks to
accept and process structured clinical medical data, such as IST.
ML methods (SVM, RF, Multinomial-Naïve-Bayes, AdaBoost,
and DF) are carried out immediately to compare with these DL
frameworks. The SVM classifier use linear kernel (with the
parameter max_iter = 10,000), and the other ML methods are
carried out with default parameters. To implement these methods
for this study, we use the libraries of scikit-learn 1.0.1 (Pedregosa

FIGURE 1 | Importance of features ranked by Shapiro-Wilk algorithm.
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et al., 2011) and PyTorch neural networks API (PyTorch., 2021).
Thirdly, all these methods are implemented for comparison in
predicting accuracy and other metrics.

RESULTS AND ANALYSIS

Because we only consider IS, 50 features are initially selected in the
data of all kept 16,403 patients. The feature of 6-month outcome
(OCCODE) is kept as target (including 3 categories: 0-dead, 1-not
recovered, 2-recovered). The other 49 features include CNTRYNUM,
HOSPNUM, SEX, AGE, DPLACE, FPLACE, RDELAY, RCONSC,

RATRIAL, RSLEEP, RASP3, RSBP, RXASP, RXHEP, DASP14,
DASPLT, RCT, RVISINF, DLH14, DMH14, neurological deficit
symptom (RDEF1, RDEF2, RDEF3 . . . . . . , etc.), STYPE,
ONDRUG, DCAA, DOAC, TD, etc. Readers can be referred to
Supplementary Materials for the detailed explanation of these
features. Shapiro-Wilk algorithm is used to rank the importance
of these features, and Pearson correlations between features are
analyzed too. Shapiro-Wilk algorithm is a normal distribution
assessing algorithm that regard the instances with respect to the
feature, which is improved by Royston to process large data (Shapiro
and Wilk, 1965; Royston, 1982). Except OCCODE, the other 49
features are ranked by the algorithm (Figures 1, 2).

FIGURE 2 | Pearson correlations between features in the dataset.
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The Shapiro-Wilk results show that DTHROMB (Thrombolysis)
and DCAREND (Carotid surgery) are the two least important
features. The reason for this is that these therapies were seldom
carried out in the 1990s. The Pearson analysis shows that high
correlations between features are not common in the dataset. The
highest correlated features are DASP14 (Aspirin given for 14 days or
till death or discharge) and RXASP (Trial aspirin allocated) which
are related to aspirin usage. The second highest correlated features
are RXHEP (Trial heparin allocated) and DMH14 (Medium dose
heparin given for 14 days or till death/discharge) which are related to
heparin usage. After this all these 49 features (except OCCODE) are
adopted to predict the outcome of IS using ML and DL.

Firstly, all selected 49 features of the IST dataset which consists of
16,403 patients are processed by DL frameworks. The dataset is
divided into training set including 12,302 patients and test set
including 4,101 patients randomly. When processed by CNN, 5
epochs of training are carried out and attain an accuracy of 0.826 in
test set. Other metrics including precision, recall, and f1-score are

also considered (Figure 3). When processed by LSTM, 5 epochs of
training are also carried out and attain an accuracy of 0.821 in test
set. Othermetrics are shown in Figure 4.When processed by Resnet,
5 epochs of training are carried out and attain an accuracy of 0.821 in
test set. Other metrics are shown in Figure 5. In this study, all DL
frameworks are trained with fewer epochs because more epochs of
training lead to overfitting.

After this, test sets including all 4,101 patients are processed by
ML approaches. First by DF, it attains an accuracy of 0.824 in test set.
Other metrics including precision, recall, and f1-score are also
considered (Figure 6). The performances of SVM and RF are
showed in Figures 7, 8. For performances of other ML methods,
readers can be referred to Supplementary Materials for more
details.

The results show that DL frameworks don’t outperform ML
methods in any aspects when predicting IS outcomes in IST dataset.
On the contrary, ML methods, especially DF, outperform DL in
predicting IS outcomes of recovered. It attains a higher precision,

FIGURE 3 | Performance of CNN after 5 epochs of training.

FIGURE 4 | Performance of LSTM after 5 epochs of training.

FIGURE 5 | Performance of Resnet after 5 epochs of training.

FIGURE 6 | Performance of DF.

FIGURE 7 | Performance of RF.

FIGURE 8 | Performance of SVM.
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recall, and f1-score in predicting the outcomes of recovered
(represented as 2, Figure 6). All methods, especially DL, don’t
work well in predicting the outcomes of recovered. The reason of
this lies in the heterogeneity of data in this category. In other words,
there aremore variables that can exert influence on the recovery of IS
patients.

Based on previous Shapiro-Wilk analysis, the less important
features whose Shapiro-Wilk ranking value is less than 0.1 are
eliminated. These features include DTHROMB (Thrombolysis),
DCAREND (Carotid surgery), DRSH (Recurrent stroke within
14 days, Haemorrhagic stroke), DPE (Other events within 14 days,
Pulmonary embolism), and DMAJNCH (Major non-cerebral
haemorrhage). Then 44 features are left for predicting the
outcomes of IS. The predicting performances of DL frameworks
are compared to MLmethods with these features. When processed
by CNN, after 20 epochs of training it attains an accuracy of 0.817
in test set. Other metrics including precision, recall, and f1-score
are also considered (Figure 9). After 20 epochs of training LSTM
attains an accuracy of 0.823 in test set. Other metrics are shown in
Figure 10. After 20 epochs of training Resnet attains an accuracy of
0.827 in test set. The accuracy doesn’t decrease because the
eliminated 5 features are less important and not related to the
6th outcome. Other metrics are shown in Figure 11.

Subsequently, test sets including all 4,101 patients with 44
features are processed by ML approaches. DF attains an accuracy
of 0.828 in the test set. Other metrics including precision, recall, and
f1-score are considered (Figure 12). The performances of SVM and
RF are shown in Figures 13, 14. For performances of other ML
methods, readers can be referred to Supplementary Materials
for more.

The results show that there is no decrease in predicting
performance using both ML and DL after eliminating the five
least important features. But compared to previous results, after
20 epochs of training Resnet attains a higher precision than before in

FIGURE 9 | Performance of CNN with 44 features after 20 epochs of
training.

FIGURE 10 | Performance of LSTM with 44 features after 20 epochs of
training.

FIGURE 11 | Performance of Resnet with 44 features after 20 epochs of
training.

FIGURE 12 | Performance of DF with 44 features.

FIGURE 13 | Performance of RF with 44 features.

FIGURE 14 | Performance of SVM with 44 features.
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predicting the outcomes of recoveredwith 44 features (represented as
2, Figure 11). Considering this observation, more epochs of training
are carried out to attempt to explain this. After 100 epochs of
training, the predicting accuracy of Resnet is 0.791 in test set. But it
gets higher recall and f1-score than before in predicting the outcomes
of recovered (Figure 15). After 500 epochs of training, the predicting
accuracy of Resnet is 0.794 in test set and the other two DL
frameworks overfit (accuracy of CNN and LSTM is 0.740 and
0.769 respectively). But there are no increases in recall and f1-
score when predicting the outcomes of recovered (represented as 2,
Supplementary Figure S1). After 100 epochs training of Resnet, the
overall predicting accuracy decreased. But macro and weighted
average f1-score increased (Figure 15) and are better than before
(Figures 3–5, Figures 9–11). Macro and weighted average f1-score
are an important index for performance of multi-classification tasks.
It is suggested that Resnet will work better when trained
appropriately, but it doesn’t outperform ML methods especially
DF significantly in this case (Figures 12, 15). When trained 500
epochs, it starts overfitting (Supplementary Figure S1). For more
information readers can be referred to Supplementary Materials.

DISCUSSION

In this study, classic ML algorithms and current DL frameworks are
adopted to predict the outcomes of IS in IST dataset. Both methods
attain considerable accuracy. The performances of ML and DL are
also compared. The results show that adapted DL frameworks don’t
outperform ML in predicting capability, although Resnet raised the
weighted average f1-score after trained by 100 epochs (Figure 15).
The main reason of this lies in that the used DL frameworks are
developed and employed for processing image and serial data. They
are seldom used in censored and structured medical clinical data. In
this study, three DL frameworks, CNN, LSTM, and Resnet, are
adapted to process this sort of data and predicting the outcomes of
IS. The structure of the adapted CNN is similar to LeNet-5 (LeCun
et al., 1998) with an added one-dimensional convolutional layer as
the first convolutional layer. The used LSTM and Resnet are also
added to a one-dimensional convolutional layer as the first layer. In
this way, these DL frameworks can admit and process tabulated data,
such as structured medical data. CNN attains the accuracy of 0.83
when trained with less epochs, but it gets less f1-score (Figure 3).
This suggested that it doesn’t work well in multiclassification task, so

does LSTM (Figure 4). After eliminating the 5 least important
features and after trained with more epochs (100 epochs), Resnet
gets a higher weighted average f1-score (Figure 15). The first reason
is that the left 44 features are more important to the outcomes of IS.
The second reason is that Resnet is a fairly complex DL framework.
It adopts residual shortcut connection to overcome degradation
problems. When trained appropriately Resnet can capture some
intrinsic qualities of the tabulated data and work better in a
multiclassification task. In this study, the used Resnet is similar
to Resnet18 which possesses fewer layers. Next, deeper Resnet
framework and more powerful computing workstations will be
adopted to study this issue.

To investigate the predicting capability of DL in the IST dataset,
the performances of classic ML algorithms are compared to them.
The results show that DL doesn’t surpass ML. Resnet raises f1-score
after 100 epochs training with the selected 44 features. After
eliminating the 5 least important features, the DF and RF raise
the f1-score a little and both attain the accuracy of 0.83 (Figures 12,
13). And moderate f1-scores are attained in previous training and
test (Figures 6, 7). This means the left 44 features are more
important and the 2ML classifiers are robust to be used in this
sort of data. The newly proposedDF is used to be compared withDL
frameworks. In our experiments, DF doesn’t achieve highly
competitive performance to deep neural networks, although the
training time cost of DF is smaller than that of deep learning. The
reason of this lies in that the used features were collected in the early
1990s. Some important features may be neglected, and this reduces
the predicting ability of ML and DL. Next, deeper DL frameworks
will be adopted to investigate the performance of them. Furthermore,
some new features and variables will be collected to enhance the
performance of the machine learning and deep learning approaches.
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