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Abstract: During the research and development of multiphase flowmeters, errors are often used to
evaluate the advantages and disadvantages of different devices and algorithms, whilst an in-depth
uncertainty analysis is seldom carried out. However, limited information is sometimes revealed from
the errors, especially when the test data are scant, and this makes an in-depth comparison of different
algorithms impossible. In response to this problem, three combinations of sensing methods are im-
plemented, which are the “capacitance and cross-correlation”, the “cross-correlation and differential
pressure” and the “differential pressure and capacitance” respectively. The analytical expressions of
the gas/liquid flowrate and the associated standard uncertainty have been derived, and Monte Carlo
simulations are carried out to determine the desired probability density function. The results obtained
through these two approaches are basically the same. Thereafter, the sources of uncertainty for each
combination are traced and their respective variations with flowrates are analyzed. Further, the
relationship between errors and uncertainty is studied, which demonstrates that the two uncertainty
analysis approaches can be a powerful tool for error prediction. Finally, a novel multi-sensor fusion
algorithm based on the uncertainty analysis is proposed. This algorithm can minimize the standard
uncertainty over the whole flowrate range and thus reduces the measurement error.

Keywords: uncertainty analysis; Monte Carlo; two-phase flow; multi-sensor fusion; electrical capaci-
tance tomography; differential pressure; Venturi; cross-correlation

1. Introduction

Oil and nature gas are critical strategic resources that support the national economy
and people’s livelihood, and their exploration, extraction, transportation and processing
all involve the measurement of multiphase flow [1]. Therefore, it is of great significance to
accurately measure its flowrate [2]. Currently, the commonly used metering method is to
separate the multiphase flow into oil, gas and water first and then measure their respective
flowrates with single-phase flowmeters [3]. However, the separators are usually bulky and
expensive, and the separation process is time-consuming [4]. Therefore, real-time online
measurements for each individual oil well cannot be realized with this method. In addition,
with the depletion of onshore oil fields, more attentions have been turned offshore, where
the compact and expensive offshore platforms place more stringent requirements for the
size of a multiphase metering system [3,4].

In order to solve the above-mentioned technical problems, multi-phase flowmeters
(MPFMs) using the combination of a Venturi tube and a gamma-ray densitometer have
been proposed [5,6]. The attenuation rate of gamma-ray varies with the media density,
which is employed by the densitometer to estimate the mixture density [7,8]. However,
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the radioactive sources are harmful to both the environment and human bodies, and their
production and application usually requires approval from local authorities, which leads
to higher maintenance costs. Therefore, non-separative, non-radioactive and non-intrusive
multiphase flowmeters are under development by different companies [9,10], and the
most commonly deployed techniques include the cross-correlation [11–15], the differential
pressure meters [16,17], and the Electrical Capacitance Tomography (ECT) [18–22]. As for
the gas-oil two-phase flow, the combinations of any two of the above three sensing methods
can be implemented to determine the gas and liquid flowrates, which are referred to as
the “capacitance and cross-correlation” (“Cap + CC”), the “cross-correlation and differen-
tial pressure” (“CC + DP”), and the “differential pressure and capacitance” (“DP + Cap”)
respectively. All of these three combinations have been extensively studied in the liter-
ature [23–29]. For example, a dual-plane electrical resistance tomography (ERT) system
for gas-liquid flow measurement has been studied by Dong [23,24]. The combination of
cross-correlation and Venturi meter has been proposed by Harstad [28] and Fueki [25]. A
Venturi meter and electrical capacitance tomography (ECT)/ERT system for gas-liquid
flow measurement has been analyzed by Huang [26,27] and Meng [29]. However, a fair
comparison of the above-mentioned combinations remains largely absent because the input
data, benchmarking data and model predictions are generally different and the relevant
uncertainty information is usually lacking. Besides, errors rather than uncertainties are
often used to evaluate the performance of different algorithms, but the errors can only be
determined when the true values (or reference values) are known and their values often
possess a certain degree of randomness, which makes it difficult to trace their sources.
All these characteristics make the research centered on errors somewhat limited, and an
in-depth comparison of different algorithms impossible.

The studies on the uncertainty analysis of multiphase flow meters are relatively
rare but still exist. For example, the limitations imposed by the theoretical models for
multiphase flow metering were first discovered by Millington [30], and he concluded that
uncertainty data must be qualified with a statement of the flow composition to which
it applies. Later, a simple uncertainty analysis (UA) of the gas-oil two-phase flow was
presented by Kouba [31] and the contour maps of oil flowrate uncertainty with respects
to the gas fraction and water cut were provided. It was concluded that UA is a valuable,
but often overlooked, tool for multiphase metering systems. The measurement uncertainty
of vortex flowmeter was examined by Jia et al. [32] when a small amount of liquid is
injected into the gas flow. The different components of the total uncertainty are analyzed,
and the dominant one is specially treated and descended by increasing the sampling
number. The characterization of confidence in multiphase flow predictions was reviewed
by Cremaschi et al. [33], with the aim to raise the awareness of the importance of UA and
to identify some of the key gaps in the UA. The field experiences and challenges with
regard to quantifying measurement uncertainties were summarized and presented by
Folgerø et al. [34], and it was found that the representativeness of reference measurement,
fluid densities and production profiles are all factors that affected the uncertainty strongly.
Recently, uncertainty analysis for horizontal air-water flow experiment was conducted
by Jaloretto [35], and the flow pattern maps and two-phase pressure drops with their
uncertainties were provided to better understand the flow pattern transition regions and
the pipe diameter influence.

From the above literature review, it can be concluded that the importance of un-
certainty analysis is generally acknowledged, and the facts that uncertainties vary with
different flow conditions and total uncertainties can be divided into different components
are well-known. However, from the author’s perspective, the researches on the following
topics are still relatively insufficient.

1. The compositions of uncertainties

Multiphase flowmeters do not measure the individual flowrates directly, but infer
them from a collection of indirect measurements [30], such as differential pressure, time
delay of cross-correlation and average capacitance, etc. Therefore, uncertainty analysis can
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be a useful tool for tracing the sources of uncertainties, and thus provide guidance for more
targeted system improvement. For example, if it is already known that the uncertainties of
flowrates are dominated by the densitometer rather than the Venturi tube, then replacing
the differential pressure sensor with a more accurate but more expensive one will not help
improve the system performance significantly.

2. The distributions of uncertainties

Uncertainty analysis can help MPFM designer know in which flow conditions a certain
flowrate algorithm underperforms and take actions to prevent it. For example, it is well
known that an additional sensor will incur higher costs but not necessarily higher accuracy,
especially if this additional sensor is not as accurate as others. Uncertainty analysis allows
the system to compare the uncertainties of all possible algorithms and make sure the flow
conditions one algorithm underperforms in are not used as the final outputs.

3. The connections between errors and uncertainties

It is well known that errors and uncertainties are related, and the ultimate goal of
MPFM development is to reduce the measurement errors. However, an algorithm to reduce
measurement errors through uncertainty minimization is still absent in the literature.

In this paper, two approaches of uncertainty analysis are carried out: the first one is
to derive the associated uncertainty through the analytical expressions of the gas/liquid
flowrate; and the second one is to determine the probability density function (PDF) of
the gas/liquid flowrate output by the Monte Carlo simulations. The results obtained
through these two approaches are basically the same, such as the flowrate estimates and
standard uncertainty. Thereafter, the sources of uncertainty for each combination are
traced, and their respective variations with flowrates are analyzed. Further, the relationship
between error and uncertainty is studied, which demonstrates that uncertainty analysis
can be a powerful tool for error prediction. Finally, a novel multi-sensor fusion algorithm
based on uncertainty analysis is proposed. This algorithm can minimize the standard
uncertainty over the whole range and thus reduces measurement errors, as well as making
their distribution more even.

2. Metering System and Method
2.1. Multiphase Flow Test Facility

The schematic diagram of the multiphase flow test facility is shown in Figure 1. In
order to simulate the working conditions of the MPFMs, the whole system is pressurized to
0.3 MPa by the air compressor first. Then the gas flow is supplied by the cycling compressor,
whilst the oil and water flows are supplied by the oil pump and water pump respectively.
The flowrate of the gas, oil and water are metered by a turbine flowmeter, a volumetric
flowmeter and an electromagnetic flowmeter respectively. The control valves are used to
adjust the flowrate of each single-phase flow and these single-phase flows are mixed before
passing through the MPFM. Finally, the multiphase flow will be separated and reused in
the separator.
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Figure 1. Schematic diagram of the multiphase flow experimental facility.

2.2. MPFM

The schematic diagram of the MPFM is shown in Figure 2a. The mixture of air and oil
first flows through a high-frequency capacitance detection module (or dual-ECT module,
for short), and then flows through a differential pressure flowmeter module (or Venturi
module, for short).
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The dual-ECT module includes two planes of ECT sensors separated at a distance
of L = 110 mm, and the detection frequency is f = 714 Hz. Each plane of ECT sensor
includes 8 electrodes, so that 28 independent capacitance measurements can be obtained
for each detection. The Venturi module includes a Venturi tube to measure the differential
pressure dp, and a pressure and temperature sensor to measure p and T respectively. The
diameters of the Venturi inlet and throat are D = 50 mm and d = 25 mm respectively, so
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that the diameter ratio is β = d/D = 0.5. The detection frequency of the Venturi module is
f = 10 Hz.

The 20 test points are shown as red dots in Figure 2b, from which it is notable that the
flow patterns are mainly slug flow and elongated bubble flow. The test pressure is 0.3 MPa,
and the liquid and gas flowrate ranges are 2 ∼ 5 m3/h and 15 ∼ 75 Nm3/h respectively.

2.2.1. Dual-ECT

The measured capacitance Ci can be used to determine the Liquid Volume Fraction
LVF through linear data fitting. The two time-series signals of capacitance C1(t) and C2(t)
can be used to estimate the total volume flowrate through cross-correlation as follows [2–4]:

RC1,C2(τ) = lim
T→∞

1
T

∫ T

0
C1(t)C2(t + τ)dt (1)

The discrete form of the above equation can be written as:

RC1,C2(jdt) =
1
N

N

∑
n=1

C1(n)C2(n + j) j = 0, 1, 2, · · · (2)

When j = jmax, the cross-correlation function RC1,C2(jdt) reaches its maximum, and
thus the time delay τmax can be calculated from τmax = jmaxdt. τmax is the estimate of
the time when the fluid passes from the upstream to the downstream sensor, so the fluid
velocity uth can be estimated by uth = L/τmax and the estimated total flowrate Qth can be
estimated by:

Qth = Ad
L

τmax
(3)

where Ad is the cross-sectional area of the pipe.

2.2.2. Venturi

It should be noted that the flowrate equation provided by ISO 5167-4 [36] is not
suitable for multiphase flow working conditions, so that the obtained flowrate is referred
to as the indicated gas flowrate Qtp which is not equal to the actual gas flowrate Qg.

Qtp =
CdεA√
1− β4

√
2dp
ρg

(4)

where A denotes the cross-sectional area of the Venturi throat, dp is the measured pressure
difference, β is the diameter ratio, β = d/D, Cd and ε are the discharge coefficient and
the expansion factor respectively, and both of them can be determined by ISO 5167-4 [36].
ρg denotes the gas density, which can be calculated from the measured pressure p and
temperature T according to ISO 12213-2 [37].

2.3. Uncertainty Analysis Methods

One of the most fundamental and comprehensive documents for uncertainty analysis
is the “guide to the expression of uncertainty in measurement” (hereinafter referred to as
the GUM method) [38] and its supplement 1 “Propagation of distributions using a Monte
Carlo method” (hereinafter referred to as the MCM method) [39].

2.3.1. GUM

The basic idea of the GUM method is that the model input information can be ex-
pressed in the forms of its estimate and standard uncertainty, and these estimates and
standard uncertainties are propagated through a (linearized) model to provide the estimate
and standard uncertainty of the model output. Normal distributions are assumed for the
model output according to the Central Limit Theorem; therefore, the coverage factor and
expanded uncertainty can be determined accordingly [40].
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The general method to evaluate the input uncertainty through linear regression and
the method to determine the output uncertainty through the law of propagation are
summarized in Appendix A. More information about the GUM method can be found in
Refs. [38,40].

2.3.2. MCM

The MCM method (Monte Carlo method), also known as the statistical simulation
method or random sampling method, is a method of using random numbers (or pseudo-
random numbers) to solve problems. It randomly generates a value from the probability
density function (PDF) of each input quantity and calculates its corresponding output
value. This process is repeated many times, so that a total of M outputs can be obtained.
The PDF and associated statistics can be determined from these M outputs.

In this paper, the level of confidence is set as p = 0.95 and the number of simulations
is set as M = 106. The pseudo-random number generator is provided by Matlab (e.g.,
“random” and “mvnrnd” commands) and relevant codes can be directly obtained from
Ref. [41]. It is worth mentioning that multi-variable normal distribution generators should
be applied for the coefficients of the linear fitting (β0 and β1 in Equation (9)) because these
coefficients are correlated so that their covariance must be taken into consideration. More
information about the MCM method can be found in Refs. [39,41].

2.4. The Relationship between Certain Concepts
2.4.1. Composition and Distribution Diagrams

Figure 3a simultaneously shows the composition and distribution diagrams of the
liquid flowrate uncertainty. It is notable from Figure 3a that the combined uncertainty
varies with the gas and liquid flowrates, and the combined uncertainty is mainly made up
of two components, which corresponds to the contributions from two different sensors.

uc(y) =
√

u2
1(y) + u2

2(y) (5)
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By cross-referring the composition and distribution diagrams in Section 3, it is possible
to mentally construct similar 3-D diagrams as Figure 3a. The points numbered from 1 to
100 refers to 100 interpolated points that can help the readers accurately figure out the
composition and distribution of certain typical working conditions.
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With the distribution maps, the MPFM developers can develop novel algorithms
that can minimize the total uncertainties in any gas and liquid flowrate conditions. With
the composition maps, the MPFM developers can figure out the major sources of the
uncertainties and carry out more targeted improvements. Relevant information can be
found in the prediction result figures in Section 3.

2.4.2. Error and Uncertainty

According to the GUM, the definitions of error and uncertainty are as follows:

• Error (of measurement). Result of a measurement minus a true value of the measurand.
• Uncertainty (of measurement). Parameter associated with the result of a measurement

that characterizes the dispersion of the values that could reasonably be attributed to
the measurand.

The difference between error and uncertainty is shown in Figure 3b. It is notable from
the definitions of error and uncertainty that as long as the measured value and the true
value (or reference value) of a measurand are known, its error is a definite number with a
plus or minus sign; whereas its uncertainty is always a positive number. More detailed
descriptions of the difference between error and uncertainty can be found in Refs. [38,40].

For each measurement, there is an associated error and uncertainty. Therefore, it
is sometimes more convenient to use Mean Absolute Error (MAE) or Mean Absolute
Percentage Error (MAPE) to compare the average values of errors of different data sets.
The definitions of MAE and MAPE are as follows:

MAE =
1
n

n

∑
i=1
|ŷi − yi| (6)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (7)

where ŷi is the measured value, yi is the reference value and n is the number of measure-
ments of a dataset. The ranges of MAE of MAPE are both from 0 to infinity and larger
MAE and MAPE mean lower accuracy. But MAE is usually used for the errors of ratios
(e.g., LVF) whereas MAPE is mainly used for the errors of flowrates (e.g., Qth and Qtp). In
the following part of this paper, the relative error in the figure titles refers to the MAPE.

Similar terms such as Mean Absolute Uncertainty (MAU) or Mean Absolute Percent-
age Uncertainty (MAPU) can be defined for the standard uncertainties of a dataset. In the
following part of this paper, the relative uncertainty in the figure titles refers to the MAPU.

The ultimate goal of MPFM development is to reduce its measurement error and it
is well known that the error and uncertainty are related. Therefore, it is worth develop-
ing new algorithm that can reduce the measurement errors through careful uncertainty
minimizations, and relevant information can be found in Section 3.

2.5. Expanded Uncertainty

Expanded uncertainty defines an interval of the measurement result to which a certain
level of confidence can be attributed. It is obtained by multiplying the combined standard
uncertainty uc(y) by the coverage factor k:

U(y) = kuc(y) (8)

According to the Central Limit Theorem, normal distributions are assumed for both
inputs and outputs, and the degree of freedom will be sufficiently high because the direct
measurements such as differential pressure and capacitance are usually averaged over
an extended period of time and the sampling frequency is relatively high. Therefore,
k95 = 1.96 can be used as the coverage factor for U95(y) with a level of confidence of 95%.

For the MCM method, if the simulation results show that the distributions of outputs
deviate from the normal distribution, then a more accurate numerical method for estimating
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the interval [ymin, ymax] can be used. For example, if the test number is M = 106 and the
level of confidence is p = 0.95, then the interval [ymin, ymax] can be determined by seeking
the shortest interval that covers pM = 0.95× 106 test results. Details of this method can be
found in Ref. [41] and discussions of this case can be found in Section 3.2.

It is worth mentioning that the intention of this paper is not to provide a comprehen-
sive and detailed uncertainty analysis for all algorithms, but to use uncertainty analysis
as a tool for composition and distribution analysis, and measurement error reduction,
as emphasized in the introduction. In this sense, the standard uncertainty fulfills this
function well and the extended uncertainty can simply be estimated by multiplying it with
a constant (e.g., 2 for a rough estimate). Therefore, only the standard uncertainty results
will be presented in the following part of this paper to avoid redundancy.

3. Three Sensing Combinations
3.1. “Cap + CC” Method
3.1.1. The Calculation Procedures

The calculation process of the “Cap + CC” method is shown in Figure 4. From
Figure 4, it can be noted that the total volume flowrate Qtot and the liquid volume fraction
LVF are both obtained through linear regression fitting. The average capacitance C0
used for determining the LVF is obtained by averaging the capacitance of four opposite
electrodes C0 = ∑4

m=1 Cm/4, whilst the equivalent flowrate of cross-correlation Qth used
for determining the Qtot is obtained by first averaging the time delays of eight adjacent
electrodes τth = ∑8

n=1 τCn/8, and then calculating the equivalent flowrate Qth through the
following equation: Qth = AL/τth.
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Figure 4. The calculation procedures of the capacitance and cross-correlation (Cap + CC) method.

Thereafter, the average capacitance C0 and the equivalent flowrate of cross-correlation
Qth are used as the dependent variable y, whilst the reference values of LVF and Qtot are
used as the independent variable x, and linear regression fittings are conducted in the
following form:

y = β0 + β1x (9)

The linear fitting result of the C0 and LVF is shown in Figure 5a, and the linear
fitting result of the Qth and Qtot is shown in Figure 5b. The coefficient β̂, the covariance
matrix Σβ̂β̂ and the standard uncertainty of dependent variable u(y) can be calculated by
Equations (A3)–(A5) respectively.
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total volume flowrate Qtot.

According to the calculation process in Figure 4, the estimates of LVF0 and Qtot0
should be calculated from the C0 and Qth respectively. The used equation is simply
x0 = (y0 − β0)/β1, and the associated standard uncertainty u(x0) is:

u(x0) =
s

β1

√
1
p
+

1
n
+

(x0 − x)2

Sxx
(10)

where s =
√

∑n
i=1 v2

i
n−2 , Sxx = ∑n

i=1(xi − x)2, n is the data number of the training sets, p is the
number of the repeated measurements of y.

The standard uncertainty distribution of the liquid volume fraction LVF0 is shown
in Figure 5c, whilst the standard uncertainty distribution of the total volume flow Qtot0 is
shown in Figure 5d. It can be noted from Figure 5c,d and Equation (10) that the standard
uncertainty of estimate u(x0) obtained from the calibration curve is related to the difference
(x0 − x). If the estimate x0 is close to the arithmetic mean x, then the standard uncertainty
of estimate u(x0) will be small, otherwise it will be large. On the other hand, this rule can
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also be used as the basis for reference point selection: the arithmetic mean x of the reference
data set should be as close as possible to the point x0 to be measured in the future.

After obtaining the estimates and standard uncertainty of LVF and Qtot, the estimate and
standard uncertainty of the liquid flowrate Ql can be calculated by the following equations:

Ql0 = Qtot0LVF0 (11)

urel(Ql0) =
√

u2
rel(Qtot0) + u2

rel(LVF0) (12)

The estimate and standard uncertainty of the gas flowrate Qg can be calculated by
similar equations with Equations (11) and (12).

3.1.2. The Composition and Distribution Diagrams

The composition and distribution of the relative uncertainty of the liquid flowrate
of the “Cap + CC” method are shown in Figure 6. It can be noted from Figure 6a that
the component of uncertainty introduced by the “CC” and the component of uncertainty
introduced by the “Cap” are relatively similar. In addition, under certain liquid flowrate
Ql , with the gas flowrate Qg increasing, the component by “CC” gradually decreases whilst
the component by “Cap” gradually increases, which causes the combined uncertainty of
liquid flowrate urel(Ql) to decrease at first but increase later. With the liquid flowrate Ql
increasing, the combined uncertainty of liquid flowrate urel(Ql) decreases monotonically.
Therefore, the contour of the relative uncertainty urel(Ql) of the liquid flowrate of the
“Cap + CC” method is shown in Figure 6b.
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information about the composition and distribution can be found in Section 2.4.1).

The composition and distribution diagrams of the relative uncertainty of the gas
flowrate of the “Cap + CC” method are shown in Figure 7. It can be noted from Figure 7a
that the component of uncertainty introduced by “CC” is much larger than the component
of uncertainty introduced by “Cap”, so the trend of the combined uncertainty of the gas
flowrate urel

(
Qg
)

is dominated by its “CC” component. In addition, at certain liquid
flowrate Ql , with the gas flowrate Qg increasing, the components introduced by “CC” and
“Cap” both decrease, which causes the combined uncertainty of the gas flowrate urel

(
Qg
)

to
decrease monotonically. With the liquid flowrate Ql increasing, the combined uncertainty of
the gas flowrate urel

(
Qg
)

also decreases monotonically. Therefore, the relative uncertainty
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of gas flowrate urel
(
Qg
)

of the “Cap + CC” method reaches its maximum at conditions
with low liquid flowrate Ql and low gas flowrate Qg, and its contour is shown in Figure 7b.
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Figure 7. The composition and distribution of the relative uncertainty of the gas flowrate of the “Cap + CC” method: (a)
composition diagram; (b) distribution diagram. (Each contour line denotes an increment of uncertainty of 0.01. More
information about the composition and distribution can be found in Section 2.4.1).

3.1.3. The Connection between Error and Uncertainty

The gas and liquid flowrate prediction results of the “Cap + CC” method are shown in
Figure 8. The blue lines in the Figure 8 denote the GUM results, whilst the red lines denote
the MCM results. The central black line denotes the ideal case when the estimated value
is equal to the reference value so that the error is always zero. The upper and lower red
lines specify a 10% relative error range so that points within this range have relative errors
less than 10%. Similarly, the upper and lower black lines specify a 20% relative error range.
The line segments denote the standard uncertainty associated with a measurement and its
value is represented by its length. The error is represented by the vertical distance between
the test point and the central black line. More information about the distance between the
error and uncertainty can be found in Section 2.4.2.

It can be noted from Figure 8 that the prediction results of the “Cap + CC” method for
the liquid flowrate are relatively poor, while the prediction results for the gas flowrate are
good, especially for working conditions with large gas flowrate. From Figure 8, it can be
noted that the measurement error and standard uncertainty are related to each other: the
longer the line segment is, the more likely the point will deviate from the central line. As
shown in the titles of each figure, the larger the average standard uncertainty is, the larger
the average relative error will likely become. Therefore, the standard uncertainty can be
used for error prediction, thereby helping the operators know the accuracy of the results
and providing assistance for better decision making.
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Figure 8. The prediction results of the liquid and gas flowrates of the “Cap + CC” method: (a) absolute error of the liquid
flowrate; (b) relative error of the liquid flowrate; (c) absolute error of the gas flowrate; (d) relative error of the gas flowrate.
(The central black line denotes the ideal case with zero error, the upper and lower red lines denote the 10% relative error
range, and the upper and lower black lines denote the 20 % relative error range. The line segments denote the standard
uncertainty whereas the distance between the point and the central black line denote the error. More information can be
found in Section 2.4.2).

3.2. “DP + Cap” Method
3.2.1. The Calculation Procedures

The calculation process of the “DP + Cap” method is shown in Figure 9. The method
to calculate the estimate and standard uncertainty of the liquid volume fraction LVF is
exactly the same as the “Cap + CC” method.
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After LVF0 is obtained, it is then transformed into the L-M parameter X0 by the
following equation:

X0 =
LVF0

1− LVF0

√
ρl
ρg

(13)

According to the law of propagation of uncertainty, the standard uncertainty of the
L-M parameter is:

u(X0) =
u(LVF0)

(1− LVF0)
2

√
ρl
ρg

(14)

Murdock [42], Bizon [43] and Lin [44] proposed a linear function between the gas
over-reading φg = Qtp/Qg and the L-M parameter X0 = Ql

Qg

√
ρl
ρg

as follows:

φg = β0 + β1X (15)

If the above equation is multiplied by Qg, then we have:

Qtp = β0Qg + β1Ql

√
ρl
ρg

(16)

where Qtp is the indicated gas flowrate, which is calculated by Equation (4).
In this paper, Equation (16) is used for the fitting of Qtp and the results are shown in

Figure 10. The standard uncertainty u
(
Qtp
)

is thus considered as constant and its value
can be calculated by Equation (A5). The coefficient β̂ and covariance matrix Σβ̂β̂ can be
calculated by Equations (A3) and (A4) respectively. These parameters will be used later for
determining the standard uncertainty of the gas/liquid flowrate.
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It can be noted from Equation (16) that it can either be written as Qtp = Qg(β0 + β1X) =

Qgφg or written as Qtp = Ql

√
ρl
ρg
(β0Y + β1) = Ql

√
ρl
ρg

φl . Therefore, as long as the esti-

mates and standard uncertainties of the gas over-reading φg and liquid over-reading φl are
known, then the estimates and standard uncertainties of the gas and liquid flowrate can be

calculated from Qg = Qtp/φg and Ql = Qtp

√
ρg
ρl

/φl .
For example, the standard uncertainty of the gas over-reading φg can be calcu-

lated from:

u
(
φg
)
=

√√√√s2

(
1
n
+

(x0 − x)2

Sxx

)
+ β2

1u2(X0) (17)

If the correlation between Qtp and φg is negligible, then the uncertainty of gas flowrate
urel
(
Qg
)

can be calculated by:

urel
(
Qg
)
=
√

u2
rel
(
Qtp
)
+ u2

rel
(
φg
)

(18)

The uncertainty of the liquid flowrate urel(Ql) can be calculated through similar
equations as Equations (17) and (18)

3.2.2. The Composition and Distribution Diagrams

The composition and distribution of the relative uncertainty of the liquid flowrate
of the “DP + Cap” method are shown in Figure 11. It can be noted from Figure 11a that
the component of uncertainty introduced by “DP” and the component of uncertainty
introduced by “Cap” are relatively similar. In addition, at certain liquid flowrate Ql , with
the gas flowrate Qg increasing, the component by “DP” gradually decreases, whilst the
component by “Cap” gradually increases, which causes the combined uncertainty of the
liquid flowrate urel(Ql) to slightly decrease at first and gradually increase then. With
the liquid flowrate Ql increasing, the combined uncertainty of liquid flowrate urel(Ql)
decreases monotonically. Therefore, the relative uncertainty of liquid flowrate urel(Ql)
of the “DP + Cap” method reaches its maximum at working conditions with low liquid
flowrate Ql and high gas flowrate Qg, and its contour is shown in Figure 11b.
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The composition and distribution of the relative uncertainty of the gas flowrate of
the “DP + Cap” method are shown in Figure 12. It can be noted from Figure 12a that
the component of uncertainty introduced by “Cap” is much larger than the component
of uncertainty introduced by “DP”, so the trend of combined uncertainty of gas flowrate
urel
(
Qg
)

is dominated by the component of “Cap”. Meanwhile, at certain liquid flowrate
Ql , with the gas flowrate Qg increasing, the component by “Cap” gradually increases whilst
the component by “DP” gradually decreases, which causes the combined uncertainty of
the gas flowrate urel

(
Qg
)

to decrease slightly at first and then increase gradually. With
the liquid flowrate Ql increasing, the combined uncertainty of the gas flow rate urel

(
Qg
)

decreases monotonically. Therefore, the relative uncertainty of the gas flowrate urel
(
Qg
)

of the “DP + Cap” method reaches its maximum at low liquid flowrate Ql and large gas
flowrate Qg, and its contour is shown in Figure 12b.
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3.2.3. The Connections between Error and Uncertainty

The gas and liquid flowrate prediction results of the “DP + Cap” method are shown in
Figure 11. The blue lines in Figure 13 denote the GUM results, whilst the red lines denote
the MCM results. It can be noted from Figure 13 that the GUM and MCM results generally
overlap but discrepancy still exists, and the reasons for this discrepancy will be analyzed
later in this section. From Figure 13, it can also be noted that the “DP + Cap” method has
better prediction results for the liquid flowrate, especially for conditions with large liquid
flowrate, whilst the prediction results for the gas flowrate is relatively poor, especially for
conditions with large gas flowrate.
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Figure 13. The prediction results of the liquid and gas flowrates of the “DP + Cap” method: (a) absolute error of the liquid
flowrate; (b) absolute error of the liquid flowrate; (c) absolute error of the gas flowrate; (d) relative error of the gas flowrate.
(The central black line denotes the ideal case with zero error, the upper and lower red lines denote the 10% relative error
range, and the upper and lower black lines denote the 20% relative error range. The line segments denote the standard
uncertainty whereas the distance between the point and the central black line denote the error. More information can be
found in Section 2.4.2).
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3.2.4. The Discrepancies between GUM and MCM Results

From Figures 11b and 12b, it can be noted that the GUM and MCM results of the
“DP + Cap” method do not match very well. This is because when the liquid volume
fraction LVF is converted to the L-M number X (Equation (13)), its range changes from
[0, 1] to [0,+∞) and its probability density function (PDF) begins to deviate from the
normal distribution, as shown in Figure 14c,d. Figure 14a,b shows X and dX/dLVF as
functions of the LVF, from which it can be noted that for a certain LVF, the increase of X
caused by a positive perturbation of LVF is always larger than the decrease of X caused by
a negative perturbation of LVF. Therefore, X is always right skewed and the larger LVF
is, the more right-skewed X will become due to the increasing dX/dLVF. In this case, the
gas/liquid flowrate output will also deviate from the normal distribution, and the MCM
results should by adopted rather than the GUM ones in this case.
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3.3. “CC + DP” Method
3.3.1. The Calculation Procedures

The calculation procedure of the “CC + DP” method is shown in Figure 15. The
method to calculate the estimate and standard uncertainty of Qtot is exactly the same as
the “Cap + CC” method, and the method to calculate the indicated gas flowrate Qtp and
its uncertainty u

(
Qtp
)
, coefficient β̂ and covariance matrix Σβ̂β̂ is exactly the same as the

“DP + Cap” method.
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After the estimates of the total volume flowrate Qtot0 are obtained, Ql = Qtot −Qg is
substituted into Equation (16) and then simplified as follows:

Qg =
Qtp − β1

√
ρl
ρg

Qtot

β0 − β1

√
ρl
ρg

=
Q∗tp

φ∗g
(19)

Similarly, Qg = Qtot − Ql is substituted into Equation (16), and the liquid flowrate
can be calculated by:

Ql =
Qtp − β0Qtot

−β0 + β1

√
ρl
ρg

=
Q∗tpl

φ∗l
(20)

Taking the gas flowrate as an example, the standard uncertainty of Q∗tp and φ∗g can be
derived from Equation (A8).

u
(

Q∗tp

)
=

√
u2
(
Qtp
)
+

ρl
ρg

Q2
totu2(β1) +

ρl
ρg

β2
1u2(Qtot) (21)

u
(

φ∗g

)
=

√
u2(β0) +

ρl
ρg

u2(β1)− 2
√

ρl
ρg

u(β0, β1) (22)

The standard uncertainty involved in Equations (21) and (22) can be obtained from
the covariance matrix Σβ̂β̂ and the standard uncertainty u(y) of the dependent variable y.

When calculating the standard uncertainty of gas flowrate u
(
Qg
)
, special attention

should be paid to the correlation between Q∗tp and φ∗g .

u
(
Qg
)
=

1
φ∗2g

√
φ∗2g u2

(
Q∗tp

)
+ Q∗2tp u2

(
φ∗g

)
− 2φ∗gQ∗tpu

(
φ∗g , Q∗tp

)
(23)
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where:
u
(

φ∗g , Q∗tp

)
= −

√
ρl
ρg

Qtotu(β0, β1) +
ρl
ρg

Qtotu2(β1) (24)

The standard uncertainty of liquid flowrate u(Ql) can be calculated from Equation (20),
with reference to Equations (21)–(24).

3.3.2. The Composition and Distribution Diagrams

The composition and distribution of the relative uncertainty of the liquid flowrate
of the “CC + DP” method are shown in Figure 16. It can be noted from Figure 16a that
the component of uncertainty introduced by “DP” and the component of uncertainty
introduced by “CC” are relatively similar. In addition, at certain liquid flowrate Ql , with
the increasing of gas flowrate Qg, the components by “DP” and “CC” do not change
significantly, which causes the combined uncertainty of the liquid flowrate urel(Ql) to
remain constant. With the increasing of liquid flowrate Ql , the combined uncertainty of
the liquid flowrate urel(Ql) decreases monotonically. Therefore, the contour of the relative
uncertainty of liquid flowrate urel(Ql) of the “CC + DP” method is shown in Figure 16b.
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The composition and distribution of the relative uncertainty of the gas flowrate of
the “CC + DP” method are shown in Figure 17. It can be noted from Figure 17a that
the component of uncertainty introduced by “CC” is much larger than the component of
uncertainty introduced by “DP”, so the trend of the combined uncertainty of gas flowrate
urel
(
Qg
)

is dominated by the “CC” component. In addition, at certain liquid flowrate Ql ,
with the increasing of gas flowrate Qg, the components by “CC” and “DP” decrease rapidly,
which causes the combined uncertainty of gas flowrate urel

(
Qg
)

to decrease rapidly. With
the increasing of liquid flowrate Ql , the combined uncertainty of the gas flowrate urel

(
Qg
)

generally does not change. Therefore, the contour of the relative uncertainty of gas flowrate
urel
(
Qg
)

of the “CC + DP” method is shown in Figure 17b.
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3.3.3. The Connections between Error and Uncertainty

The gas and liquid flowrate prediction results of the “CC + DP” method are shown in
Figure 18. It can be noted from Figure 18 that the liquid flowrate prediction results of the
“CC + DP” method are very stable and accurate, especially for conditions with high liquid
flowrates. By contrast, the gas flowrate prediction results of this algorithm is very unstable,
and its accuracy decreases rapidly with the gas flowrate decreasing, which results in good
results at large gas flowrate but bad results at low gas flowrate. Therefore, this algorithm is
more suitable for conditions with large gas/liquid flowrates.
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Figure 18. The prediction results of the liquid and gas flowrate of the “CC + DP” method: (a) absolute error of the liquid
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uncertainty whereas the distance between the point and the central black line denote the error. More information can be
found in Section 2.4.2).

4. Multi-Sensor Fusion Algorithm
4.1. The Calculation Procedures

The calculation procedures of the multi-sensor fusion algorithm are shown in Figure 19.
Its basic idea is to calculate the flowrate estimates and associated standard uncertainties of
the above three common algorithms, and then record the serial number of the method with
the least uncertainty. Finally, the results of the algorithm with the recorded serial number
will be outputted as the final results, as shown in Figure 19.
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4.2. The Composition and Distribution Diagrams

The composition and distribution of the relative uncertainty of the liquid flowrate of
the multi-sensor fusion algorithm are shown in Figure 20. It can be noted from Figure 20a
that the uncertainty of the “DP + Cap” method and the uncertainty of the “CC + DP”
method are relatively similar, whilst the uncertainty of the “Cap + CC” method is inferior
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to the other two. In addition, at certain liquid flowrate Ql , with the gas flowrate Qg
increasing, the uncertainty of the “DP + Cap” method gradually increases, whilst the
uncertainty of the “CC + DP” method slightly decreases. Therefore, the uncertainty of the
multi-sensor fusion algorithm is essentially a combination of the “DP + Cap” method at
low gas flowrate conditions and the “CC + DP” method at high gas flowrate conditions.
With the liquid flowrate Ql increasing, the uncertainties of all three algorithms decrease
monotonically, so the contour of the relative uncertainty of multi-sensor fusion algorithm
is shown in Figure 20b.

Sensors 2021, 21, x FOR PEER REVIEW 22 of 29 
 

 

certainty of the “CC + DP” method slightly decreases. Therefore, the uncertainty of the 

multi-sensor fusion algorithm is essentially a combination of the “DP + Cap” method at 

low gas flowrate conditions and the “CC + DP” method at high gas flowrate conditions. 

With the liquid flowrate 𝑄𝑙  increasing, the uncertainties of all three algorithms decrease 

monotonically, so the contour of the relative uncertainty of multi-sensor fusion algorithm 

is shown in Figure 20b. 

  

(a) (b) 

Figure 20. The composition and distribution of the relative uncertainty of the liquid flowrate of the multi-sensor fusion 

algorithm: (a) composition diagram; (b) distribution diagram. (Each contour line denotes an increment of uncertainty of 

0.01. More information about the composition and distribution can be found in Section 2.4.1). 

The composition and distribution of the relative uncertainty of the gas flowrate of 

the multi-sensor fusion algorithm are shown in Figure 21. It can be noted from Figure 21a 

that the uncertainty of the “DP + Cap” method and the uncertainty of the “Cap + CC” 

method are relatively similar, whilst the uncertainty of the “CC + DP” method is inferior 

to the other two. In addition, at certain liquid flowrate 𝑄𝑙 , with the gas flowrate 𝑄𝑔 in-

creasing, the uncertainty of the “DP + Cap” method gradually increases, whilst the un-

certainty of the “Cap + CC” method rapidly decreases. Therefore, the gas flowrate un-

certainty of the multi-sensor fusion algorithm is essentially a combination of the “DP + 

Cap” method under low gas flowrate conditions and “Cap + CC” method under large gas 

flowrate conditions. With the liquid flowrate 𝑄𝑙  increasing, the combined uncertainties 

of the gas flowrate of the three algorithms decrease monotonically to a certain extent, so 

the contour of the gas flowrate relative uncertainty of multi-sensor fusion algorithm is 

shown in Figure 21b. 

  

Figure 20. The composition and distribution of the relative uncertainty of the liquid flowrate of the multi-sensor fusion
algorithm: (a) composition diagram; (b) distribution diagram. (Each contour line denotes an increment of uncertainty of
0.01. More information about the composition and distribution can be found in Section 2.4.1).

The composition and distribution of the relative uncertainty of the gas flowrate of the
multi-sensor fusion algorithm are shown in Figure 21. It can be noted from Figure 21a that
the uncertainty of the “DP + Cap” method and the uncertainty of the “Cap + CC” method
are relatively similar, whilst the uncertainty of the “CC + DP” method is inferior to the
other two. In addition, at certain liquid flowrate Ql , with the gas flowrate Qg increasing,
the uncertainty of the “DP + Cap” method gradually increases, whilst the uncertainty of
the “Cap + CC” method rapidly decreases. Therefore, the gas flowrate uncertainty of the
multi-sensor fusion algorithm is essentially a combination of the “DP + Cap” method under
low gas flowrate conditions and “Cap + CC” method under large gas flowrate conditions.
With the liquid flowrate Ql increasing, the combined uncertainties of the gas flowrate of
the three algorithms decrease monotonically to a certain extent, so the contour of the gas
flowrate relative uncertainty of multi-sensor fusion algorithm is shown in Figure 21b.

4.3. The Connections between Error and Uncertainty

The gas and liquid flowrate prediction results of the multi-sensor fusion algorithm
are shown in Figure 22. It can be noted from Figure 22 that the liquid flowrate prediction
results of the multi-sensor fusion algorithm are very stable and accurate, especially at
conditions with large liquid flowrate. Meanwhile, the gas flowrate prediction results of
this algorithm are also very stable and accurate, especially at conditions with large gas
flowrate. From Figure 22, it can also be noted that the multi-sensor fusion algorithm enjoys
much lower uncertainty and error than any of the three conventional algorithms, which
demonstrates that uncertainty analysis can be used for improving the accuracy of a MPFM.
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Figure 22. The prediction results of the gas and liquid flowrates of the multi-sensor fusion algorithm: (a) absolute error of
the liquid flowrate; (b) relative error of the liquid flowrate; (c) absolute error of the gas flowrate; (d) relative error of the gas
flowrate. (The central black line denotes the ideal case with zero error, the upper and lower red lines denote the 10% relative
error range, and the upper and lower black lines denote the 20% relative error range. The line segments denote the standard
uncertainty whereas the distance between the point and the central black line denote the error. More information can be
found in Section 2.4.2).
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In theory, the multi-sensor fusion algorithm can combine the results of as many con-
ventional algorithms as possible to increase its accuracy. In practice, most multiphase
flowmeters have sensor redundancy, so it is possible that there are several available algo-
rithms for one working condition, and the multi-sensor fusion algorithm can take advan-
tage of this situation by just outputting the one will the least uncertainty and improve the
system accuracy as a result.

5. Conclusions

In this paper, three common combinations of multiphase flow sensing methods
(“Cap + CC”, “CC + DP” and “DP + Cap”) are implemented for uncertainty analysis
and the analytical expressions of the liquid/gas flowrates and associated standard uncer-
tainty are derived. Meanwhile, Monte Carlo simulations are conducted to determine the
PDF of the gas and liquid flowrate. The results obtained through these two approaches
are generally the same, such as the estimates and standard uncertainties. In addition, the
following important conclusions can be obtained through this research.

1. The standard uncertainties of each algorithm are different under different flow condi-
tions. Even the standard uncertainties of different algorithms differ from each other
under the same flow conditions (e.g., the difference in distributions are clearly shown
in Figures 6, 7, 11, 12, 16, 17, 20 and 21). The difference in distributions can provide a
basis for a multi-sensor fusion algorithm: if there are multiple available algorithms
for one flow condition, the multiphase flowmeter can simply output the results of the
algorithm with the lowest uncertainty in order to reduce the measurement error.

2. The percentages of uncertainty introduced by different sensors are also different,
and these percentages vary with the flowrates (e.g., in Figure 7a component by “CC”
is much larger than component by “Cap”, but they are similar in Figure 6a). This
conclusion can help reveal the composition characteristics of different algorithms,
and provide guidance for sensor selection and algorithm development.

3. The level of uncertainty can be used for error prediction (e.g., the MAPE and MAPU
results presented in the titles of Figures 8, 13, 18 and 22 are similar), but relevant
uncertainty analysis is often absent in the literature. The analysis in this paper can
help the operators better know the accuracy of their measurements, thereby providing
important guidance for MPFM calibrations.

4. The uncertainties obtained through the GUM and MCM approaches are generally the
same (e.g., the difference between GUM and MCM results in Figures 6, 7, 11, 12, 16, 17,
20 and 21 are negligible). With the assistance of advanced statistical and simulation
software, the MCM approach can be used directly for more complicated algorithms,
such as those with non-linear fittings and iterations, whilst the GUM approach can be
used to verify the results of MCM approach under certain simplified conditions.
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Nomenclature

Variables:
A Cross-sectional Area of the Venturi throat
Ad Cross-sectional Area of the pipe
C Capacitance
Cd Discharge coefficient
c Sensitivity coefficients
D Diameter of the Venturi throat
d Diameter of the pipe or Venturi inlet
dp Differential pressure
dt Time interval between two detection of the dual-ECT
e Error term
f Detection frequency or function
L Distance between the two planes of dual-ECT
M Number of simulation tests
n Total number or serial number
p Pressure or level of confidence
Q Volume flowrate
Qtot Total Volume flowrate
Qth Estimated total flowrate of the dual-ECT
Qtp Indicated gas flowrate of the Venturi
s Standard deviation
T Temperature
t time
U Expanded uncertainty
u Standard uncertainty
urel Relative standard uncertainty
uc Combined uncertainty
X Lockhart-Martinelli Parameter
x Independent variable
Y The reciprocal of X
y Measurand or dependent variable
Symbols:
β Diameter ratio or regression coefficients
ε Expansion factor
Σ Covariance Matrix
σ2 Residual Variance
ρ Density
τ Time delay
ϕ Over-reading
Abbreviations:
Cap Capacitance
CC Cross-Correlation
DP Differential Pressure
ECT Electrical Capacitance Tomography
ERT Electrical Resistance Tomography
Eq. Equation
Fig. Figure
GUM Guide to the expression of Uncertainty in Measurement
L-M Lockhart-Martinelli Parameter
LVF Liquid Volume Fraction
MAE Mean Absolute Error
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MAPE Mean Absolute Percentage Error
MAPU Mean Absolute Percentage Uncertainty
MAU Mean Absolute Uncertainty
MCM Monte Carlo Method
MPFM Multiphase Flow Meter
PDF Probability Density Function
Std. standard
UA Uncertainty Analysis
Subscripts:
avg average
g gas
l liquid
rel relative
0 Estimated value

Appendix A

Appendix A.1 Evaluating Input Uncertainty

There are two approaches to evaluate the standard uncertainty of the input quantities:
Type A evaluation based on repeated observations and Type B evaluation based on other
available information [38]. For all algorithms in this paper, the direct measurements are
first converted into an important intermediate variable (e.g., liquid volume fraction LVF or
total volume flow rate Qtot) through the least-squares method, and then these intermediate
variables are combined to calculate the gas/liquid flowrate outputs. Therefore, the source
of uncertainty can only come from the linear regression.

Linear regression model assumes that the observed value of Yi is a linear function of
xij plus a disturbance term [45]:

Yi = β0 +
p−1

∑
j=1

β jxij + ei, i = 1, . . . , n (A1)

where ei is a random error variable, with E(ei) = 0, Var(ei) = σ2, and Cov
(
ei, ej

)
= 0, i 6= j.

Using matrix notation, Equation (A1) can be written as:

Yn×1 = Xn×pβp×1 + en×1 (A2)

where E(e) = 0, Σee = σ2I.
It can be proved that the best unbiased estimates β̂ of the coefficients β and the

associated covariance matrix Σβ̂β̂ are respectively:

β̂ =
(

XTX
)−1

XTY (A3)

Σβ̂β̂ = σ2
(

XTX
)−1

(A4)

where σ2 is the expected value of the square of the error ei, and it can be proved that the
best unbiased estimate of σ2 is:

s2 =

∣∣∣∣∣∣Y− Ŷ2
∣∣∣∣∣∣

n− p
(A5)

To sum up, the least squares model assumes that the independent variable X is not
a random variable, but a constant that can be precisely measured and controlled, whilst
the dependent variable Y always has a constant variance σ2 due to the impact of the error
term e. The specific expression of the coefficients β̂ and covariance matrix Σβ̂β̂ for each
algorithm can be derived by Equations (A3)–(A5).
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Appendix A.2 Determining Output Uncertainty

If the measurement model can be expressed as follows:

Y = f (X) = f (X1, · · · , XN) (A6)

Then the estimate of its output is:

y = f (x1, · · · , xN) (A7)

and the combined standard uncertainty uc(y) of the output estimate y can be determined
through the following equation:

u2
c (y) =

n

∑
i=1

n

∑
j=1

∂ f
∂xi

∂ f
∂xj

u
(
xi, xj

)
= cTΣxc (A8)

This equation is also referred to as the law of propagation of uncertainty. In Equation
(A8) u

(
xi, xj

)
is the covariance between the input quantities xi and xj, and Σx is the

corresponding covariance matrix. If the input quantities xi and xj are coefficients obtained

through least squares fitting, then Σx = Σβ̂β̂. ∂ f
∂xi

is the sensitivity coefficient, usually

obtained by calculating the partial derivative of the function f at xi, cT =
[

∂ f
∂x1

, · · · , ∂ f
∂xn

]
is a vector of the sensitivity coefficients. If the measurement model is complicated and
the partial derivatives are difficult to calculate, then ∂ f

∂xi
can also be determined through

numerical or experimental methods.
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16. Ðurd̄ević, M.; Bukurov, M.; Tašin, S.; Bikić, S. Experimental research of single-hole and multi-hole orifice gas flow meters. Flow
Meas. Instrum. 2019, 70, 101650. [CrossRef]
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