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Abstract: Antibiotic persistence is a phenomenon in which rare cells of a clonal bacterial population
can survive antibiotic doses that kill their kin, even though the entire population is genetically
susceptible. With antibiotic treatment failure on the rise, there is growing interest in understanding
the molecular mechanisms underlying bacterial phenotypic heterogeneity and antibiotic persistence.
However, elucidating these rare cell states can be technically challenging. The advent of single-cell
techniques has enabled us to observe and quantitatively investigate individual cells in complex,
phenotypically heterogeneous populations. In this review, we will discuss current technologies for
studying persister phenotypes, including fluorescent tags and biosensors used to elucidate cellular
processes; advances in flow cytometry, mass spectrometry, Raman spectroscopy, and microfluidics
that contribute high-throughput and high-content information; and next-generation sequencing
for powerful insights into genetic and transcriptomic programs. We will further discuss existing
knowledge gaps, cutting-edge technologies that can address them, and how advances in single-cell
microbiology can potentially improve infectious disease treatment outcomes.

Keywords: antibiotic persistence; phenotypic heterogeneity; single-cell analysis

1. Introduction

In a world of diverse threats, phenotypic heterogeneity is a bet-hedging strategy that
increases the odds of survival for clonal bacterial populations. In a given cohort, some
bacteria may be slow-growing and better prepared to survive external threats, while others
are metabolically poised to take advantage of nutrient windfalls for more rapid propagation.
Because of this, external insults such as antibiotic treatment may not fully eradicate a
bacterial population even if it appears genetically susceptible [1]. Some bacteria can endure
antibiotic treatment until the insult ends and they can resume growth and repopulate.

These resurgent cells, termed persisters, contribute to recurrent or recalcitrant infec-
tions that are difficult to resolve [2,3]. Clinically, persisters are implicated in the chronicity
of a range of infections, including urinary tract infections by uropathogenic Escherichia
coli, pneumonia in cystic fibrosis patients from Pseudomonas aeruginosa, or tuberculosis
from the namesake pathogen, Mycobacterium tuberculosis [4]. Antibiotic resistance is a
widely recognized threat to public health, but with increasing evidence suggesting that
persistence begets resistance, it is clear that persisters present a multifaceted challenge in
clinical infection management [5–8].

Better understanding of bacterial persistence can facilitate the development of anti-
persister treatment strategies; however, identifying and studying persistent bacteria is a
complex endeavor. Unlike resistant bacteria, persisters lack distinct genetic identifiers and
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therefore appear indistinguishable from their susceptible kin [2]. Furthermore, population-
based methods may mask the persistent subpopulations that are estimated to comprise
only 0.001–1% of a population [9]. Furthermore, phenotypic states are inherently transient
and shift in response to environmental conditions; therefore, it is even more important that
chosen techniques faithfully capture physiological states with minimal cellular perturba-
tions [10]. The field is currently limited by an inability to predict which cells will die, which
will survive treatment and reawaken, or which cells will remain viable through treatment
but will fail to resuscitate and replicate after treatment cessation [11]. The use of tools to
track phenotypic heterogeneity, together with functional assays, can help elucidate which
cells persist and how they do so.

Here, we provide an overview of single-cell techniques that are applicable to studying
phenotypic heterogeneity and bacterial persisters (Figure 1). To avoid redundancy with a
similar review, we will highlight cutting-edge technologies from the past five years and
discuss improvements in classical techniques that can illuminate the aspects of persister
biology that elude population-based methods [12].

Figure 1. An overview of approaches to investigate single-cell physiology.

2. Illuminating Single-Cell Traits with Fluorescence
2.1. Fluorescent Biosensors

Fluorescence is the foundation of many biological assays and can be measured in a
variety of ways, including flow cytometry, microscopy, or spectrophotometry. One effective
way to study phenotypic heterogeneity is with fluorescent reporter plasmids to indicate
relative transcription levels of specific genes (Figure 2A) [12–14]. Many studies have
utilized fluorescent reporters to study heterogeneity within vital bacterial genes related to
persistence, growth, and other phenotypic characteristics [15–19]. Others have developed
whole-genome reporter libraries to serve as a resource to better resolve transcriptional
distinctions between cells [13]. Additionally, cutting edge “multi-reporter” constructs have
been effectively optimized in E. coli and P. aeruginosa to enable observation of multiple
transcripts simultaneously while subverting traditional limitations of spectral overlap
(Figure 2A) [20–22].

Gene expression reporter plasmids are a reliable tool in analyzing transcription pat-
terns, but additional strategies are needed to measure subsequent translation. Proteins are
commonly identified by fluorescently tagged antibodies that bind specific protein epitopes,
also allowing for protein abundance and localization studies [23]. Studying a protein of
interest can also be accomplished with a transcriptional fluorescent protein (FP) fusion
modifying a chromosomal or plasmid-borne copy of a gene (Figure 2B) [24–26]. This
process has been scaled to the whole-genome level with the development of fluorescent
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fusion libraries in E. coli, among other species, that do not have an observable impact on
cell growth [27,28].

Figure 2. Principles of fluorescence-based techniques. (A) Plasmid-based fluorescent reporters utilize gene-specific
promoters tied to FP molecules to indicate expression. This concept has been further refined to make multi-reporter plasmids,
where the expression of multiple genes can be observed simultaneously. (B) FRET-based probes can be incorporated into
biomolecules to indicate when the two interact. Other protein-based and enzyme-based sensors can fluoresce upon binding
of a ligand (for example, ATP biosensors such as QUEEN and iATPSnFR). FP tags can be incorporated into a chromosomal
or plasmid-borne gene copy to create a fluorescent protein-FP fusion. (C) Fluorescent small molecule probes such as
DAPI, SYTOX Green, and Redox Sensor Green can directly bind target biomolecules and indicate their presence and
localization. Non-fluorescent molecular probes can be modified by alkynation so that they fluoresce upon reacting with
an azide-containing fluorescent protein. (D) Nucleic acid-based fluorescence techniques, such as FISH probes, can bind
to complementary nucleic acid sequences, which fluoresce upon hybridization of the two strands. Riboswitches, such as
Spinach, can change conformation upon binding to a ligand to allow incorporation of a fluorescent molecule such as DFHBI.

Förster resonance energy transfer (FRET) is a protein-FP fusion technique that utilizes
a pair of photoexcitable probes to indicate when specific proteins or molecules interact,
allowing for the gathering of information on signaling pathways and protein localiza-
tion [29,30]. Mechanistically, FRET involves the energy transfer from one probe that will
excite its proximal partner, resulting in emission at a distinct wavelength (Figure 2B). If the
tagged proteins do not interact, the pair of probes will be too far apart and the second probe
will not receive the proper excitation wavelength to fluoresce. Keegstra et al. highlighted
the value of FRET in studying phenotypic heterogeneity when they utilized FP-bound
CheY and CheZ to demonstrate that chemotaxis signaling in E. coli is heterogeneous [30].

Protein-FP fusions continue to remain a reliable, efficient, and easily scalable strategy
for studying proteins; however, this approach does come with its limitations. The addition
of the FP can potentially lead to undesired protein folding, aggregation, or localization.
Additionally, this technique is only feasible in genetically tractable species, precluding its
use with most environmental or clinical isolates [25].

Small molecule fluorescent probes can be applied to a variety of bacterial systems to
resolve single-cell morphological, metabolic, or signaling information (Figure 2C). Probes
that bind nucleic acids (e.g., 4′,6-diamidino-2-phenylindole (DAPI), SYTOX Green, and
Hoechst 33342) can indicate DNA content and are broadly used [23,31–33]. For example, in
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a study by Murawski and Brynildsen, the authors stained DNA with Hoechst 33342 and
demonstrated that higher genome copy number correlates with increased persistence to
the fluoroquinolone antibiotic, Levofloxacin, but that monoploid cells can still survive [34].

Oligonucleotide probes are commonly used to recognize specific RNA transcripts via
fluorescent in situ hybridization (FISH) (Figure 2D). FISH protocols have been developed
in recent years to bind specific RNA molecules in living, non-fixed bacteria, meaning this
protocol could be adapted to studying gene expression heterogeneity in live cells over
time [35]. Furthermore, combinatorial FISH using multiple RNA probes in parallel dra-
matically increases the transcriptomic capabilities of this classic technique. One variation
of this approach, called par-seqFISH, was recently implemented to study heterogeneous
gene expression of single cells based on their geographic location within a microbial
population [36].

Existing biomolecules can also be leveraged in the development of new probes. Flu-
orescently labelled amino acids incorporated into newly synthesized peptidoglycan can
indicate cell wall biosynthesis rates (Figure 2C) [37,38]. Similarly, antibiotic analogs that
bind native targets have been engineered into biosensors. For instance, the puromycin
analog O-propargyl-puromycin (OPP) was cleverly modified via click chemistry to be able
to bind a fluorophore; OPP biosensor incorporation into nascent peptides could therefore
be measured to convey single cell translation rates (Figure 2C) [39,40]. However, OPP
biosensors are incompatible with intrinsically puromycin-resistant Gram-negative species,
thus highlighting the need to consider whether biosensors will reliably colocalize with
structures of interest for a given model.

Modern biologists have taken advantage of naturally occurring binding motifs to
create ligand-specific biosensors. Notable contributions have been made towards the
quantification of intracellular ATP, an essential metabolite at the crux of definitions of cell
dormancy, viability, and persistence [41–43]. To study physiologically relevant concen-
trations of intracellular ATP at single-cell resolution, Yaginuma et al. optimized the ATP
synthase epsilon subunit from Bacillus PS3 into the “QUEEN” ATP biosensor (Figure 2B).
Intracellular ATP concentrations are measured by exciting the sample at two distinct wave-
lengths and calculating the ratio of the emission intensities [44]. To facilitate imaging
analysis using a single excitation wavelength, Lobas et al. developed the ATP sensor
iATPSnFR and demonstrated its compatibility with confocal microscopy for imaging and
quantifying ATP within single cells [45]. Note, however, that this sensor was used in
mammalian cells and so certain features, such as the integration of the sensor into the
plasma membrane via a specific trafficking vector, will require further optimization to be
amenable in bacteria.

In addition to proteins, functional nucleic acids have also been engineered into flu-
orescent biosensors. For example, riboswitch-based biosensors have been developed for
specific single-cell analyses. Riboswitches are regulatory RNAs found in both eukaryotes
and prokaryotes and are remnants of ancestral RNA-centric organisms [46,47]. These RNA
elements can be found in untranslated regions of messenger RNAs and they consist of a
ligand binding aptamer domain along with a regulatory expression platform. In response
to binding of a specific ligand in the aptamer domain, these small probes change conforma-
tion and can act like the switch on a DNA railroad track, diverting RNA polymerase from
its default transcriptional pathway to turn transcription either “on” or “off”. Riboswitch
conformational changes can also regulate translation by blocking ribosomal binding. Tak-
ing advantage of these regulatory elements, biologists have engineered riboswitches for
use as intracellular biosensors (Figure 2D). Kellenberger et al. leveraged riboswitch biology
to engineer a probe for detecting intracellular cyclic di-GMP, a signaling molecule with
critical roles in regulating virulence, planktonic versus biofilm lifestyles, and antibiotic
persistence [48,49]. Studying this key intracellular molecule was made possible by com-
bining a c-di-GMP-recognizing riboswitch aptamer to Spinach, another aptamer with a
chromophore binding pocket. In this fusion biosensor, binding of c-di-GMP causes a con-
formational change such that Spinach’s binding pocket becomes accessible for binding and
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activating the chromophore 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI).
The fluorescent signal can then be analyzed to determine secondary messenger activity
in live cells. This combinatorial approach can be applied for creating biosensors from
other naturally occurring aptamers or, in theory, recognition aptamers could be rationally
designed for highly specific ligand detection.

The application of riboswitch biosensors has taken off in the last decade. They have
been used in both Gram-negative and Gram-positive bacteria; have been implemented
in the study of intracellular secondary messengers, amino acids, and nucleobases; and
have been designed using a variety of natural and synthetic aptamers (interested readers
should refer to a recent review by Husser et al. for details) [50]. Given the importance of
intracellular metabolite concentrations in persister formation, this technology could vastly
expand our understanding of how specific small molecules and metabolites contribute to
persister physiology and heterogeneity [42,43].

2.2. Flow Cytometry

In the pursuit of highlighting distinctions in heterogeneous bacterial populations, flow
cytometry remains a reliable and versatile technique in the analysis of single cells. First,
the fluidic system injects the cells and buffered solutions into flow lines, with differential
pressure allowing the cells to be focused into a single-file line [51,52]. Cells are then directed
into the path of an excitation device, which can be used to measure size, granularity (the
material inside the cell), and various fluorescent properties of the cell. The photodetectors
in cytometers are able to detect photons emanating from individual cells, allowing for the
characterization of these properties at a single-cell level [51,52]. In recent decades, flow
cytometry has been utilized to provide insights into optical and fluorescence-based cellular
properties of single eukaryotic and prokaryotic cells.

One of the most influential developments in flow cytometry was the deployment of
fluorescent-activated cell sorting (FACS). When flow cytometry is interfaced with FACS,
cells showing a desired fluorescent characteristic can be differentially charged and isolated
through the use of electrical currents and electromagnetic devices [53,54]. This technique is
crucial in the study of bacterial phenotypic heterogeneity because of its ability to resolve
and isolate single cells for further analysis. These appropriately sorted cells can serve
multiple purposes, including the return to healthy growing conditions for further divi-
sion, or for direct analysis through microscopy and other techniques [55]. For example,
researchers have used mCherry and Redox Sensor Green (RSG) to sort cells based on
growth and metabolic activity, respectively [56,57]. Similar studies used FACS to sort cells
based on reporters for persistence-implicated genes following treatment with antibiotics,
and then utilized those cells for additional biological assays and sequencing [58,59]. Other
experiments have utilized FACS to study biomarkers implicated in persistence and other
phenotypes of bacterial heterogeneity [43,60]. For example, previous studies have classi-
fied cells by growth or metabolic rates (through the use of fluorescent reporters of gene
expression levels) and then tested the cell’s ability to endure various stressors [43,56,57,60].

These fluorescence-based techniques are remarkably effective in the analysis of bacte-
rial identity, development, and physiology, with the capability of differentiating hetero-
geneous populations. Nonetheless, utilizing these fluorescence-based techniques with
flow cytometry or FACS lacks an important level of informational resolution, such as
the localization of proteins and other molecules, and the timing of fluorescently tracked
physiological events. Because of this, traditional flow cytometry has been interfaced with
additional instrumental methods to delve deeper into heterogeneity at the single-cell level.

In order to impart additional resolution in distinguishing individual cells among het-
erogeneous populations, fluorescent microscopy has been interfaced with flow cytometry
in a technique referred to as imaging flow cytometry (IFC). IFC captures multiple images
of cells as they move through the flow line [61]. IFC differs from traditional flow cytometry
in the way that it can provide fluorescently indicated morphological and physiological
information in the context of a single cell image [62]. For example, bacterial length and
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granularity data measured through IFC have been used in a model to predict persistence
based on a cell’s morphological features [63,64]. Additionally, through continual improve-
ments to IFC, virtual-freezing fluorescence imaging flow cytometry (VIFFI-FC) has been
developed. This technique utilizes a microfluidic chip and timing-based device to allow for
a much longer exposure time during imaging, drastically improving image quality. While
this technique has only been introduced in eukaryotic cell studies, authors acknowledge its
applicability for studying bacterial pathogens [65].

3. Microfluidic Devices

Because only some cells from an isogenic population become persisters, it is currently
impossible to predict which cells to track in a clonal population. Additionally, considering
that persisters are present at very low frequencies in bacterial populations, identifying
these cells for further investigation is a challenge. Microfluidic devices, coupled with
advancements in cameras and microscope resolution, have been an essential tool to fill this
knowledge gap [66]. Over the last fifteen years, these devices have been vastly improved,
from their ease of use and affordability to their technical precision to manipulate fluids
on a micrometer scale. These advancements have led to novel applications in the field
of bacterial persistence, as single cells can be followed through antibiotic treatment and
recovery for many generations [66].

This single-cell technology allows exploration of different stresses in order to better
understand phenotypic heterogeneity. Persisters can then be found and the data throughout
the experimental time course can be used to better predict which cells have the potential
to persist. One application of this technique was accomplished by Goormaghtigh and
Van Melderen who used a fluorescent reporter to track the genetic expression of the SOS
response indicator sulA as a measure of DNA damage [67]. There were only 23 persisters
in their original population of 47,000 exponentially growing cells, emphasizing the need to
study a high quantity of cells before a relevant amount of persister data can be collected.

Antibiotic persistence has been shown to contribute to antibiotic resistance, so evolu-
tion is often discussed in the persistence field [6–8]. The Mother Machine is a microfluidic
device developed by Wang et al. in 2010 to track these changes on a single-cell level [68].
The design consists of multiple channels, each encapsulating a single cell that can obtain
nutrients through diffusion of constantly flowing media. The original cell stays secured
in the channel as the progeny are forced up, out, and downstream by the flowing media,
allowing for study of generations of cells in a high-throughput manner (Figure 3A). This
Mother Machine was originally developed for E. coli, has since been used for B. subtilis,
and was recently adapted for cocci morphologies [68–70]. Other variations on the Mother
Machine have expanded its applicability for exploring the effects of different stresses over
generations of growth. One such study showed that biased partitioning of efflux pumps
favors the mother cell over the daughter, leading to heterogeneous efflux pump activity and
variable antibiotic susceptibility within a clonal population [71]. The dual-input Mother
Machine (DIMM) enables generational persistence studies by introducing a secondary,
antibiotic-containing liquid in addition to the standard growth media [72]. To manage
large amounts of visual data, bacteria Mother Machine analysis (BACMMAN) was de-
veloped [73]. This software automates the process of analyzing single-cell images and is
currently being expanded to other cell types.

A critical function of microfluidic devices is the precise control of fluid flow through
channels. This can be used to execute exact antibiotic gradients and flow rates. Bos
et al. applied an antibiotic gradient to single cells in a microfluidic device while tracking
filamentation and cell size over time to relate single-cell drug response, morphology, and
susceptibility simultaneously [74]. Fluid flow can be manipulated to force cells into specific
chambers depending on their size and morphology, thus enabling co-culture experiments
without interspecies cross contamination [75]. Original experiments using this approach
were performed on larger eukaryotic cells and recent work has adapted the parameters
for smaller yeast cells, showing the potential for high-throughput morphological sorting
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in bacteria [76–78]. The flow through microfluidic devices can also be used to direct the
development of certain phenotypes. Biofilms can be formed by controlling the laminar flow
of planktonic cells around corners [79,80]. Biofilm imaging at a single-cell level has been
recently developed, leading to the exciting future potential to combine not only fluorescent
probes or reporters, but also antibiotic gradients with microfluidic devices to understand
persister physiology within biofilms [81].

Figure 3. Highlighted applications of microfluidic devices. (A) The Mother Machine is a microfluidic
device housed in a chip that allows media to flow through an inlet site and exit via the outlet [69].
Cells are inoculated in channels that are designed to ensure the entrapment of the oldest cell (“Mother
Cell”) of the lineage. These initial cells give rise to progeny over time which can be studied. The
media flows constantly to ensure the cells are fed and will continue to replicate while also allowing
for the removal of old progeny that outgrow the rows. (B) Droplets containing single cells can be
formed by controlled flow of oil around cells in media. The oil and water-based media do not mix, so
the cells stay in their encased bubbles. After the initial droplet formation, droplets can be further
analyzed fluorescently or electrically to ensure only a single cell is present.

Similarly, droplet microfluidics have been used to separate out individual cells but
keep them contained in a capsule of liquid. Droplets are formed from the use of two
liquids—often water-based media and oil—that do not mix (Figure 3B). By controlling the
flow of these two liquids as well as the geometry of their interaction, droplets of different
sizes can form. Cells floating inside the media can then become trapped in individual
droplet bubbles [82]. If desired, these droplets can be machine sorted via an electrode or
with fluorescent reporters to allow for automated quality assurance [83]. Droplets can be
combined with each other, injected with new media, and sorted after the cells are inside [84].
Because the liquid of each cell is self-contained, it allows for secretion studies and assays to
be performed on single cells [85]. Additionally, work has been carried out showing that
washing of cells is possible without disrupting the system, meaning that more complex
persistence assays of single cells are on the horizon [86].

Microfluidic devices offer a crucial platform for studying individual cell morphologies,
functions, and phenotypes and are amenable to downstream analyses that can uncover
more layers of detail within a given cell [87]. Highly technical instrumentation and synthetic
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biology approaches are helping to bring these molecular-level phenotypic differences
to light.

4. Mass Spectrometry

Mass spectrometry is a hallmark analytical technique for identifying molecules with
high specificity. While studying factors involved in persister formation and resuscitation
often involves targeted methods, such as the fluorescent probes discussed previously,
mass spectrometry offers a holistic means of studying cellular composition. Mass spec-
trometry is often utilized for metabolomic and proteomic studies to understand which
cellular processes are altered during persister formation and reawakening [88–91]. The
instrumentation and sample preparation protocols for mass spectrometry are diverse,
highly technical, and will not be discussed here. Instead, we will focus on the principles
of mass spectrometry and how this technique can be applied for inquiries into single-cell
persister heterogeneity.

In mass spectrometry, a mixture of molecules is fragmented, ionized, and propelled
through an electric field; the time to travel through the field to the detector is then used
to calculate the mass of each ion. The fragmentation pattern of the entire sample can
then be analyzed to deduce original molecular compositions based on the masses of each
atomic element. Because mass spectrometry provides a broad, unbiased snapshot of cell
composition, the resultant spectra can be extremely complex. Peak assignment software is
continually being improved in order to reduce the burden of data analysis, but it is often a
computationally taxing, slow process [92–95].

To circumvent this issue, a fundamental strategy for studying a specific molecule of
interest is stable isotope labelling. Isotopes’ unique mass signatures provide a signal to
hone in on amidst dense data sets. Isotopically labeled antibodies can also be used to
expedite analysis but, like any antibody-based technique, applicability is limited by the
availability of antibodies specific to the molecule of interest. A more direct option is to use
isotopically labelled nutrient sources, antibiotics, or other substrates; this has been used
with nanoscale secondary-ion mass spectrometry (NanoSIMS) to analyze the metabolic
heterogeneity of various single-cell populations [96,97].

Researchers can use high-resolution mass spectrometry imaging techniques to examine
the spatial distribution of analytes within single cells. Nanoscale imaging (using cluster ToF-
SIMS) has been used to demonstrate the localization of ribosome-targeting versus cell wall-
targeting antibiotics in individual E. coli cells without the need for substrate labelling [98].
Imaging mass spectrometry can be coupled with imaging fluorescent probes to yield
multiple layers of information about a single sample [99]. This is also a strategy to expedite
acquisition time: imaging fluorescent markers first allows researchers to focus on areas
of interest for subsequent mass analysis, thus increasing the efficiency of a traditionally
low-throughput technique.

Interfacing mass spectrometry with other single-cell approaches, such as flow cytome-
try or microfluidics platforms, is pushing the boundaries of this foundational technique
toward new horizons. Beyond isogenic populations, mass spectrometry can offer a highly
sensitive platform for studying metabolism in multispecies cohorts. In 2008, Behrens et al.
combined fluorescent 16S rDNA probes with stable isotope profiling of carbon and nitrogen
substrates to identify which species were responsible for the observed metabolic behaviors
in a bacterial cohort [100]. This has inspired a wealth of studies on ecophysiology and offers
the potential for studying phenotypic heterogeneity in multispecies contexts [96,101]. But
these strategies will only capture intracellular or cell-surface molecular identities; to study
single-cell secretomics, droplet mass spectrometry can be employed. As a cell secretes
metabolites and enzymes into its surroundings, the analytes will remain associated with
that cell due to encapsulation within the same droplet [102]. Therefore, this offers a way to
investigate the molecular identities of secreted or excreted products from a single cell and
could be relevant to studying the role of antibiotic efflux in persistence [103–105].
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However, for the foreseeable future, there is one obstacle in mass spectrometry that
cannot be avoided: sample destruction. The ionization process renders samples unusable
for downstream analysis. Therefore, mass spectrometry is unsuitable for measuring a
single cell’s metabolic perturbations over time and tracking its survival through antibi-
otic treatment and cessation. In eukaryotic single-cell mass spectrometry, microcapillary
sampling has been developed as a means to analyze the cytosolic composition of cells
without compromising cell integrity; however, as of yet, this technique has not been scaled
down for use in bacterial systems [97]. While we await prokaryotic cell microsampling or
alternative technological advancements, other non-destructive methodologies are available
for metabolic analysis of bacterial persisters.

5. Raman Spectroscopy

Raman spectroscopy is an alternative to mass spectrometry for detailed molecular
analysis and is a rapidly improving technology for single-cell metabolomics. This technique
involves measuring the vibrational bond energies between atoms in a molecule then
analyzing the resultant spectrum to glean information on molecular structure. In a seminal
2004 manuscript, Huang et al. demonstrated that Raman spectroscopy could be used
for single-cell identification based on the distinct spectral “fingerprint” of each species,
including non-culturable environmental isolates [106]. Furthermore, they tracked the
spectral peak shifts in cells grown in varying amounts of glucose with heavy carbon (13C),
highlighting the potential for this technique in studying single-cell metabolic activity.
However, efficient implementation of stable isotope-labelled substrates requires the use
of chemically defined media that could alter cells’ native metabolic states and limit the
applicability of this technique only to bacteria that can grow in laboratory conditions.

An elegant alternative to substrate labelling is to measure metabolism holistically
by culturing bacteria in partially deuterated water. This technique, called deuterium
isotope profiling by Raman spectroscopy (Raman-DIP), takes advantage of the “silent”
region of bacterial Raman spectra: in this range between 2040 and 2300 cm−1, there are no
measurable intramolecular vibrational energies. Conveniently, carbon-deuterium (C-D)
bonds are found in this range. As metabolically active cells incorporate deuterated water
molecules into new biosynthetic products, they will create new C-D bonds. These bonds are
measurable with minimal signal-to-noise complications and can serve as a global indicator
of biosynthetic activity [107]. Raman-DIP is label-free, inexpensive, and fast: cells need only
20 min in deuterated water for Raman spectra to begin showing C-D peaks. Raman-DIP
therefore provides a practical approach for studying metabolism, an important driver of
the persister phenotype, with minimal experimental perturbations [108].

This approach for metabolic profiling at the single-cell level has proven highly in-
formative for studying microbial phenotypic heterogeneity [109–111]. A major wave in
the field of persistence comes from the mounting evidence that bacterial persisters are
not fully dormant [16,56,112]. Raman-DIP experiments from Ueno et al. supported this
hypothesis by revealing that M. tuberculosis persisters are non-growing but still metabol-
ically active [113]. Xu et al. used Raman-DIP to elucidate that different intracellular
Salmonella enterica serovars phenotypically switch from carbohydrate to lipid metabolism
for survival within host immune cells and that this switch occurs heterogeneously even
within a clonal bacterial population [114]. This is highly relevant to the study of bacte-
rial persisters in the host context because many bacterial species adopt an intracellular
lifestyle: M. tuberculosis and Salmonella species are two classic examples, but the intracel-
lular pathogenicity of other species, such as S. aureus persisters residing in macrophages,
is still being uncovered [115–118]. Raman spectroscopy and DIP will continue to play an
important role in understanding transient persister phenotypes in a variety of bacterial
and host model systems.

Raman spectroscopy is well suited for sorting cells in analytical pipelines because
cells remain intact and culturable. For example, Lee et al. created a microfluidics platform
for sorting single bacteria based on their Raman spectra, shunting inactive cells to a waste
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outlet and harvesting metabolically active cells for additional downstream analysis [119].
However, researchers must consider whether transient phenotypic states are perturbed in
these multi-step pipelines. Generally, the minimally intrusive methodologies of Raman
spectroscopy make it an attractive option for rapid analysis of the metabolic workings
within single cells.

6. Next-Generation Sequencing

Next-generation sequencing (NGS) allows for untargeted, comprehensive analysis
of genetic and transcriptomic information [120,121]. While bulk NGS studies of bacteria
have led to discoveries such as the identification of novel species in the environmental
microbiota, single-cell NGS applications have the power to shed light on the rare genetic
events or low-level transcripts that are overwhelmed by bulk sequencing approaches.
Single-cell genomics can also provide valuable insight to the consequences or potential
genetic drivers of phenotypic heterogeneity, for example, the downregulation or silencing of
DNA mismatch repair genes that increases the mutation rates of affected cells [103,122,123].

In recent years, several research groups have developed strategies to sequence and
determine the quantitative levels of RNA transcripts in a single bacterial cell [124,125]. An
overarching workflow for these different approaches involves isolating a single bacterium,
which can be achieved using some of the techniques described in this review (e.g., FACS
and the use of microfluidic devices). Then, segregated cells are lysed for access to their
RNA pool, the RNA is reverse transcribed into a cDNA library, and NGS is used to read
the transcripts.

Compared to single-cell genomic NGS, single-cell RNA sequencing (scRNA-seq) has
been more difficult to optimize in bacteria due to inherent differences between prokaryotic
and eukaryotic RNA transcripts. Bacterial RNA transcripts are typically single-stranded,
short-lived molecules of extremely low abundance: the average number of a given tran-
script is estimated at only 0.4 copies per cell [125]. Eukaryotic scRNA-seq methods leverage
the poly(A) tail of mRNA transcripts for amplification; however, bacteria lack this RNA
processing and require alternative enrichment strategies before sequencing. Without enrich-
ment, the signals from abundant rRNAs and tRNAs will obscure the detection of rare tran-
scripts; therefore, the utilization of exonucleases or Cas9 machinery has been implemented
to degrade rRNA or tRNA [126,127]. Blocking primers that recognize and bind canonical
rRNA sequences can also be used to prevent further reverse transcription [126–128]. These
depletion strategies can be complemented by exogenous E. coli poly(A) polymerase I that
artificially adds poly(A) tails to facilitate subsequent amplification [127,129]. These steps
enable relevant messenger transcript enrichment and amplification while decreasing the
computational burden of sequence analysis in the end.

For truly untargeted amplification of a bacterial transcriptome, using a set of known
primers is inappropriate. One method of total transcriptome amplification is multiple
displacement amplification, which utilizes a mix of random hexamers to increase the
likelihood of probes hybridizing to every transcript at least once. After reverse transcription,
additional random hexamer primers are added, directing the phage DNA polymerase
Φ29 to elongate the complementary strands over several amplification cycles [128,130].
While transcript amplification using Φ29 has only been applied to transcriptomic analysis
via microarray, single primer isothermal amplification (SPIA) is a method that yields
ample, clean cDNA suitable for scRNA-seq (Figure 4A) [131]. However, these methods
can introduce amplification bias because cDNA of more abundant transcripts becomes
exponentially more prevalent with each round of amplification.

To combat this issue, Sheng et al. developed multiple annealing and dC-tailing-
based quantitative scRNA-seq (MATQ-seq) for amplifying all RNA transcripts while also
reducing amplification bias (Figure 4B) [132]. The principle underlying MATQ-seq’s
increased transcriptome coverage is the use of common probes that, at low temperatures,
can hybridize anywhere along RNA transcripts to initiate reverse transcription. This
technique was recently applied for determining how bacterial single-cell transcriptomes
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vary depending on growth state [133]. MATQ-seq is also quantitative, meaning that it
allows comparison of transcript levels between cells, not just comparison of the relative
transcript levels within a given cell. To circumvent cell-to-cell amplification variance
during analysis, MATQ-seq utilizes an amplicon normalization strategy that divides each
transcript’s abundance by the cell’s total amplified RNA [132]. MATQ-seq also leverages
unique molecular identifiers (UMIs) to aid in quantification; UMIs are random hexamers
ligated onto each cDNA template before amplification [132,134]. During data analysis, the
prevalence of certain UMIs over others can be used to elucidate the effects of amplification
bias versus actual transcript abundance variations.

Figure 4. Approaches to Next-Generation Sequencing library preparation. (A) After single-cell isolation (by a single-cell
manipulator, for example), cell lysis, reverse transcription, and first strand synthesis, Single Primer Isothermal Amplification
(SPIA) is conducted using the SPIA primer and polymerase for linear amplification. Then, bacterial transcripts are modified,
purified, and ready for library preparation. (B) MATQ-seq requires isolation of a single bacterium (by FACS, for example)
and cell lysis. RNA templates are reverse transcribed into cDNA using primers that primarily contain G, A, and T bases
(GAT27 primers). These complementary strands are given dC-tails by TdT terminal transferase. Finally, second strand
synthesis is accomplished with primers that recognize and extend from the poly(C) tail. (C) Split-Pool Barcoding utilizes
cellular barcodes to match transcript sequences to individual cells. Cells are permeabilized in batch culture then seeded into
a 96-well plate with a unique primer set in each well. Reverse transcription of RNA templates with these primers results
in cDNA strands with a primary barcode attached. Bacteria are then pooled and redistributed into a different plate twice
more for secondary and tertiary barcode addition. Each tertiary barcode includes a UMI, a randomly generated hexamer
which correlates to a single cDNA transcript. Then, bacteria are pooled for bulk cell lysis, transcript amplification, and
library preparation.

Many scRNA-seq protocols begin with single-cell isolation and lysis but, because
some bacterial species are encapsulated by a rigid cell wall, lysing single bacteria presents
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an expensive and labor-intensive challenge [135]. To circumvent the technical hurdle of
lysing individual cells with miniscule proportions of reagents, split-pool barcoding can
be implemented instead (Figure 4C) [129,136]. This technique involves labeling each cell’s
transcripts with a three-part barcode, resulting in nearly one million possible barcode
combinations [129,136]. Lysis, amplification, and sequencing can then be performed on all
cells en masse because each read will have a barcode ascribing it to its cell of origin [137].
Split-pool barcoding is featured in recent scRNA-seq protocols such as microSPLiT and
PETRI-seq that hold promise for studying transcriptional heterogeneity in bacterial pop-
ulations [129,136]. For example, Blattman and colleagues demonstrated the power of
PETRI-seq by detecting an instance of rare gene induction that occurred in only 0.4% of
cells in a population of S. aureus [136]. However, split-pool barcoding should be limited to
analyzing roughly 10,000–30,000 cells or the risk of repeating barcode combinations in mul-
tiple cells increases, possibly confounding single-cell identification. Considering the rarity
of persisters under certain growth conditions, additional barcoding steps may be required
to increase the unique combinations and the number of cells that can be analyzed. Overall,
this technique makes single-cell sequencing more accessible for laboratories without FACS
capabilities, single-cell manipulators, or microfluidic devices while increasing throughput
compared to many single-cell isolation protocols.

The advancements discussed above have allowed for large-scale analyses of the
phenotypic states and genetic determinants underlying bacterial persistence, but fur-
ther optimization is needed for bacterial scRNA-seq to be as accessible and reliable as
scRNA-seq in eukaryotes. Continued improvements in bacterial isolation and lysis, mRNA
enrichment, library amplification, and sequencing protocols can broaden transcriptome
coverage, improve assignment to single bacteria, and ease experimental and/or computa-
tional workflows.

7. The Future of Studying Single-Cell Histories

Innovative advances in biological engineering have given new life to familiar fluo-
rescence-based techniques for exploring persister physiology. Beyond understanding the
status of a single cell at a moment in time, the cutting-edge technologies highlighted
here can report on generations of cell division without the need for direct, time-lapse
observation. The difference in division rates of clonal bacterial cultures is fundamental to
persister formation and resuscitation. Previously, Roostalu et al. investigated the rate of
bacterial division and its role in persistence by inducing a parent population to express
GFP and then measuring how the GFP signal decreased with successive generations [138].
In the span of only two hours, the GFP signal of individual exponential-phase E. coli was
nearly diluted to uninduced/baseline levels, demonstrating the limits of this approach to
measuring cell division over a longer time span.

In order to measure generations of cell division in individual bacteria, synthetic biolo-
gists have designed various intracellular “clocks”, the newest development coming from
Riglar et al. with the Repressilator 2.0 (Figure 5A) [139–141]. The improved Repressilator
circuit reliably controls fluorescence expression in a cycle that is independent of cell growth
or time. The cycle fluctuates based on cellular divisions, allowing researchers to determine
the number of bacterial generations occurring between fluorescence measurements without
the need for continuous sampling or observation (Figure 5B). Traditional use of fluorescent
reporters is limited to reporting on the current state of the cell; the beauty of Repressilator-
like technology is the ability to see the growth history of a single cell for longitudinal or
in vivo studies of persistence. Riglar et al. used this tool in antibiotic-treated mice to show
that pathogenic bacteria divide rapidly upon introduction to a barren gut and that, as the
gut is recolonized, fewer generations occur between sampling points [139]. Beyond reliable
reporting of bacterial divisions, oscillatory circuits such as the Repressilator could be used
for phase-tuned gene expression to study how the timing or fluctuation of gene expression
affects bacterial persistence in vivo.
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Figure 5. Repressilator gene expression oscillates with cell divisions. (A) The Repressilator 2.0 circuit involves three
genes and associated fluorescent proteins (FP) in an inhibitory feedback loop. Each gene’s expression rises and falls once
approximately every 15 bacterial divisions, independent of time or cell growth rate. Once repression of cI is relieved, for
example, yellow fluorescent protein also begins to be expressed as a measurable indicator of Repressilator phase. Isopropyl
β-D-1-thiogalactopyranoside (IPTG) or anhydrotetracycline (aTc) are used to phase synchronize (PS) a population to the
same phase of the circuit. (B) Single cells are sampled from a population by plating. As the cell divides and expands into
a colony, the outward growth forms a pattern of fluorescent rings. Riglar et al. developed the Repressilator Inference of
Growth at the Single-cell level (RINGS) workflow for analyzing colony images and attributing each fluorescence pattern to
a generational phase [139]. Bacterial growth rate can be inferred by the phase changes between time points.

Another notable development in cellular recording comes from Farzadfard et al. with
DOMINO: the DNA-based Ordered Memory and Iteration Network Operator [142]. This
system utilizes gene-editing enzymes that edit specific nucleosides on the chromosome to,
essentially, use base pair conversion as the binary 1’s and 0’s of computer code (Figure 6A).
The enzymes are directed to edit specific sites by guide RNAs (gRNAs) that are under
the control of inducible promoters. When a stimulus induces gRNA expression and gene
editing, the resultant base pair alterations become part of the recorded cellular “memory”.
The altered base pairs can, in turn, trigger additional effects such as fluorescent protein
expression so that cell memories can be “read” without requiring destructive sequencing
(Figure 6B). The system can also be programmed with various logic frameworks for record-
ing the synchronicity of multiple stimuli, the temporality of step-wise exposures, and more
(Figure 6C). The ability to sort cells by FACS based on their histories (recorded geneti-
cally, reported fluorescently) and then resume culturing until later memory interrogation
enables longitudinal monitoring of single-cell exposures and their impact on phenotypic
heterogeneity. Furthermore, programming logic circuits to not only record cell memory,
but to actually control gene expression, allows for fine-tuned experimental interrogation.
However, because this system relies on a limited arsenal of tightly controlled inducible
promoters, the ability to study a variety of signals and a broader range of signal induction
intensities is currently lacking. We anticipate that advancements in rational promoter
design or transcriptional regulators such as riboswitches would make this system more
applicable to studying biologically relevant pathways, such as DNA damage repair and
intercellular signaling, that are implicated in antibiotic persistence [143–146]. Further devel-
opment of synthetic biology tools for use in memory-recording systems such as DOMINO
could revolutionize how we investigate single-cell physiology entirely.
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Figure 6. DOMINO is a tool for single-cell memory recording and reporting. (A) Stimulus-induced
gRNAs direct the cytidine deaminase- and Cas9-based read/write system to edit specific base pairs
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in the chromosome. These edits can turn on the expression of fluorescent proteins for non-destructive
memory reporting. (B) DOMINO circuitry can be programmed using gRNAs that target specific
sites on the chromosome for gene editing. Chaining events of gene expression and editing together
builds complexity beyond simple recording or reporting. This panel’s schematic details an example
of sequential logic. (C) Logic circuits that have been demonstrated with DOMINO include reporting
on stimulus reception, stimulus intensity, multiple stimuli, and sequential reception.

8. Clinical Applications of Single-Cell Techniques

While the incorporation of many of these cutting-edge, single-cell techniques has
revolutionized the study of bacterial physiology, the techniques are also expanding the
diagnostic capabilities of clinical medicine. Traditional, population-based assays used
in clinical microbiology labs, such as minimal inhibitory concentration (MIC) assays to
identify antibiotic resistant strains, do not allow for the detection of tolerant or persistent
organisms that contribute to relapsing infections [2]. While the classification of persistent
bacterial populations in a clinical setting is not yet common practice, many groups have
begun to incorporate single-cell techniques and NGS to unveil heterogeneous antibiotic
sensitivities and improve patient treatment regimens.

The incorporation of microfluidic devices in parallel with imaging provides new
opportunities for pathogen identification and antibiotic susceptibility testing at the single-
cell level, significantly decreasing the time from sample collection to diagnosis. After
collecting a septic patient’s blood sample, blood cells are removed by centrifugation and
the supernatant—the bacteria-containing fraction—can be concentrated and loaded into a
microfluidic device to isolate, visualize, and test individual bacteria [147]. A microfluidic
device with adjustable channel heights can classify bacterial pathogens in a sample by
their morphologies [148]. Embedding oxygen-sensing nanoprobes into the design allows
additional reporting on metabolic activity [149]. Subsequent antibiotic susceptibility testing
(AST) can be accomplished with continuous imaging tracking the growth and reproduction
of single cells in increasing concentrations of antibiotics. The methods of swift identifica-
tion and phenotype testing are exceptionally useful in complicated cases, such as sepsis.
Bacterial cultures from septic patients can take anywhere from 5 to 7 days to analyze,
costing precious time in which the patient’s condition can rapidly deteriorate. Microfluidic
apparatuses enable detection of antibiotic resistance in as little as 3 h [147].

In addition to the applicability in sepsis models, microfluidic devices can utilize a fluid
droplet system to identify slow-growing bacteria with greater sensitivity than traditional
culture techniques. Fastidious anaerobic pathogens of the gut, such as Clostridioides difficile,
can be exceptionally problematic and impervious to antibiotic therapies. Droplet-based
technologies offer more sensitive detection because single microbes are aliquoted into liquid
droplets where their growth and division can be assessed over time and in various media
conditions [150]. These technologies function as a tool for the identification of pathological
bacteria by systematically assessing bacterial size, growth rate, antibiotic susceptibility, or
genetic material within given patient microbiomes and/or disease states. Interrogating
genetic sequences and morphological features of bacteria following microfluidic enrichment
can provide additional information for understanding a microbe’s pathological potential.

While microfluidic devices are powerful on their own, their amalgamation with
cutting-edge spectroscopic or NGS techniques enhances their analytical power. Liu and
colleagues developed a silver nanorod substrate serving as a tool to establish pathogen
chemical fingerprints by surface enhanced Raman spectroscopy [151]. This tool enables the
identification of known pathogens in a complicated microbiological milieu. Additionally,
Raman spectroscopy can be used to concomitantly assess pathogen identity and metabolic
activity, which can offer insight into a given cell’s antibiotic sensitivity. Fast Raman-assisted
antibiotic susceptibility testing detects deuterium incorporation by bacteria in the presence
of antibiotics, allowing clinicians to infer susceptibility based on the measured metabolic
rates [152].
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Antimicrobial sensitivity and metabolic activity of individual bacterial cells can also
be deduced using NGS. DropDx is a microfluidic-based technique in which single bacteria
are encapsulated in droplets and briefly exposed to antibiotics before thermal lysis [153].
Then, these droplets are incubated with fluorescent probes designed to hybridize to genes
encoding 16S rRNA of bacterial pathogens. This method operates under the assumption
that 16S rRNA will be more abundant in droplets containing growing populations than
those with non-growing groups; therefore, resistant pathogens growing in the presence of
antibiotics will have higher abundance of 16S rRNA and higher fluorescent readout [153].
As antibiotic refractory bacterial infections are becoming increasingly urgent, it is even
more essential to obtain fast and accurate diagnoses. Grumaz and colleagues found that,
compared to traditional culturing methods, NGS could consistently detect bacteria circu-
lating in patient blood at a six-fold higher positivity rate throughout the course of clinical
management [154]. The advent of more efficient, cost-effective, and accurate single-cell tech-
nologies for implementation in hospital settings will enhance clinical decision making on
optimal antibiotic regimens and the best practices to improve patient outcomes [155,156].

9. Conclusions

Single-cell technologies have shown immense utility in studying antibiotic persistence
phenotypes as well as other manifestations of phenotypic heterogeneity. Fluorescence-
based techniques utilized in tandem with flow cytometry, FACS, and microscopy are
foundational tools for measuring the relative abundances of nucleic acids and proteins, the
localization of biomolecules, cellular morphology, and signaling transduction. Mass spec-
trometry and Raman spectroscopy have further increased the resolution of metabolomics
and proteomic investigations. Advancements in microbial NGS technologies, specifically
scRNA-seq, have been vital in the holistic identification and analysis of expressional trends
at the single-cell level. Finally, microfluidic devices provide high-throughput single-cell
platforms for studying growth dynamics, division, metabolism, and more. Interfacing
these techniques with one another strengthens our ability to bridge knowledge gaps of
persister physiology.

Even though these highlighted techniques have significantly contributed to studying
phenotypic heterogeneity, there are still shortcomings that could be addressed. To capture
morphological heterogeneity across a bacterial population, we need high-resolution imag-
ing at higher throughput. VIFFI-FC is an emerging technique which intends to solve this
problem; however, VIFFI-FC has only been used to study eukaryotic systems and requires
testing and validation in prokaryotes [65]. Beyond monocultures, persisters in multi-species
communities and biofilms remain challenging to characterize. Repurposing of single-cell
techniques (such as the development of par-seqFISH to study spatial transcriptomics) can
accelerate research on the persisters of complex microbial communities [36]. Additionally,
many techniques are limited to measuring a cell’s present state and may require cell de-
struction for analysis. We can employ systems such as the Repressilator 2.0 and DOMINO
to shed light on single-cell growth histories and the timing of expressional events through
longitudinal and/or in vivo experiments [139,142]. The refinement of these techniques for
use in various bacterial species and with various native promoters will further enhance
our capacity to study heterogeneous phenotypes and single-cell physiology.

We anticipate that the insights gained into bacterial phenotypic heterogeneity using
these emergent single-cell techniques will also prove informative to relevant eukaryotic
systems such as cancer. Many of the same principles governing bacterial persistence
can be applied to parallel investigations into cancer persister cells; on the other hand,
breakthroughs in eukaryotic single-cell technologies can accelerate the development of
finer-resolution tools for prokaryotes [157–159]. There is a clear mutual benefit to advancing
these seemingly distinct fields of research. Each advancement in single-cell technology
opens new avenues of investigation into persister physiology, helping us realize the broader
impact of phenotypic heterogeneity in prokaryotic and eukaryotic systems alike.
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