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Abstract

Background: Microarray studies related to cystic fibrosis (CF) airway gene expression have gone some way in
clarifying the complex molecular background of CF lung diseases, but have made little progress in defining a
robust “molecular signature” associated with mutant CFTR expression. Disparate methodological and statistical
analyses complicate comparisons between independent studies of the CF transcriptome, and although each study
may be valid in isolation, the conclusions reached differ widely.

Methods: We carried out a small-scale whole genome microarray study of gene expression in human native nasal
epithelial cells from F508del-CFTR homozygotes in comparison to non-CF controls. We performed superficial
comparisons with other microarray datasets in an attempt to identify a subset of regulated genes that could act as
a signature of F508del-CFTR expression in native airway tissue samples.

Results: Among the alterations detected in CF, up-regulation of genes involved in cell proliferation, and down-

regulation of cilia genes were the most notable. Other changes involved gene expression changes in calcium and
membrane pathways, inflammation, defence response, wound healing and the involvement of estrogen signalling.
Comparison of our data set with previously published studies allowed us to assess the consistency of independent

signature worthy of future investigation.

CF pathogenesis and a possible CF biomarker.

microarray data sets, and shed light on the limitations of such snapshot studies in measuring a system as subtle
and dynamic as the transcriptome. Comparison of in-vivo studies nevertheless yielded a small molecular CF

Conclusions: Despite the variability among the independent studies, the current CF transcriptome meta-analysis
identified subsets of differentially expressed genes in native airway tissues which provide both interesting clues to

Introduction

Cystic Fibrosis (CF) is a clinically complex disease [1]
caused primarily by mutations in the cystic fibrosis trans-
membrane conductance regulator (CFTR) gene [2], which
encodes a chloride (Cl) channel that plays a fundamental
role in ion and fluid transport across epithelial surfaces [3].
The CF phenotype depends greatly on what combination
of mutant CFTR alleles is present out of the more than
1,900 currently listed (http://www.genet.sickkids.on.ca/
StatisticsPage.html) [4]. F508del-CFTR [5], which accounts
for up to 90% of CF alleles [6], is associated with a severe
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clinical phenotype, but even F508del-homozygous CF
patients display much phenotypic heterogeneity [7]. Al-
though such heterogeneity can partly be explained by gen-
etic modifiers [8-12] or environmental factors [13,14], it is
desirable to determine how F508del-CFTR specifically
affects global gene expression, in order to clarify how a
dynamic network of interactions surrounding CFTR at the
cellular level [15] is perturbed in the most widespread
form of CF.

Several CF transcriptomics studies have employed
microarrays to measure differences in global gene expres-
sion caused by the F508del mutation in isogenic bronchial
cells [16] (in this case the CFTR genotype was F508del/
W1282X), primary cultures of tracheal and bronchial cells
[17], native nasal epithelial and bronchial cells [18,19] and
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immortalized foetal tracheal cell lines [20]. Two of these
studies [16,20] used technical replicates of the same
source material, thus avoiding the problem of individual
variation present in studies using biological replicates, but
also reducing their interest as general models of F508del-
CFTR related gene expression. Studies on native tissues
have reported differential expression of genes involved in
a variety of cellular processes relevant to CF, such as air-
way defence and mitochondrial function [18], or inflam-
mation and cellular movement [19]. In contrast, similar
work in primary cultures of epithelial cells from CF pa-
tients, led to the conclusion that F508del-CFTR had a
minimal effect on global gene expression [17], suggesting
that the differences found in native cells were secondary.
Studies focusing on expression differences associated with
severity of CF phenotype [18] and others on expression
patterns of nasal vs. bronchial epithelium [19] also pro-
duced widely differing patterns of global gene expression.
A recent meta-analysis of four independent microarray
studies [21] concluded that very few individual genes were
among the highest regulated in more than two of the four
studies, and that there was little evidence associating in-
duction of pro-inflammatory pathways with the presence
of F508del-CFTR.

Herein, we present the results of a small-scale micro-
array study of differential gene expression in human na-
tive nasal epithelial cells from five F508del-homozygous
CF patients vs. five control individuals. Data analysis
using the Rank Products (RP) method resulted in a list
of differentially expressed genes, many of which are
functionally relevant, given our knowledge of CF. Some
others, although not previously connected to CF, fall into
enriched gene ontology (GO) groups relevant to CF,
including cell proliferation, calcium binding, plasma
membrane and cilium. A comparison of our data with
gene lists obtained in five similar studies led us to
conclude that the genes shared between independent
gene lists did not constitute a robust molecular signa-
ture, although many of the genes shared were highly
relevant to CF. However, reanalysis of the results of a
recent study of CF related gene expression in bronchial
and nasal epithelium [19] followed by direct comparison
with our own dataset led to the identification of a small
subset of regulated genes as a putative gene signature
characteristic of the CF airway.

Materials and methods

Participant selection and nasal respiratory epithelial cell
collection

The study was conducted at the Faculty of Sciences of
the University of Lisboa with samples collected at the
CF Clinic of the Department of Pediatrics of the
Hospital de Santa Maria in Lisboa, and was approved by
the Santa Maria Hospital Ethical Review Board.
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Informed consent was obtained from each participant,
or parent/tutor where the participant was a minor. To
be eligible for the study, individuals with CF had been
previously confirmed to be homozygous for the F508del
mutation. Individuals with recent viral infection, or
active CF exacerbation were excluded. Non-CF control
subjects were recruited from overweight but healthy
teen-aged volunteers attending the paediatric clinic for
check-ups related to weight loss. If participants demon-
strated obvious turbinate inflammation or haemorrhage
on initial brushing, the sample was excluded. Partici-
pants’ data including parameters of lung function can be
found in Table 1. Bilateral nasal mucosal brushing to
collect respiratory epithelium was performed on each
subject as described before [22,23]. An aliquot was set
aside for cytological evaluation, and the remainder
frozen at —80°C prior to RNA extraction.

Cytological evaluation

A cytospin centrifuge (Shandon, Thermo Scientific, USA)
was used to prepare formaldehyde-fixed respiratory
epithelial cell samples for standard May-Griinwald
-Giemsa (MGGQG) staining, as previously described [24].
Identity of samples was obscured with randomly num-
bered labels for blind counting. Slides were then evaluated
twice using light microscopy and digital photography of 5
high power fields of view per sample, and cells were cate-
gorized as epithelial or inflammatory. Results were
expressed as the percentage of total cells (Table 1).

Table 1 Identity of nasal epithelial cell samples used in
microarray analysis

Individual Gender Age % FVC (% of FEV1 (% of
(yr) inflamm.  expected) expected)
cells
CF (F508del homozygous)
BC F 9 5.1 1.70 L (88.7%) 1.39 L (84.6%)
FC M 17 9.8 416 L (90.6%) 3.36 L (88.5%)
JF M 16 6.5 265 L (60.7%) 143 L (39.7%)
PM F 10 42 0.60 L (38.3%) 0.60 L (43.8%)
SS F 18 43 3.00 L (785%) 2.28 L (70.7%)
Mean - 14 598
non CF

AC F 16 1.6 n/a n/a
BR M 16 3.7 n/a n/a
FR M 14 44 n/a n/a
JR M 14 8.1 n/a n/a
SP F 14 5.7 n/a n/a
Mean - 14.8 4.7

Neither age (p = 0.69, student’s t test) nor percentage of inflammatory cells per
sample (p =0.42, student’s t test) showed any significant difference between
groups. Data on lung function were obtained for CF patients only: percentage
of expected function for relevant age group shown in brackets.
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Samples with more than 10% inflammatory cells were ex-
cluded from the study. The data obtained agreed with re-
sults from previous studies, in which approximately 5-10%
of cells from nasal brushing have been shown to be of in-
flammatory origin regardless of CF status [18,24].

RNA isolation, target synthesis and hybridization to
AffymetrixGeneChips

Total RNA was extracted using the RNeasy Mini Kit
(Qiagen, Hilden, Germany). Concentration and purity
was determined by spectrophotometry (Nanodrop) and
integrity (RIN >7.0: mean RIN, CF - 8.2; Control - 8.4)
was confirmed using an Agilent 2100 Bioanalyzer with a
RNA 6000 Nano Assay (Agilent Technologies, Palo Alto,
CA). Five CF and five control RNA samples were chosen
for the final microarray hybridization. RNA was
processed for use on Affymetrix (Santa Clara, CA, USA)
GeneChip HsAirwaya520108F Arrays, which were
custom-designed to determine gene expression in the
human airway epithelium [25], according to the manu-
facturer’s Two-Cycle Target Labelling Assay. Briefly,
90 ng of total RNA containing spiked in Poly-A RNA
controls (GeneChip Expression GeneChip Eukaryotic
Poly-A RNA Control Kit; Affymetrix) were used in a
reverse transcription reaction (Two-Cycle DNA synthe-
sis kit; Affymetrix) to generate first-strand cDNA. After
second-strand synthesis, double-stranded c¢DNA was
used in an in vitro transcription (IVT) reaction to gener-
ate cRNA (MEGAscript T7 kit; Ambion, Austin, TX).
600 ng of the cRNA obtained was used for a second round
of ¢cDNA and cRNA synthesis, resulting in biotinylated
cRNA (GeneChip Expression 3'-Amplification Reagents
for IVT-Labeling; Affymetrix). Size distribution of the
cRNA and fragmented cRNA, respectively, were assessed
using an Agilent 2100 Bioanalyzer with a RNA 6000 Nano
Assay. 15 pg of fragmented cRNA was used in a 300-ul
hybridization containing added hybridization controls. A
final volume of 200 pl was hybridized on arrays for 16 h at
45°C. Standard post hybridization wash and double-stain
protocols (EukGE-WS2v5) were used on an Affymetrix
GeneChip Fluidics Station 400. Arrays were scanned on
an Affymetrix GeneChip scanner 3000.

Microarray data analysis

Genechip expression data were quantile normalized in
RMA Express [26], following examination of QC param-
eters (GAPDH ratios, log,PM distributions and RLE/
NUSE plots). Normalized values were then analysed
using the Rank Products method (Bioconductor Package
RankProd). Rank Products (RP) is a non-parametric
method used to detect genes that are consistently highly
ranked (strongly up-regulated/down-regulated between
two conditions), particularly in experiments with a small
number of replicates where it has been shown to
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generate accurate results [27,28]. The null hypothesis
assumes that the order of all genes is random, thus the
RPs are compared with the RPs for 1000 random permu-
tations, with the same number of replicates and genes as
the real experiment in order to correct for the multiple
testing problem inherent in microarray experiments. To
assign a significance level, the associated p-value and the
false discovery rate (FDR) are included in the output
alongside the genes that are detected by using certain
criteria. This method has been used in various applica-
tion domains, including proteomics, metabolomics,
statistical meta-analysis, and general feature selection
[29-31]. The gene list thus ranked according to the RP
statistic can be further organised according to p value
and FDR. A dendrogram showing how the individual array
experiments clustered was also generated in BRB Arraytools
[32], using centred correlation and average linkage. A
MIAME-compliant microarray data submission [33] was
made to the Gene Expression Omnibus (https://www.ncbi.
nlm.nih.gov/geo/, accession number GSE40445).

Pathway and GO analysis

A reduced RP-ranked gene list was produced from the
analysed microarray data by using a p-value cut-off of
0.0001 followed by removal of any gene with FDR > 0.05
and addition of a detection call filter (>20% present in
all samples). This resulted in a list comprising 133 up-
regulated and 255 down-regulated probesets (CF/Con-
trol: Additional file 1). This list was then submitted to
the DAVID functional annotation tool [34,35] (http://
david.abce.ncifcrf.gov/). This software generates a list of
GO terms (classified as Biological Process, Cellular
Compartment or Molecular Function) found to be
enriched (ie, non-randomly distributed) in the submitted
gene list. The same list was also used in pathway discov-
ery using the GeneGo Metacore® platform (http://
thomsonreuters.com/products_services/science/systems-
biology/). Gene Set Enrichment Analysis [36] was used
to assess the distributions in our data set of regulated
genes (used as gene sets) from five comparable studies
[16-20], and gene sets relevant to the previous analysis
from the molecular signature database of the GSEA website
(http://www.broadinstitute.org/gsea/msigdb/indexjsp). GSEA
software provides an enrichment score (ES) and a p
value to assess whether a given gene set is preferentially
associated with one end of a data set, meaning that ex-
pression of the genes in a given gene set is associated
with one of the phenotype groups under study.

Quantitative real time PCR

Sequences for quantitative real time (qRT-) PCR primers
were found at Harvard Primerbank [37] (HP: http://pga.
mgh.harvard.edu/primerbank/) (Table 2) or, if HP primers
proved unsuitable, additional pairs were designed using
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Table 2 Primers used in qRT-PCR amplification
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Official gene symbol Primer sequences (5" to 3)

Fwd: CTCTTCCAGCCTTCCTTCCT
Rev: AGCACTGTGTTGGCGTACAG
Fwd: ATGAAGCTGGTTTCCGTCG

ACTB (Ref. Gene)

ADM
Rev: GCCCACTTATTCCACTTCTTTCG
AGP9 Fwd: CTGCAACCGTCTTTGGCATTT
Rev: AGATACGGAGCTGGGTATGTT
Fwd: GTGGTGCTGTCGCTCTTGATA
AREG

Rev: ACTCACAGGGGAAATCTCACT
Fwd: CATGAGAAGTATGACAACAGCCT
Rev: AGTCCTTCCACGATACCAAAGT
Fwd: GTGCCTGAACTTGCCTTTTC
Rev: CCCTCCAGCAGTTGAGTAGG
Fwd: AGAGCACAGATACCCAGAACT
Rev: TGAGGAACTTCAGGTGATTCAGT
Fwd: TCGAGACTTTACATGGCTCTGT
Rev: TCATGCCGATGTCATGGTAGG
Fwd: TTCAGCGTGTCATCGAAACCC
Rev: ACAGTGAGCTTTGGGCTATTTTT
Fwd: GTAAGGTGCTGCCGCATGATA

GAPDH (Ref. Gene)

GJAT (Connexin 43)

IGFBP3

NDRG1

SCGB1AT1 (Uteroglobin)

SPAG6
Rev: CCTCACTATTTCCTCGGGGTA
T Fwd: CAGATTCGGATGAACCGCTCT
Rev: CTCACGGCGTTCTCAGAATATC
Fwd: GTTCACTTCCTGTGTCCTTAACC
TMEM45a

Rev: CATTTCCCGGCCATGAGTGT

Primerbank ID Product size Efficiency
N/A 116 bp 100%
450194531 112 bp 100%
10280624a3 118 bp 106%
4502199a1 171 bp 97%
7669492a3 113 bp 97%
N/A 165 bp 98%
4504617a2 105 bp 100%
20702874602 93 bp 106%
4507809a’1 189 bp 100%
6912678al 152 bp 100%
16753231a3 140 bp 103%
8922242b2 95 bp 97%

Forward and reverse primers for amplification of the indicated genes were found at Harvard Primerbank (primer IDs shown; N/A indicates in-house primer design).

Product sizes and primer efficiencies for Pfaffl calculations are also shown.

Primer3 software (http://frodo.wimit.edu/). All primer
pairs were tested to ensure product specificity, and ampli-
fication efficiencies were determined for each primer pair
using standard curves by amplification of a series of 1:5
dilutions of pooled control nasal cell cDNAs. Primer pairs
with efficiencies less than 90% or more than 110% were
not used. Estimates of differential gene expression relative
to expression of ACTB and GAPDH, two housekeeping
genes, were performed for 10 genes chosen from the
microarray gene lists in PCR reactions containing forward
and reverse primers (0.25 uM each), cDNA (approxi-
mately 5 ng) and 1 x EVAGreen PCR Master Mix
(BioRad) in a 20 pl reaction volume, using a Cx96 PCR
machine (BioRad). The Pfaffl method of relative quantifi-
cation [38] was used to compare expression of test genes
in CF and non CF samples, normalized against expression
of the control genes (ACTB and GAPDH). A standard
cycle protocol was used for PCR amplification (1 min at
95°C followed by 40 cycles of 10 sec at 95°C and 30 sec at
60°C, followed by production of a 60°C to 95°C melt curve
in increments of 0.5°C), and fluorescence data was

collected using the CFX software suite (BioRad). Means of
Cr values from 3 technical replicates of each gene were
used in calculating the normalized fold change (FC)
between CF and normal tissues, using the Pfaffl formula
(FC _ (Et arg et)ACTtarget(control»CF) /(E » ef)ACTrq‘(control»CF)) where
FC is the fold change, E is primer efficiency, and target
and ref are the test and reference genes, respectively.
Real Time PCR was used for measurement of relative
gene expression in 6 x CF (average age 12.0 years; 1 M, 5 F;
average RIN 9.3) and 5 x Control (average age 13.4 years;
1 M, 4 F; average RIN 9.0) nasal cell samples collected
independently and treated according to the methods
described above.

Comparison with published gene lists

In order to find regulated genes in common between in-
dependent studies, we compared our lists of up- and
down-regulated genes with gene lists from the four stud-
ies [16-18,20] previously reanalysed [21] and which were
kindly provided by the authors (T.H. Hampton & B.A.
Stanton, pers. comm.), and from a more recent paper [19].
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The 4 reanalysed lists [21] were generated using an ex-
ploratory gene array analysis method to find the opti-
mal number of genes for pathway analysis (set at 300
genes) by using different p values and differential ex-
pression cut-offs for each data set. The 4 data sets in
that meta-analysis have also been reduced to a set of
8,858 genes common to the 4 array platforms used. Al-
though 426 genes were found to be up-regulated in CF-
vs.-non CF bronchial epithelial cell samples by Ogilvie
et al. [19], we used the most stringently defined list
provided in the supplementary data section of that paper
(cut-off set at fold change of +/- 2, and p < 0.05) resulting
in lists of 115 up- and 110 down-regulated genes for this
preliminary comparison. For direct comparison of our
gene lists with the 5 other studies [16-20], all gene lists
were converted into official gene symbols (http://www.
ncbinlm.nih.gov/gene/). Our up- and down-regulated
gene lists (respectively composed of n =133 and n =255
Affymetrix probesets) yielded 117 and 220 comparable
gene symbols. The final gene lists obtained and compared
are presented in Additional file 2 and summarized de-
scriptions of the individual studies, their sources of mater-
ial, sample numbers, and microarray platforms used, are
given in Table 3. Lists of genes in common between two
or more studies were also submitted to DAVID for GO
enrichment analysis. Finally, GSEA was used to determine
the global distribution of lists of regulated genes within
our ranked data set.

Reanalysis of published dataset

For a more in-depth comparison between our gene list
and the in vivo data from Ogilvie et al. (2011) [19], we
reanalyzed their data (raw files available at http://www.
ebi.ac.uk/arrayexpress/experiments/E-MTAB-360). The
Bioconductor Lumi package (http://www.bioconductor.org/
packages/2.11/bioc/html/lumihtml) was used for quality
control and normalization. Following removal of two
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outlier samples, data from 78 Illumina HumanRef-8 v1
Expression BeadChips representing 20 CF nasal cell sam-
ples, 16 control nasal cell samples, 8 CF bronchial cell sam-
ples and 15 control bronchial cell samples (with some
samples represented by 2—3 technical replicates) was quan-
tile normalized and the normalized values subjected to RP
analysis (CF-vs-control nasal and CF-vs-control bronchial),
followed by detection call filtering (present at p <0.01 in
more than 10% of samples compared). Extended genelists
were chosen using variable cutoffs as in exploratory gene
array analysis [21], resulting in lists of 616 up- and 303
down-regulated genes in nasal epithelium and 441 up and
510 down-regulated genes in bronchial epithelium, includ-
ing 69% and 70% of the originally published bronchial gene
lists [19] (for gene lists resulting from new analysis see
Additional file 3). For comparison of our dataset with the
reanalysis of Ogilvie et al. (2011) [19], we lowered our fold
change cutoffs and thereby extended our lists to com-
parable length, while still maintaining a false positive
cutoff of pfp < 0.05 (for extended gene list from this study
see Additional file 4). The final reanalyzed gene lists col-
lapsed to single gene symbols and used for comparison
are shown in Additional file 5. Regulated genes identified
as shared were submitted to DAVID for GO analysis and
GeneMania (http://www.genemania.org/) was used to
generate a gene association network.

Results

Gene list

Applying the Rank Products statistical package to the
RMA-normalized data set resulted in 2 gene lists includ-
ing all probesets present on the HsAirway microarray;
one ranked with respect to probability of up-regulation
in CF (termed “Up-CF”), and one ranked with respect to
probability of down-regulation in CF (termed “Down-CF”).
Irrespective of type I error (false positive probability/FDR)
or p-value, there were 431 probesets with more than 2-fold

Table 3 Summary of independent microarray experiments compared in the present study

Study Material

Genotype/n

Platform

Clarke (this paper)
Virella-Lowell et al, 2004 [16]'

Native nasal epithelium (brushings)

Isogenic bronchial cells (IB3-1 and S9)

5 CF (F508del homoz) vs. 5 controls
F508del/W1282X vs. WT-CFTR

Affymetrix Custom HsAirwaya520108F
Affymetrix U95Av2

corrected: 3 technical replicates each

Zabner et al, 2005 [17]' Primary tracheal and bronchial cell

cultures
Wright et al,, 2006 [18]'
Verhaeghe et al,, 2007 [20]'

Native nasal epithelium (brushings)

Fetal tracheal cells (CFT-2 and NT-1)

10 CF (F508del homoz) vs. 10
controls

4 CF (F508del homoz) vs. 12 controls
F508del homoz. vs. WT-CFTR: 3

Affymetrix HGU-133A

Affymetrix HGU-133A8
Affymetrix HGU-133Plus2

technical replicates each

Ogilvie et al, 2011 [19]? Native bronchial (and nasal)

epithelium (brushings)

F508del homoz. (in most cases) vs.
controls:

lllumina HumanRef-8 v1 Expression
BeadChips

(8 vs. 15 bronchial; 20 vs. 16 nasal)

The table highlights the diversity of experimental design, materials and microarray platforms used in the five independent studies used for comparison with our
data. "We used the genelists resulting from Hampton & Stanton’s 2010 [21] reanalysis of these four data sets for our comparison. @For our preliminary
comparison with this study we used the published genelist for bronchial samples only. For our secondary comparison we reanalysed the data from both bronchial
and nasal samples. ®The gene list used here represents the “mild” CF samples from this study only.
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up-regulation in the “Up-CF” list, and 420 probesets with
more than 2-fold down-regulation in the “Down-CF” list.
Applying cut-offs of FDR < 0.05 and p < 0.0001 to the RP-
ranked gene lists (“Up-CF” and “Down-CF”) resulted in a
list of 133 up-regulated probesets representing 117 named
genes (123 transcripts for which a gene name was assign-
able, 6 of which were represented by two probesets, and 10
un-named probesets), and 255 down-regulated probesets
representing 220 named genes (232 named genes, 10
of which were represented by two probesets, one of
which was represented by three probesets, and 23 un-
named probesets). These strict gene lists are presented in
Additional file 1. Figure 1A shows an R-I plot, in which
the logarithm of the ratio of mean intensities in CF-vs-
Control samples is plotted against the logarithm of their

Lol

-0.2.
A . B [
5 _ i, 1
4 0.4 1
0.6
a 0.8
1

e Tt o svncnenrni'ss BCPM FCIF
*.  (CONTROL) (cF)

(8]

Logs(lcF/lct)

Y

o

4
1] 4 6 8 10
Logqo(lcF*Icn)
10° c 1 H
104
£
=
w
o 10°
L ey o EESRS T Ry CSme aremm—
& & i
R*: i
102 i :
10, . : . . i
4.0 -2.0 2.0 4.0 6.0

0 .
Log,DE(CF:Cirl)

Figure 1 Visualization of Microarray data. A) R-I plot, in which
the log, of the ratio of mean intensities in CF-vs.-non CF samples is
plotted against the log of their product, demonstrating the absence
of an intensity dependent fold-change bias. The regulated genes
chosen for further analysis using the RP statistic (p < 0.0001 cut-off)
are shown in red (up-regulated genes) and green (down-regulated
genes). B) Dendrogram of clustered samples, in which CF and non
CF samples cluster with respect to their phenotype. C) Volcano plot
of microarray data, in which the Log, of the RP statistic is plotted
against Log, of Fold Change. The p < 0.0001 cut-off (horizontal
dotted line) illustrates the gene list chosen for further analysis. Genes
outside the vertical dotted lines have more than 2-fold

differential expression.
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product, demonstrating the absence of an intensity
dependent fold-change bias. The regulated genes chosen
for further analysis using the Rank Products statistic (at
the p <0.0001 level) are highlighted in 2 different colours:
red (up-regulated genes) and green (down-regulated
genes). Figure 1B shows a dendrogram of clustered sam-
ples, in which CF and Control samples cluster with respect
to their phenotype, as expected. Figure 1C shows a volcano
plot in which the Log2 of the RP statistic is plotted against
Log2 Fold Change. Introducing a p <0.0001 cut-off illus-
trates the gene list chosen for further analysis and prelim-
inary comparisons with other datasets, as described above,
in which it can be noted that the vast majority of chosen
genes have a fold change greater than 2 or less than 0.5.

GO term enrichment and pathway analysis

The full list of 337 official gene symbols represented by
the 388 regulated probesets was submitted to DAVID.
Details of the resulting functional annotation are given
in Table 4. The most enriched Biological Process (BP)
GO term was found to be “negative regulation of cell
proliferation” (p = 6.77E-04, n = 14 genes of which 12 are
up-regulated in CF). The most enriched Cell Component
(CC) GO term was “cilium” (p = 3.26E-05, n = 10 genes,
all down-regulated in CF). Of the Molecular Function (MF)
GO terms, the most enriched was “microtubule motor
activity” (p=0.00295, n=6 genes, all down-regulated in
CEF), although the term “calcium ion binding” (p = 0.00298,
n =23 genes, 11 of which are up-regulated in CF) was also
over-represented. DAVID also found strong tissue specific
association of the gene list to lung (p = 6.08E-06, n =63
genes, of which 37 are down-regulated in CF), and
testis (p = 0.00259, n = 80 genes, of which 66 are down-
regulated in CF).

The full list of 388 regulated probesets was also
submitted to the GeneGo Metacore tool (http://
thomsonreuters.com/products_services/science/systems-
biology/), which comprises an integrated knowledge
database and software suite for pathway analysis of gene
lists. As well as providing a curated literature-based
pathway analysis tool, Metacore generates lists of GO
terms (Processes, Molecular Functions or Localizations)
found to be enriched in the submitted gene list, which
were similar to those obtained using DAVID. The 3 most
enriched “GO Processes” were “acute phase response”
(p=1.19E-05, n="7 genes), “response to glucocorticoid
stimulus” (p = 1.86E-05, n =12 genes) and “cell projec-
tion organization” (p=3.92E-05, n=21 genes). The 3
most enriched “GO Localizations” were “microtubule”
(p =4.12E-06, n =15 genes), “microtubule cytoskeleton”
(p=5.50E-06, n =22 genes) and “cilium” (p = 2.46E-05,
n=10 genes). Of the “GO Molecular Functions”, the
most enriched was “calcium ion binding” (p = 1.35E-04,
n = 26 genes).


http://thomsonreuters.com/products_services/science/systems-biology/
http://thomsonreuters.com/products_services/science/systems-biology/
http://thomsonreuters.com/products_services/science/systems-biology/
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Category Term Count % P Fold FDR
Enrichment
GOTERM_BP_FAT G0:0008285 negative regulation of cell proliferation 14 51 677E04 31 1.12
(Biological process) - 1106953 acute-phase response 5 18 158FE-03 98 260
G0:0008202 steroid metabolic process 9 33 416E-03 35 6.70
GO:0001960 negative regulation of cytokine-mediated signaling 3 1.1 423 E03 295 6.81
pathway
GO:0042127 regulation of cell proliferation 20 73 503E-03 20 8.04
GO:0010038 response to metal ion 7 25 592 E-03 43 940
GOTERM_ CC_FAT  GO:0005929 cilium 10 36 326E05 6.2 0.04
(Cell compartment) 5 113786 dynein complex 6 22 581 E-05 14, 007
GO:0005615 extracellular space 22 80 1.16E04 26 0.15
GO:0005930 axoneme 6 22 146E04 1.7 0.19
GO:0044421 extracellular region part 26 95 326E-04 22 042
GO:0042995 cell projection 21 76 405E04 24 0.52
GO:0005856 cytoskeleton 31 113 163 E-03 1.8 2.08
GO:0005875 microtubule associated complex 7 25 1.70E03 55 2.16
GO:0044430 cytoskeletal part 23 84 348E-03 19 439
GO:0035085 cilium axoneme 4 15 355E03 128 448
GO:0005576 extracellular region 39 142 451 E-03 16 5.65
GOTERM_MF_FAT GO:0003777 microtubule motor activity 6 22 295E-03 6.1 403
(Molecular Function) - 5 1535509 calcium ion binding 23 84 298E-03 20 407
UP_TISSUE Lung 63 229 6.08 E-06 18 0.01
Testis 80 29.1 259 E-03 13 3.06
Trachea 13 47 7.6 E-03 24 8.26
Plasma 11 40 745E03 2.7 8.58

The most enriched GO terms found following submission of our gene list to the DAVID functional annotation tool, showing categories and GO terms enriched,
number and percentage of gene lists genes represented in each enriched category, significance level (P), fold enrichment and false discovery rate (FDR).

Using Metacore to construct networks based on the best
documented relationships between proteins encoded by
list genes, there were found to be few direct interactions
between proteins encoded by list genes, and only a limited
number of known CFTR interacting proteins (namely up-
regulated channel proteins CLCA2 and AQP9). Metacore
found the gene list to be enriched in targets for several
important transcription factors, including SP1 (45
genes, p =3.64E-113), c-MYC (21 genes, p =5.75E-52),
ESR1 (20 genes, p=1.86E-49) and NF-kB (20 genes,
p =1.86E-49). NF-kB has been implicated as a medi-
ator of IL-8 inflammatory signalling in CF [39], but
(along with SP-1 and ¢-MYC) NF-«kB itself was not
found to be regulated in our data set, although signifi-
cant enrichment of the NF-kB pathway was detected
by GSEA (see below).

The most interesting transcription factor identified in
the context of our data was ESR1 (estrogen receptor 1),
given a recent study of sex related differences in modu-
lation of CF symptoms by estrogen [40], and the gene
for ESR1, while not within the cut-offs of our working

list (Additional file 1) was nevertheless 1.84-Fold up-
regulated in CF (FDR =0.026, p =0.0004: see extended
list in Additional file 4). ESR1 target genes in our gene
list are shown in Figure 2, an adapted Metacore-
generated network showing all detected direct interac-
tions among list genes and ESR1.

Relative qRT-PCR validation of microarray data

For validation of microarray data, we selected 10 genes
of interest found either to be upregulated (n=7) or
downregulated (n=3) in our CF microarray data (see
Table 5). Comparison of fold-change of expression in CF
nasal cells as measured by microarray analysis and qRT-
PCR validation using independent tissue samples is
shown in Table 5 and Figure 3. The direction of differen-
tial expression measured was in agreement for 6/7
upregulated genes (ADM, AQP9, AREG, GJAl, IGFBP3
and NDRG1) and 3/3 downregulated genes (SPAG6,
TEKT1 and SCGB1A1), although by two methods statis-
tical analyses of mean dCTs (Student’s t test and
Wilcoxon rank sum) did not reach significance due to
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the low number of replicates (t test values shown in
Table 5).

Comparison with other studies

The percentage of genes shared between lists of up- and
down-regulated genes from 5 other studies [16-20] and
the present study are shown in Table 6 and summarized
in Figure 4. Although every study has some up- and
down-regulated genes in common with every other (ie,
with the same direction of differential expression in both
studies), it is interesting to note that the majority of com-
parisons yield similar numbers of genes with inverted dir-
ection of expression (on average, 18% of list genes from
each study appeared at the opposite end of at least one

other study) to genes differentially expressed in the same
direction (mean = 13% of genes from one study appearing
at same end of at least one other study, see Figure 4).

The identity of the 75 up-regulated and 114 down-
regulated genes shared (and sharing direction of differ-
ential expression) between two or three of the compared
studies (this study plus [16-20]) is given in Table 7. This
shared gene list was submitted to DAVID to detect en-
richment of GO terms, and the results are summarized
in Table 8. “Regulation of cell proliferation” (15 genes;
p =2.48E-05) and “immune response” (16 genes; p =
2.20E-04) were the most enriched biological process
(BP) GO terms among shared up-regulated and down-
regulated genes respectively, and overall “Defence

Table 5 Genes for which differential expression was reanalysed by qRT-PCR in independent nasal cell samples

Gene symbol Affymetrix ID Gene description FC (Array) FC (QPCR) p (t test)
Upregulated in CF

ADM 202912_at Adrenomedullin 29 17 0.08
AQP9 205568_at Aquaporin 9 49 1.8 041
AREG 205239_at Amphiregulin 36 13 0.21
GJA1 201667_at Gap junction protein alpha 1 or Connexin 43 34 2.7 0.22
IGFBP3 210095_s_at Insulin-like growth factor binding protein 3 22 1.2 049
NDRG1 200632_s_at N-myc downstream regulated gene 1 26 20 0.18
TMEM45a 219410_at Transmembrane protein 45A or DERP7 3.0 1.0 0.5
Downregulated in CF

SCGB1A1 205725_at Secretoglobin family 1A member 1 or Uteroglobin -33 -23 0.11
SPAG6 210033_s_at Sperm associated antigen 6 -2.5 —-34 0.1
TEKT1 239216_at Tektin 1 -33 =30 0.12
reference genes

ACTB 3 probesets Actin beta mean 1.2 1.2 /
GAPDH 3 probesets Glyceraldehyde 3-phosphate dehydrogenase mean 1.1 08 /

Table shows gene symbols and description, Affymetrix probeset ID as represented on the HsAirway array, fold change in CF-vs.-non CF samples for both

microarray and qRT-PCR, and p value for qRT-PCR data.
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Figure 3 Comparison of Microarray and gRT-PCR expression data for selected genes. Comparison of Log, (fold change) of gene expression
in CF vs. Control nasal cell samples as measured by microarray analysis (black) and gRT-PCR (grey) using independent samples (n=6 CF and 5
Ctrl in each case). Microarray data are log,(fold change) of normalized intensities, and qRT-PCR data are log,(mean fold change). Direction of
differential expression was in agreement for all genes except TMEM45a, whose up-regulation in CF was not supported.

Response” (25 genes; p=6.00E-07) was the most
enriched BP GO term among all shared genes. The top
cell compartment (CC) term was “extracellular region”
for both up and down-regulated shared genes (49 genes
for combined list; p = 1.88E-07), and the top molecular
function (MF) GO terms were “enzyme binding” (up: 8
genes, p = 0.0092) and “MHC class II receptor activity”
(down: 4 genes, p=3.17E-04), with enzyme inhibitor
activity being the most enriched MF GO group for all
regulated genes (13 genes, p =7.39E-05). Not surpris-
ingly, “Lung” was the most enriched UP-Tissue class
(52 genes, p=5.15E-07), with 34 (65%) of the genes
identified as belonging to this class being down-
regulated in CF.

Gene set enrichment analysis

The Gene Set Enrichment Analysis (GSEA) software
package was used to localize the differentially expressed
genes from each of five other studies [16-20] in our
ranked data set. The results of this analysis (see Figure 5),
although not significant, show agreement among genes
up-regulated in the F508del-CFTR condition between
our study and three others [16,19,20], and some enrich-
ment of down-regulated genes from Ogilvie et al. [19] at
the down-regulated end of our ranked list. Inversion of
both up and down-regulated genes from another nasal
cell study [18] (“CF-mild” samples only) was also dem-
onstrated. As the Wright et al. [18] data set we used in
comparison omitted samples classified as CF-severe [21],
we wondered if this inversion of data sets might result
from the use of only CF-mild samples. We therefore
repeated the analysis using the published list of genes

found to be up-regulated in CF-severe samples in that
study [18] (n=592 genes) in GSEA analysis of our data
set, and found that as for the CF-mild samples, a propor-
tion (18%) of the genes up-regulated in severe CF samples
in that study were present at the control end of our data
set (ie, down-regulated in CF), confirming that a propor-
tion of the data is inverted between these two studies.

Further GSEA analyses were performed with gene sets
relevant to the GO terms found to be enriched in our
data set and in other CF related microarray studies. Ex-
amples where the enrichment is significant are presented
in Figure 6. Concordant with our DAVID analysis, gene
sets related to cell proliferation, and both positive and
negative regulation thereof, were significantly enriched
at the up-regulated end of our ranked data set, as were
gene sets for ESR1 targets and defence response genes.
Gene sets for genes involved in cytokine activity and
Ca** binding showed borderline enrichment for the CF
phenotype. At the down-regulated end of our ranked
gene list (WT phenotype) we observed significant en-
richment of motor activity gene expression, but only
borderline enrichment of cell projection and testis gene
sets. We also tested the three pathways (NF-kB, Antigen
presentation and Protein ubiquitination) highlighted in a
previous meta-analysis of CF microarray data sets [21]
and found significant enrichment in the CF phenotype
of genes in the NF-«kB pathway (see Figure 6). The pro-
tein ubiquitination pathway showed borderline non-
significant enrichment for the CF phenotype, and the
antigen presentation pathway, although showing some
enrichment for the down-regulated end of our data set,
was also not significant.
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Table 6 Percentages of genes in common among differentially expressed genes from six microarray studies of CF
related gene expression

% shared z w V-L "4 (0] C
upP (N=300) (N=300) (N=300) (N=300) (N=115) (N=117)
4 - 0.7 03 1.0 1.7 1.7
0.7 - 3.7 50 26 1.7
V-L 03 37 - 4.0 26 1.7
Vv 1.0 50 4.0 - 14.8 43
0.7 10 1.0 57 - 77
C 0.7 0.7 0.7 1.7 7.8 -
ALL 33 10.0 9.3 15.0 243 13.7
DOWN (N'=300) (N=300) (N=300) (N=300) (N=110) (N=220)
4 - 6.7 53 33 2.7 0.5
w 6.7 - 7.0 27 1.8 14
V-L 53 7.0 - 103 2.7 23
Vv 33 27 103 - 09 32
o 1.0 0.7 1.0 03 - 14
C 03 1.0 1.7 23 2.7 -
ALL 13.7 15.7 23.0 17.3 10.9 7.7
% inverted z w V-L "4 (0] C
up (N =300) (N=300) (N=300) (N=300) (N=115) (N=117)
4 - 13 1 43 1.8 09
w 7 - 6 57 64 12.7
V-L 7.7 3.7 - 47 1.8 14
Vv 3.7 12.3 13 - 0 14
1 7 33 0 - 18
C 13 3.7 1.7 1.3 2.7 -
ALL 19.7 25.7 223 14.7 11.8 16.8
DOWN (N'=300) (N=300) (N=300) (N=300) (N=110) (N=220)
4 - 7 7.7 3.7 26 34
w 13 - 37 123 183 94
V-L 1 6 - 13 8.7 43
Vv 43 5.7 47 - 0 34
(o] 0.7 23 0.7 0 - 26
C 0.7 93 1 1 35 -
ALL 7.3 26 16.7 25.7 27.0 20.5

Percentages are of number of regulated genes in study indicated in horizontal row regulated in the same direction or showing inverted expression in the other
five studies as shown at left (Z: Zabner et al., 2005 [17]; W: Wright et al., 2006 [18]; V-L: Virella-Lowell et al., 2004 [16]; V: Verhaeghe et al., 2007 [20]; O: Ogilvie

et al, 2011 [19]; C: current study). In each case, ALL refers to total percentage of genes shared or inverted between one study and all five other studies

(summarized in Figure 4).

Reanalysis of independent dataset, and comparison with
our data

The results of our RP reanalysis of CF related gene
expression in native nasal and bronchial cell samples
[19] are shown in Additional file 3, and collapsed lists
taking multiple probes into account for comparison
presented in Additional file 5 alongside our gene lists,
which were expanded to similar lengths for comparative

purposes by relaxation of the cut-offs (see Additional file 4).
A Venn diagram showing up- and down-regulated
genes shared between our study and the reanalysed
Ogilvie et al. [19] study is shown in Figure 7. Interest-
ingly, the data reveal a marked agreement between both
up and down regulated genes in nasal and bronchial
cells from the reanalysed study, and 21 up-regulated
and 9 down-regulated genes were shared by our study
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Figure 4 Histogram showing percentages of genes in common among lists of differentially expressed genes from six microarray
studies of CF related gene expression. Percentages are of number of regulated genes in one study regulated in the same direction (dark
columns) or showing inverted expression (light columns) in the other five studies (Z: Zabner et al, 2005; W: Wright et al,, 2006; V-L: Virella-Lowell
et al, 2004; V: Verhaeghe et al, 2007; O: Ogilvie et al, 2011; C: current study). MEAN refers to mean percentage of all columns (data are
summaries of percentages shown in Table 6).

and both tissues in the reanalysed study (see Table 9).  the cell compartment term “extracellular region” (p = 2.0E-2)
Submission of the list of 30 shared genes to DAVID and the molecular function term “calcium ion binding”
revealed significant enrichment for the biological process (p =3.3E-2). The distribution of the genes between
GO terms “inflammatory response” (p = 4.8E-4), “response to  these GO terms is shown in Figure 7C. An association
wounding” (p =7.9E-5) and “defence response” (p=14E-3), network was generated using the GeneMania program

Table 7 Differentially expressed genes common to two or more of six comparable studies of CF related gene expression

Gene list Regulated genes shared with current study (Clarke)
Zabner et al,, 2005 UP: ACAA2, CDKN2B.
DOWN: |GFBP2.
Wright et al., 2006 UP: C9orf3, KRT14.
DOWN: CYP24A1, HLA-DQAT, SAA4.
Virella-Lowell et al,, 2004 UP: CAV1, CCNE2.
DOWN: CLGN, ENO2, EPB41L3, GPX3, TIMP4.
Verhaeghe et al, 2007 UP: BCL2A1, GOS2, IL1B, MMP1, RGS2.
DOWN: CKB, CRIP1, CYP24A1, DNALIT, FHL1, GSTT1, IGFBP2.
Ogilvie et al, 2011 UP: BCL2AT, GOS2, IL1B, ILTR2, LCP2, NDRG1, RGS2, RNF149, TCN1.

DOWN: PROS1, SCGB1A1, SPAGS.
All shared genes (six studies combined)

UP (n=75): ACAA2, AGL, AKR1C1, ANXA8L2, BCHE, BLOC1S1, BTBD3, C90RF3, CAPG, CAV1, CCL20, CCNE2, CD24, CD83, CDKN2B, CLGN, CSF3, DDX3Y,
ELK3, FOLR1, FOLR3, FOXG1, GCA, GFPT2, HCLST, HISTIH1C, HMOX1, HPCALT, HSPB11, IFIT1, IFIT3, IFITM1, ILTR2, IL7R, ISG15, KCTD12, KRT14, KRT81,
LCP2, LITAF, LYPD1, MLF1, MMP1, MRPL28, MX2, NCF1, NDRG1, NET1, PLAU, PLAUR, PLTP, PRSS3, PSG9, PTPN13, RAC2, RAGE, RNF149, RPA3, SEMA3B,
SERPINA3, SERPINF1, SLITRK5, SOD2, SULT1A3, TCF15, TCIRG1, TCNT, TXNIP, BCL2AT, GOS2, IL1B, NCF2, PLAT, PTGS2, RGS2.

DOWN (n = 114): ACTA2, ADAR, ALDH1AT, ANKRD1, ASNS, ASS1, BEX4, BST2, BTG1, C50RF13, CALD1, CAP1, CCL20, CD164, CFB, CGREF1, CKB, CLGN,
COL8AT1, COL9A3, CRIP1, CSTA, CXCR4, CYP51A1, DDB2, DDIT4, DNALIT, DSP, DSTN, DYNLT1, EDNRA, EFEMP1, EIF4A2, ENO2, EPB41L3, EPSS, F3, FBLNS,
FCGBP, FHL1, GABRP, GCHT1, GINS1, GPNMB, GPR1, GPX3, GSTT1, GZMB, HCPS5, HES1, HLA-B, HLA-DQA1, HLA-DRA, HLA-DRB1, HLA-F, HLA-G, HMGCST,
HSPB1, HTRAT1, ID1, IFI16, IFITM1, IFRD1, IGFBP7, IL32, KCNN4, KIT, KLRK1, KRT15, LCN2, LGALS3BP, LOX, MGAM, MSC, NID2, NPR3, NTS, PGD, PNMA2,
PPPTR3C, PROST, RASGRP1, RND3, RUNX3, SAA4, SC5DL, SCGBTAT, SERPINB3, SERPINB4, SGK1, SLC2A3P1, SNAPC1, SPAGS, STAC, STAT4, TES, TFPI, THBD,
TIMP4, TPBG, TRIB2, TWIST1, VDACT, ZNF643, CTSC, CYP24AT, IFI27, IGFBP2, IGFBP3, NAMPT, PRSS23, SEL1L3, TMSB4X, TRIM22.

Genes shared between two other lists and the present study (ie, differentially expressed in the same direction with respect to CF-vs.-Control cells) are underlined.
The lower panel shows genes shared between two or more studies when all six studies are combined. Genes shared with present study (see upper panel) are
shown in italics, genes shared between three studies are underlined.
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Table 8 Functional enrichment analysis of genes shared between two or three studies

Category Term Count % p Fold enrichment FDR
GOTERM_BP_FAT GO:0006952 defence response 25 134 6.00E-07 3.25 0.001
GO:0042060 wound healing 14 7.5 7.37E-07 587 0.001
GO:0042127 regulation of cell proliferation 28 15.1 1.37E-06 2.85 0.002
GO:0006955 immune response 25 134 451E-06 2.90 0.008
GO:0006928 cell motion 20 108 6.96E-06 337 0.012
GOTERM_CC_FAT GO:0005576 extracellular region 49 263 1.88E-07 212 0.000
GO:0044421 extracellular region part 29 156 341E-06 263 0.004
GO:0005615 extracellular space 23 124 1.01E-05 292 0013
G0:0000267 cell fraction 27 14.5 2.17E-04 217 0.275
GO:0005625 soluble fraction 13 7.0 248E-04 3.61 0314
GOTERM_MF_FAT GO:0004857 enzyme inhibitor activity 13 70 7.39E-05 4.1 0.101
G0:0032395 MHC class Il receptor activity 4 2.2 0.001303 17.98 1.768
GO:0004866 endopeptidase inhibitor activity 8 43 0.001519 471 2.058
GO:0030414 peptidase inhibitor activity 8 43 0.002074 447 2.800
GO:0005520 insulin-like growth factor binding 4 22 0.00294 13.67 3.947
KEGG_PATHWAY hsa05332: Graft-versus-host disease 8 43 241E-06 1242 0.003
hsa04940: Type | diabetes mellitus 8 43 4.07E-06 11.53 0.004
hsa05330: Allograft rejection 7 38 2.08E-05 11.77 0.023
hsa04610: Complement and coagulation cascades 8 43 1.14E-04 7.02 0.126
hsa05416: Viral myocarditis 8 43 1.37E-04 6.82 0.151
UP_TISSUE Lung 52 280 5.15E-07 2.03 0.001

The most enriched GO terms found by the DAVID functional annotation tool among the 75 up-regulated and 114 down-regulated genes shared between two or
three of the 6 compared studies (see Table 7), showing categories and GO terms enriched, number and percentage of gene lists genes represented in each

enriched category, p value, fold enrichment and false discovery rate (FDR).

(http://www.genemania.org/): the 30 shared genes are
shown as nodes in an association network in which the
edges are coloured according to the category of inter-
action (see Figure 7D). Other genes relevant to CF
pathology (eg, IL8) are shown as important connectors
in this network. The list gene with the most interac-
tions in this network was IL1B, which was also associ-
ated by GeneMania with the most known functions in
relation to other members in the network, including
inflammatory and defence responses, cytokine produc-
tion, signaling regulation and proliferation.

Discussion

The present study of global gene expression in nasal
epithelial cell samples from CF patients and healthy con-
trols yields a snapshot of the CF transcriptome providing
interesting insights into the consequences of CFTR dys-
function. Our primary aim was the identification of a CF
molecular signature — a robust set of genes with potential
utility as diagnostic markers or as targets for future thera-
peutic strategies. The approach we used — applying the
same statistical method to both newer and older data,
allowed us to propose such a signature, while also shedding

light on the limitations of such snapshot studies in measur-
ing a system as subtle and dynamic as the transcriptome.

Our data

Many of the individual genes within our microarray gene
list are of known functional significance in CF pathophysi-
ology, but for a better understanding of the cellular pro-
cesses and pathways altered in CF epithelium we utilised
Gene Ontology (GO) term enrichment in the whole lists of
133 up-regulated and 255 down-regulated genes. The most
highly enriched GO terms were “negative regulation of cell
proliferation” (biological process), mainly composed of up-
regulated genes, “cilium” (cell compartment), and “micro-
tubule motor activity” (molecular function) which were
both composed of only down-regulated genes. “Extracellular
space” (cell compartment) and “calcium ion binding” (mo-
lecular function) also accounted for a significant number of
regulated genes in both directions (see Table 4). Taken
together, these systemic alterations of gene expression might
imply that CFTR dysfunction causes: 1) ER stress and alter-
ation of calcium signalling, plausibly to activate alternative
chloride channels, 2) disturbances in the normal processes
of epithelial cell differentiation and extracellular signalling,
and 3) a reduction in ciliogenesis or cilia activity.


http://www.genemania.org/
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Figure 5 Comparison of independent microarray studies and present study by GSEA. GSEA enrichment plots showing non-significant
enrichment of up-regulated genes from A) Ogilvie et al. (2011), B) Verhaeghe et al. (2007), C) Virella-Lowell et al. (2004), and down-regulated
genes from D) Wright et al. (2006) at the CF end of our dataset (red bar), and non-significant enrichment of down-regulated genes from

E) Ogilvie et al. (2011), and up-regulated genes from F) Wright et al. (2006), at the control end of our dataset (green bar), demonstrating a partial
inversion of CF-related gene expression between our study and Wright et al. (2006).

Proliferation and inflammation

In airway epithelium, the proliferating cell population is
likely to be composed of the basal-like, rather than the
ciliated epithelial cells [41], and in fact the two popula-
tions can be seen as extremes of a proliferation-
differentiation continuum. Of the 14 genes classified as
negative regulators of cell proliferation (anti-prolifera-
tive) GO group, 12 (86%) were up-regulated in CF,
suggesting that, overall, proliferation is reduced in CF.
However, GSEA analysis showed significant enrichment
of proliferative genes in general, and sets of both positive
and negative regulators of proliferation in CF (see

Figure 6). In similar situations elucidation of the func-
tion of each individual regulated protein builds up a
picture of a complex network of apparently contradict-
ory processes. Examples found here to be up-regulated
in CF include ADM (adrenomedullin), a vasodilator
which promotes alveolar development and repair [42],
and which is speculated to have a protective effect in the
immuno-inflammatory process of asthma [43], implying
that it may respond to airway injury in CF. EREG
(epiregulin), also up-regulated in CF, is a member of the
epidermal growth factor (EGF) family generally associ-
ated with enhanced proliferation, but which in ciliated
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Figure 6 Demonstration of pathway enrichment in present study by GSEA. GSEA enrichment plots showing significant enrichment

A) positive and B) negative regulation of cell proliferation, C) ESR1 targets, D) cell proliferation and
E) defence response for the CF phenotype, and F) motor activity for the non CF phenotype. The lower panel shows G) significant enrichment of
the NF-kB pathway in the CF phenotype and non-significant skews of H) antigen presentation pathway genes in the non CF phenotype and

human airway epithelial cells can act via ERBB2 binding
to maintain their differentiated phenotype [44]. GJA1
(Connexin 43), also up-regulated in CF, suppresses cell
proliferation via maintenance of cell-cell communica-
tion, possibly via an association with CAV1 [45], which
has an important role in maintenance of airway ECM
integrity via inhibition of the TGF beta-induced fibrosis
[46], and may also play an important role in modulating

the immune response to P. aeruginosa infection through
the formation of CFTR-expressing lipid rafts [47]. Other
genes in this group are inflammatory cytokines (IL1B) or
potentiate cell proliferation (FGFBP1, IGFBP3), and
upon inspection there are few bona fide inhibitors of
proliferation (OSM, CDKN2B). Taken together, the up-
regulated genes belonging to the “negative regulation of
Cell Proliferation” GO group may therefore represent a
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Figure 7 CF gene signature in native airway tissues.
Representations of a putative gene signature in native airway tissues.
A) and B) Venn diagrams showing numbers of up-regulated (A), and
down-regulated (B) genes shared between the present study (C-N:
Clarke nasal) and the reanalyzed study [19] (O-N: Ogilvie nasal; O-B:
Ogilvie bronchial [19] in F508del-CFTR expressing vs. control airway
epithelial cells. Numbers in brackets refer to total number of genes
in each list, and numbers at centre of each diagram refer to the 30
genes shared between all three lists (see Table 9). C) Venn diagram
distribution of shared genes among the most significant GO terms
for biological process (BP), cell compartment (CC) and molecular
function (MF) as revealed by DAVID analysis. D) GeneMania network
showing relationships between 30 shared genes (black circles) and
other connecting genes (grey circles). Relationships are divided into
co-expression (purple lines), co-localization (blue lines), pathway
(light blue lines), physical interactions (pink lines) and predicted
(orange lines). The red arrow indicates IL1B, which is the most
connected gene involved with the highest number of identifiable
functions including inflammation, defence, response to bacteria, and
cytokine production.

complex reaction to the effects of hyper-inflammation
and tissue injury which are hallmarks of the CF airway.
Given, however, that this was measured in the nasal epi-
thelium, which is free of much of the pathology inherent
in the lower CF airway, it can also be argued that these
patterns, including the hyperinflammatory component,
form part of a primary response to CFTR dysfunction. It
is nevertheless probable that while some of these genes
are deregulated as a direct consequence of absence of
CFTR, others are secondary, i.e., actively involved in bal-
ancing the negative effects of the former.

AREG (amphiregulin), identified here as up-regulated
in CF is a binding partner of EREG and a ligand of
EGFR which was a representative of “extracellular
space”, another highly enriched GO group. AREG is
present in the sputum of CF patients [48], and is in-
volved in both proliferation and inflammation in human
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airways [49,50]. Its expression in CF airway and blood
neutrophils [48], might be suggestive that a component
of the gene expression observed in nasal cell samples
analysed here was derived from the 5-10% of inflamma-
tory cells present (see Table 1). However, neutrophil
genes in general were not over-represented in our gene
lists: only 4 genes stringently identified as regulated in
CF airway neutrophils [48] were present among our up-
regulated genes (CXCR2, CXCL9, CXCL10, and ADM,
which is supposedly down-regulated in CF neutrophils
[48]), and none among our down-regulated genes. Most of
our CF gene expression profile can therefore be associated
to the nasal epithelial cell population, and the presence on
our list of several genes associated with inflammation
lends support to the idea that CFTR dysfunction on its
own can stimulate inflammatory signalling to some
extent.

Cilium

The cilium is an organelle directly affected by CF patho-
physiology, given its role in mucus clearance and the
physical barrier to such clearance in CF. Given that the
CF nasal epithelium is not burdened with abnormally
thick mucus to the same extent as the CF lung, the
down-regulation of cilia genes in this tissue suggests a
primary disruption in CFTR related signalling rather
than a secondary response related to abnormal mucus.
Of the 10 down-regulated genes in this GO group, 5 are
axonemal components (DNAH9, DNAHI12, DNAII,
DNAI2 and DNAAF1/LRRC50) and 4 of the others are
clearly involved in cilium or sperm flagellum function.
Furthermore, other down-regulated genes which were
not flagged in this GO term by DAVID can clearly be
assigned to this group, increasing its significance
(DNAH6, DNALI1, DNAAF3/ LOC352909 and TEKT1).
Down-regulation in CF was broadly confirmed for two
of these genes (SPAG6 and TEKT1) by rtQ-PCR in inde-
pendent nasal cell samples (see Figure 3).

Suppression of cilia gene expression as a primary con-
sequence of CFTR dysfunction might complicate the
already compromised mucociliary clearance that is a
hallmark of CF. Furthermore, many of these genes are
also relevant to spermatogenesis or sperm motility via
their role in the flagellum, and might therefore be relevant
to cases of CF-associated male infertility (non-CBAVD
[51-53]). Interestingly, GJA1 (CX43), an up-regulated gene
in CF, has a functional link to cilia, given that in epithelial
cells of nasal mucosa, only functional gap junctions of
GJAL are expressed [54], and it is through these junctions
that the intracellular calcium wave that controls the
beating of cilia is communicated. Taken together, our
expression data suggest that CFTR dysfunction might
predispose the airway to suboptimal cilia function,
thereby compounding the CF phenotype.
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Table 9 Small molecular signature for native CF airway
epithelial cells

Upregulated
ALOX5AP  arachidonate 5-lipoxygenase-activating protein; #241
BCL2A1 BCL2-related protein A1; #597
CXCR4 chemokine (C-X-C motif) receptor 4; #7852
FCGR3A Fc fragment of IgG, low affinity llla, receptor (CD16a);

#2214
FOS FBJ murine osteosarcoma viral oncogene homolog; #2353
GO0S2 GO/G1switch 2; #50486
GCNT3 glucosaminy!l (N-acetyl) transferase 3, mucin type; #9245
HIST1H1C  histone cluster 1, H1c; #3006
HIST1H2BK histone cluster 1, H2bk; #85236
IL1B interleukin 1, beta; #3553
ILT1R2 interleukin 1 receptor, type II; #7850
LITAF lipopolysaccharide-induced TNF factor; #9516
OSM oncostatin M; #5008
PLEK pleckstrin; #5341
PTGS2 prostaglandin-endoperoxide synthase 2; #5743
RGS2 regulator of G-protein signaling 2, 24 kDa; #5997
S100A8 S100 calcium binding protein A8; #6279
S100A9 S100 calcium binding protein A9; #6280
SERPINA3  serpin peptidase inhibitor, clade A, member 3; #12
TCN1 transcobalamin | (vitamin B12 bp, R binder family); #6947
TPM4 tropomyosin 4; #7171
Downregulated
CAPS calcyphosine; #828
CHST9 carbohydrate (N-acet.galam. 4-0) sulfotransferase 9;
#83539

DNALIN dynein, axonemal, light intermediate chain 1; #7802
MAOB monoamine oxidase B; #4129
NELL2 NEL-like 2 (chicken); #4753
PPP1R16A protein phosphatase 1, regulatory subunit 16A; #84988
PROS1 protein S (alpha); #5627
PTGFR prostaglandin F receptor (FP); #5737
RAGE MOK protein kinase; #5891

Regulated genes shared between our study and reanalysed lists from another
recent study [19]. Gene symbols, descriptions and Entrez IDs (#) are shown.

Estrogen receptor targets

Several of our list genes are targets of the transcription fac-
tor ESR1 (see Figure 2), and targets for ESR1 were found
to be significantly enriched in our CF samples by GSEA
(see Figure 6). The presence of CF up/down-regulated
genes in a network provides clues not only on how expres-
sion is affected by CFTR dysfunction, but also the opposite,
e.g., how systemic alterations in circulating estrogen over
the course of the female menstrual cycle, might bring
about differential gene expression profiles, which help to
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explain subtle differences in lung function in male and
female CF patients [40,55].

Our data on changes in gene expression in prolifera-
tion pathways, calcium, membrane and cilia biology can
all be related back to the defect in CFTR processing, and
can potentially be characterized within a model of a
perturbed CFTR interactome [15]. The involvement of
estrogenic signalling, however, introduces an “external
modifier” providing a feasible explanation for some of
the variability within a heterogeneous group of subjects.
Although functional data are outside the scope of the
present study, the ESR1 network identified here consti-
tutes a source for clues as to how there may be crosstalk
between different mechanisms during dysregulation of
gene expression in CF. A sharp and sustained rise in
circulating estrogen and its presumably positive effect
on expression of several genes involved in regulating the
transition between proliferative and differentiating cellu-
lar phenotypes (MMP1, ADM, AREG, GJA1, RUNX2: all
found here to be up-regulated in CF, see Figure 2) might
be a key factor in determining the equilibrium between
these two states in the female CF airway epithelium.

Comparison with other studies

The present study provides a momentary snapshot of
Cystic Fibrosis-related gene expression in native nasal
epithelial cell samples from CF patients compared to
controls. We compared our gene-lists with those from
other studies in an attempt to quantify the similarity be-
tween data sets. These comparative data enabled us to
gauge which of the six studies are more alike in terms of
the numbers of up-regulated and down-regulated genes
they have in common (see Table 6), showing, for ex-
ample, that our data have more up-regulated genes in
common with a bronchial cell dataset [19] and more
down-regulated genes in common with the study using
immortalized foetal tracheal cells [20]. These results are
set against a background of similar numbers of genes
whose direction of expression is inverted between stud-
ies (see Figure 4). GSEA data point to partial inversion
of gene regulation between our study and one also using
native nasal epithelial cells [18] (see Figure 5D,F), but
numbers of regulated genes also show inverted expres-
sion between several other studies (see Table 6). It is
possible to speculate that the direction of CF marker
gene regulation might not be as important as the fact of
their deregulation in CF, and that the appearance of
pathophysiologically relevant genes at different extremes
of distinct studies might simply reflect fluctuations in
what is a cyclical process of infection, inflammation, and
airway repair, but in reality, the presence of biological
replicates should cancel out any such effects. Three
pathways previously suggested to be characteristic of
CF-related gene expression [21], were found to be
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enriched to varying degrees in our data set (see Figure 6),
including significant enrichment of the NF-kB pathway
as previously noted in foetal tracheal cell lines [20], and
used as evidence of intrinsic hyper-inflammation in CF.
The fact that this is observed in nasal epithelium, along
with over-expression of several genes related to the
regulation of the inflammation does lend support to the
presence of an intrinsic hyperinflammatory response
associated with F508del-CFTR expression without, how-
ever, clarifying its origin [56]. The shared down-
regulation of the antigen presentation pathway suggested
by Hampton & Stanton [21] was also seen to some
extent, and these data help to characterize our data set
as belonging to the same group as the other CF data
sets. Taken together (see Table 7) the 189 genes which
share similar expression between 2 or 3 studies are
enriched for functional categories (eg, defence response,
wound healing, regulation of cell proliferation: see
Table 8) which succinctly sum up the processes involved
in CF, and whose expression might well prove to be a
reliable marker of CF. However, for a more feasible
molecular signature of CF, we decided to reanalyse the
raw microarray data of Ogilvie et al. [19], using the RP
method as a way of seeing “further down” their data sets
for both nasal epithelium, in which they only identified a
handful of significantly regulated genes, and bronchial
epithelium, which was the tissue which shared more up-
regulated genes with our dataset in the preliminary
comparison.

Use of the RP statistical method to detect even incre-
mental differential gene expression with a high level of
significance allowed us to produce gene lists of compar-
able sizes for both nasal and bronchial epithelial cell
samples from the Ogilvie et al. [19] study. Our analysis
identified a large number of regulated genes shared by
bronchial and nasal epithelium, partly contradicting the
authors’ claim that nasal epithelium is not a good surro-
gate for the CF airway [19], but also supporting that
claim given the greatly reduced fold change of expres-
sion shown by these genes in nasal cells (see Additional
file 3). Comparing the reanalysed gene lists with our
own nasal cell data (see Figure 7) identified 30 genes
regulated in all three lists (see Table 9). These genes rep-
resent a small putative molecular signature for F508del-
CFTR expression in airway epithelial cells. A significant
number of these genes are involved in inflammation,
defence, and responses to wounding, and a number of
them are involved in extracellular signalling and calcium
ion binding (see Figure 7C). Construction of an associ-
ation network (see Figure 7D) shows that all of these
genes have been linked by co-expression or co-
localization in other studies, or have proven functional
relationships with each other and with other genes
known to be regulated in CF. The most connected gene
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in this network is IL1B, an important mediator of the
inflammatory response and a known modifier of CF lung
disease [57].

Concluding remarks

In summary, our small-scale microarray study of the CF
nasal epithelial transcriptome has generated a list of
differentially expressed genes which mostly suggest de-
fects in gene regulation networks related to cell prolifer-
ation and cilia biology. Comparison of our data set with
previously published studies allowed us to assess the
consistency of independent microarray data sets, thus
revealing the limitations of such snapshot studies in
measuring a system as subtle and dynamic as the tran-
scriptome and suggesting that a molecular signature for
CF is likely to be of elevated plasticity. Nevertheless,
similarities in pathway and Gene Ontology enrichment
between our data set and shared genes from other data
sets do give evidence for common gene expression com-
ponents with elevated functional significance to both
primary and secondary cellular responses to F508del-
CFTR. The novelty of our approach lies in the new per-
spectives enabled by the application of new statistical
analyses to both new and old data sets, and underlines
the importance of public data repositories for high
throughput data. This has allowed us to identify a small
molecular signature characterizing F508del-CFTR expres-
sion in both nasal and bronchial native airway epithelium
which we believe is worthy of further investigation. Future
studies may be able to refine this signature and test its
value as a predictive tool for discriminating between CF
and healthy tissue samples. Comparing the signature
genes with functional genomics data may also help to
clarify cellular responses to CFTR dysfunction in the air-
way epithelium.

Additional files

Additional file 1: Gene lists from current study (“Up-CF” and
“Down-CF”).

Additional file 2: Gene lists from comparable studies presented in
Table 3.

Additional file 3: Genes regulated between CF and non-CF
bronchial and nasal epithelium (reanalysis of [19]).

Additional file 4: Gene list from current study with relaxed cutoff
(pfp<0.05).

Additional file 5: Collapsed gene lists (from Additional files 3 and 4)
used in comparison and generation of Table 9 and Figure 7.
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