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A B S T R A C T

Various models (e.g., scalar, state-dependent network, and vector models) have been proposed to explain the
global aspects of time perception, but they have not been tested against specific visual phenomena like peri-
saccadic time compression and novel stimulus time dilation. Here, in two separate experiments (N ¼ 31), we
tested how the perceived duration of a novel stimulus is influenced by 1) a simultaneous saccade, in combination
with 2) a prior series of repeated stimuli in human participants. This yielded a novel behavioral interaction: pre-
saccadic stimulus repetition neutralizes perisaccadic time compression. We then tested these results against
simulations of the above models. Our data yielded low correlations against scalar model simulations, high but
non-specific correlations for our feedforward neural network, and correlations that were both high and specific for
a vector model based on identity of objective and subjective time. These results demonstrate the power of global
time perception models in explaining disparate empirical phenomena and suggest that subjective time has a
similar essence to time's physical vector.
1. Introduction

Time perception studies generally assume that subjective or
perceived time is distinct from objective time [1, 2, 3] and have
explained this difference from two opposing perspectives: either from the
perspective of global theories of time perception, or post-hoc explana-
tions of specific empirical phenomena. Previous theories of time
perception include linear dedicated models [4] such as internal clock
models [2, 3, 5], and non-linear models such as state-dependent net-
works (SDNs) [6, 7, 8]. Conversely, empirical studies have shown that
various sensory and behavioral factors influence human time perception
[9, 10, 11, 12, 13], for example, perisaccadic time compression [12, 13,
14, 15, 16, 17, 18], and dilated time for a novel visual stimulus following
repeated stimuli [19, 20, 21]. Perisaccadic time compression (i.e., com-
pressed time just before and during saccades, as opposed to post-saccadic
time expansion [22]) has been explained in terms of perisaccadic
remapping [14, 15, 17] and transient cortical responses [23], whereas
temporal expansion of a novel stimulus (after a series of repeated stimuli)
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has been attributed to a release from repetition suppression mechanisms
[20, 21, 24]. However, there is also a need to bridge these two levels of
explanation (global theories vs. mechanistic models based on empirical
data), because the high level models need to be empirically tested, and
the low-level explanations might benefit from a unifying theory [25, 26].

Here, we attempted to reconcile these approaches by 1) using
empirical data (specifically, the previously unexplored interactions be-
tween perisaccadic time compression and time dilation of a novel stim-
ulus after a series of repeated stimuli), 2) using these data to test between
the predictions of the three major ‘high level’ models mentioned above
(and explained below), and then 3) interpreting our findings with regard
to ‘low level’ mechanistic descriptions of our findings.

In scalar timing models (Figure 1-a, Table 1), subjective time is
viewed as a scalar parameter that can be generated by an internal
pacemaker/accumulator structure [3] or related to levels of energy spent
in the brain [13, 27]. Such models predict that specific time distortion
effects (e.g., stimulus repetition vs. saccades) should add linearly. In
contrast, SDNmodels [6, 7, 8, 28] (Figure 1–b, Table 1) are nonlinear [8],
25 February 2022
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Figure 1. - How brain can process time. The objective time that is embedded in a visual event and subjective time that is measured in the brain are characterized in
two separate frameworks (universe and brain). a) Scalar models) Internal clock model: In this model, an anatomical pacemaker-accumulator structure is suggested to
generate and collect scalar timing pulses. A cortico-basal ganglion-thalamocortical pathway is suggested as pacemaker [5, 56, 57] and different cortical regions are
suggested as accumulator [5, 25, 56, 58]. In this model, attention is assumed to connect the pacemaker to accumulator as a switch [3]. Usually an attention threshold is
considered, and the switch will be closed when the attention is higher than this level. Otherwise, the switch is open, and accumulator cannot collect timing pulses. A
higher level of attention then leads to overestimation of time whereas lower attentional allocation will lead to underestimation of time. When separate time distortion
effects alter the level of attention in different directions (one increases attention and the other decreases it) the underestimation and overestimation effects cancel each
other. b) State dependent network models: In these models different states of neural networks reflect various time perception states. The brain learns to distinguish
long and short durations via Hebbian learning using a spatiotemporal classification network instead of specialized temporal structures. c) Vector model: A vector
model explains the subjective and objective times are processed in the brain and universe via same formulization. This model describes physical parameters (e.g.,
entropy and speed that are involved in the measurement of objective time) are also reflected in subjective time. For example, as the entropy of the universe is increased
and objective time passed, information processing in the brain increases the level of entropy in the brain and subjective time passes. In this framework, brain and
universe are considered as observer and environment, respectively. Objective time can be measured in the brain based on physical time. Both timing contexts can be
formulated in Minkowski space as vectors (with arrows and magnitudes).
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being based on classification network training. Specifically, these models
assume that time distortion effects can be coded by different connectivity
patterns in specific neural networks [29]. Such models can account for
possible non-linear interactions between stimulus repetition and sac-
cades. Finally, we considered a recently proposed vector model for sub-
jective time (Figure 1-c, Table 1), based on a physical concept of time
[30, 31]. In this model, neural time units are defined by a directional
arrow and amagnitude (i.e., a vector) as in temporal physics [31, 32, 33].
In this framework, simultaneous time distortions can be integrated by a
neuro-information approach [30, 31]. For example, if the distortion ef-
fects of saccade and stimulus repetition are added to a vector of subjec-
tive time, they can then expand or compress subjective time within this
vector space.
2

To evaluate these models, we employed a repetitive stimulus/
saccade/novel stimulus paradigm in human participants (Figure 2). In
two separate experiments (with different stimulus durations and setups),
participants judged the duration of a novel test stimulus relative to a
previously viewed series of reference stimuli with a different orientation
(Figure 2-a). After the reference stimuli, we cued a saccade, which
commenced toward the end of the test stimulus (Figure 2-b. We then
analyzed the interactions between perisaccadic time compression and
repetition-induced time dilation of the test stimulus and compared these
to simulations of the models described above. This yielded the novel
results that time dilation after a series of repeated stimuli supersedes
saccade-induced time compression, and more importantly, linear vector
model simulations provided the best fits to this data (in terms of accuracy
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Table 1. Objective and subjective time and relation between them in different
time perception models.

Model Objective time Subjective time Timing rule

Internal clock
model

Successive
events

Number of neural
pulses

Counting of pulses in
specific brain regions can
generate time. Same
mechanism is suggested in
Newtonian framework for
physical time.

Energy model - Energy spent in the
brain

The value of energy in the
brain (a scalar parameter)
can generate time. There is
no identity in the physics.

State
dependent
network model

Successive
events

Spatiotemporal
classification
networks

Different states of brain
networks can present time.
Hebbian law supports this
idea.

Vector model Physical time in
Minkowski
space

Physical time in
Minkowski space

Physical properties of
brain (i.e. entropy and
speed) can measure
subjective time.
Same mechanism is
suggested in modern
physics for physical time.
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and specificity) compared to the other models of time perception. This
demonstrates that global time perception models can explain specific
empirical phenomena and suggests that subjective time follows the rules
of objective time in a physical framework.

2. Method

To generalize our psychophysical results, and obtain sufficient data
for model testing, we include data here from 31 participants tested in two
separate experiments.
2.1. Experiment 1

2.1.1. Participants
Ten volunteers (age: mean ¼ 31.5, range between 23 and 39, 5 fe-

male) participated in the first experiment (including one of the authors;
A.G.). Further data collection in this first experiment was interrupted by
the pandemic. All the participants had normal/corrected to normal vision
and they did not report any visual or movement disorder. All the par-
ticipants signed a written informed consent. The details of experimental
procedures, data collecting, and saving were described in this informed
consent. This study (including the materials of informed consent) was
approved by the York Human Participants Review Subcommittee at York
University and Social Sciences, Humanities and Education Research
Ethics Board of the University of Toronto.

All methods in this study were performed in accordance with the
Declaration of Helsinki.

2.1.2. Setup
Participants sat in a dark room with their head fixed with a dental

impression bar. Eye movement tracking was performed (in the Saccade
and Fixation Tasks) using an Eyelink-2 system via a camera that was
focused on the right pupil. Forty centimeters in front of the eyes a black
display screen (1.9 � 1.4 m; luminance level of 0.015 cd/m2; temporal
resolution: 60 Hz) presented rear-projected stimuli that were programed
in Cþþ and build by Borland Cþþ version 5.02.

2.1.3. Stimuli
Three white parallel horizontal lines (thickness of line: 1o, distance

between them: 4o, total size 11o �11o) were presented as reference
stimulus, while the test stimulus had the same configuration but with
different orientation (vertical lines). Stimuli were presented in the right
3

visual field (10o from the center) and a fixation point was horizontally
shown at center (x ¼ 0). In the Fixation Task, a fixation point was
randomly presented at 12.5o above or below of center (x ¼ 0o, y ¼
�12.5o), while the location of stimuli was x ¼ 10o and y ¼ 0o. In the
Retina-Matched Fixation Task, the fixation point was always presented at
center (x ¼ 0o, y ¼ 0o) but stimuli (both of reference and test) were
randomly shown 12.5o above or below of center line (x ¼ 10o, y ¼
�12.5o). In the Saccade Task, the location of stimuli was same as the
Fixation Task (x ¼ 10o, y ¼ 0o) but the location of the fixation point was
randomly changed from x ¼ 0 and y ¼ �12.5 to a symmetric location
below or above an imaginary horizontal line passing through the vertical
center of the screen. All the stimuli were shown on a black background.

2.1.4. Trials details and experiment design
The experimental design was simplified and optimized to provide

statistical power for testing the models described in subsequent Methods
sections. In each task, 240 trials were presented. There were two con-
ditions according to repetition of reference stimulus: No repetition and
repetition (randomly 1 or 2 times). Duration of test stimulus was 140ms,
170ms, 230ms, or 260ms in different trials. By comparing these durations
with the duration of the reference stimulus, trials were divided into
longer (test duration longer than reference) and shorter trials (test
duration shorter than reference). Then, in each task, 60 trials (240/(2*2))
are allocated to each condition. These conditions were presented in three
different tasks: Saccade task, Fixation task, and Retina-matched task. In all
the tasks, a reference stimulus preceded a test stimulus. Duration of the
reference stimulus was always 200ms and interstimulus interval was
300ms. In the Saccade Task, the fixation point was moved 100ms before
the presentation of the test stimulus (200ms after reference stimulus
presentation). After presentation of the test stimulus participants were
asked to judge which stimulus was longer, test or last reference stimulus
and they responded by pressing the left or right keys on a keypad.
Maximum response time was 3500ms and trials with no response was
excluded from analysis. A short 500 Hz tone was presented after partic-
ipants pressed the response bottom or after 3500ms from test stimulus
offset (for trials with no response), and next trial was presented 1000ms
after this tone.

The procedure is illustrated in Figure 2. Trials counterbalanced
location of fixation point and stimuli (i.e., in 120 trials the test stimulus
was shown above and in 120 trials it was shown below the middle of the
screen).

2.1.5. Saccade measurement
Saccades were detected by Eyelink-2 system and recorded by a sub-

routine generated by visual Cþþ in two separate computers. The eye
position signals were sent via serial port from the eye tracking computer
(first device) a recording computer (second device). The task was pre-
sented on a different computer (third device) and a trigger was sent via
parallel port to eye movement recording computer (second device) when
the location of fixation point was changed (saccade command). The time
difference between saccade command and eyemovement was considered
as saccade latency. Before the experiment, calibration sessions were
performed for each participant. In each calibration session, five saccade
targets were presented at center, left, right, up, down. The distance be-
tween left/right and center points was 12.5� (25� between left and right
points) and separation between up/down and center was 10� (20� be-
tween up and down points). All participants performed these calibration
sessions until the mean error was less than 1�.

The acceptable saccade latency was between 150ms and 400ms.
Trials with longer or shorter latencies were removed. Since the test
stimulus was always presented during saccade preparation/execution
(perisaccadic interval) and vanished before fixation of the eyes at their
new position (Figure 2-b), the related time distortion effect was consid-
ered to reflect perisaccadic time compression [14] rather than time
expansion or chronostasis which may occur immediately following a
saccade [22].



Figure 2. Behavioral task. a) Experimental design. We asked participants to judge the duration of a novel test stimulus (a horizontal or vertical grid) in comparison
with the most recently presented reference stimulus (a grid with the opposite orientation). Participants fixed at one of the four corners relative to these stimuli. Three
stimulus tasks (saccade, and two fixation controls) were presented in separate blocks, counterbalanced across participants. In each block, a series of 1–3 (randomized)
200ms reference stimuli were presented at centre, followed by the test stimulus (140, 170, 230 or 260ms, randomized) at the same or 90 deg rotated orientation. After
each trial, participants judged whether the test stimulus duration was shorter or longer than the reference stimulus. Participants always began fixating 8.3� diagonally
from one of the four corners of the reference stimulus location. In the Saccade Task, the fixation point shifted up or down to the opposite corner on the same horizontal
side, 100ms before test presentation, eliciting a 25� vertical saccade during display of the test stimulus (and causing the retinal location of the stimuli to shift). The
Fixation Task was performed with fixed gaze and stimuli locations whereas gaze was fixed in the Retina-Matched Fixation Task, but the location of the test stimulus was
shifted to match the retinal locations of the Saccade Task. b) Temporal evaluation and eye position in the Saccade Task. After presentation of the last reference stimulus
(200ms), the location of fixation point was changed. Then, the test stimulus was presented (after 100ms) and eye poison was changed (after saccade latency).
Presentation of the test stimulus (with variable durations) occurred during the perisaccadic interval. c) Separate trials were used to study the time distortion effects of
saccades (S), repetition (R) and both saccades and repetition (SR). Control trials without saccades and repetition were used to calculate individual time performances
(ITPs) (see details in section 2.6.1). Statistical analysis and modeling processes have been performed using this arrangement of trials.
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2.1.6. Statistical analysis
Percentage of incorrect responses for longer and shorter trials were

calculated in each condition. Incorrect responses for longer trials show
underestimation of time while percentage of incorrect responses of
shorter trials exhibit overestimation. We performed permutation t-tests
with 5000 random shuffling for each type of these trials to evaluate the
main effects of tasks and repetition.

The permutation t-test is a nonparametric approach that does not
need statistical assumptions such as normal distribution of samples,
which cannot be correctly tested in studies with small sample sizes [34].
Several studies shown that randomized permutation tests are more
powerful than conventional t- or F-tests to evaluate experimental data,
and can identify smaller effect sizes in such datasets [34, 35, 36] have.
Moreover, a random permutation t-test is more robust and powerful
than a Bonferroni approach to control Type I error [37]. With three
tasks and repetition/no-repetition of reference stimulus combinations,
we had a total of 6 conditions, i.e., Saccade/No-repetition (S-NoRep),
Saccade/Repetition (S-Rep), Fixation/No-repetition (Fix1-NoRep), Fix-
ation/Repetition (Fix1-Rep), and Retina-matched Fixation/No-r-
epetition (Fix2-NoRep), Retina-matched Fixation/Repetition (Fix2-Rep).
4

False discovery rate (FDR) was performed to correct for multiple com-
parison errors. In FDR analysis p-values were corrected to q-values and
q-values of <0.05 were considered to be significant. We also subtracted
repetition effects from tasks to evaluate interactions between them. To
perform this analysis, we compared three pairs: (S-Rep minus S-NoRep)
and (Fix1-Rep minus Fix1-NoRep), (S-Rep minus S-NoRep) and (Fix2-Rep
minus Fix2-NoRep), (Fix1-Rep minus Fix1-NoRep) and (Fix2-Rep minus
Fix2-NoRep). Post hoc analysis, using extra permutation t-tests, were
also performed among different tasks in repetition condition (i.e., S-Rep,
Fix1-Rep, and Fix2-Rep). Statistical analysis was performed in MATLAB
R2019a.

2.2. Experiment 2

2.2.1. Participants
21 volunteers (age between 18 and 44, 12 female) participated in the

second experiment. All participants were different from the first study.
The inclusion/exclusion and ethical criteria were similar to the first
experiment, except the experiment was approved by both affiliated
universities.
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2.2.2. Setup
Stimuli were presented on a 25” LED screen (refresh rate: 144 Hz, full

HD). Similar to the first experiment, participants sat in a dark roomwhile
their distance from the screen was 35cm. Fast eye movements tracking
was performed (in the Saccade and Fixation Tasks) by recording electro-
oculography (EOG) at 2048Hz using Ag/AgCl electrodes (located at both
sides of eyes) and a Biosemi amplifier. The task was programed and run
using Psychtoolbox-3 (version 3.0.16) in MATLAB R2019a. Note that
these data were recorded in conjunction with EEG data that are not
relevant, and therefore not described or included, in the current paper.

2.2.3. Stimuli
Shape and size of stimuli and fixation point were similar to the first

experiment. But in the saccade task fixation point was moved horizon-
tally from x ¼ 0, y ¼ 0 randomly to x ¼ �12.5, y ¼ 0 (rather than
vertically as in the first experiment).

2.2.4. Trials details and experiment design
Participants performed a saccade and a fixation task in two different

sessions (the second session was conducted one week after the first). In
total 720 trials were collected in each task. In this experiment, presen-
tation of stimuli was similar to the first experiment, except timing was
changed. We set the duration of the test stimulus to 70ms and the
duration of the reference to 30, 50, 90, or 110ms. The interstimulus in-
terval was 300ms. After presentation of the test stimulus participants
judged which stimulus was longer, test or last reference stimulus.

2.2.5. Statistical analysis
As in the first experiment, percentage of incorrect responses for

longer/shorter trials were obtained in each condition to evaluate under-
estimation/overestimation of time. Permutation t-testswith 5000 random
shuffling for each type of trials were performed and the main effects of
tasks and repetition were compared. In this experiment, two tasks were
presented, and we had a total of 4 conditions, i.e., Saccade/No-repetition
(S-NoRep), Saccade/Repetition (S-Rep), Fixation/No-repetition (F-
NoRep), and Fixation/Repetition (F-Rep). We performed false discovery
rate (FDR) to correct for multiple comparison errors and corrected p-
values (q-values) less than 0.05 were considered as significant. Further-
more, we subtracted repetition effects from tasks to evaluate interactions
between them comparing two pairs: (S-Rep minus S-NoRep) and (F-Rep
minus F-NoRep). We also performed extra permutation t-tests as post hoc
analysis to compare different tasks in the repetition condition (i.e., S-Rep
and F-Rep). Statistical analysis was performed in MATLAB R2019a.

2.3. Exclusion criteria

The exclusion criteria for rejected trials in both experiments were as
follows: 1) Trials with saccades during standard/test stimuli presentations
during fixation intervals. 2) Saccade trials with late (later than 400ms after
fixation-point movement) or early (earlier than 150ms after fixation-point
movement) saccade execution. 3) Trials with no responses. 4) Trials
where participantswere affected by any unintended external stimulus (e.g.,
extra noises, talking, movement etc.) during the trial presentation. After
analyzing saccade latency, one participant was excluded from the first
experiment and three participants from second experiment) because more
than50%of their trialswere excludedbasedon the criteriadescribedabove.
In the remaining individual participants, the percentage of data excluded
was always less than30%of all trials (first experiment:mean¼ 16.8%, SD¼
8.79%, second experiment: mean 14.5%, SD ¼ 9.3%). Trial rejection was
performed by self-developed subroutines in MATLAB R2019a.
2.4. Models

2.4.1. Preparing data for models
We calculated individual timing performance (ITP) as a person's

ability to perceive time in a given condition relative to their ability in the
5

control conditions (i.e., conditions with the minimum of distortion ef-
fects). To this end, we first obtained the percentage of trials that were
correctly judged by each participant in each condition. The percentage of
correctly judged trials in the conditions with no time distortion effects
(i.e., repetition and saccade) was considered as pure time (tpure). These
trials were obtained from both Fixation Tasks where the reference stim-
ulus was presented without repetition (when there were neither repeti-
tion nor saccade effects on timing judgment) (See Figure 2-c).
Equivalently, the tS; tR; tSR were defined as the percentage of trials that
were correctly judged in the saccade, repetition, and saccade/repetition
conditions, respectively. Next, we calculated the ratio of tS; tR; tSR in
comparison to tpure and the ITP for each condition was defined as:

ITPS;R;SR ¼ tS;R;SR
tPure

(1)

The ITPs were calculated for both types of trials (i.e., trials with
shorter or longer duration of test stimulus in comparison to the duration
of reference stimulus). ITP ¼ 1 shows the duration judgment in presence
of time distortion effects is similar to the duration judgment in the con-
ditions without distortion effects. ITPs >1 signify the time distortion
effects increased accuracy of test stimulus duration judgment, whereas
ITPs <1 signify the distortion effects reduced accuracy to judge to
duration of test stimulus relative to the reference stimulus. ITPs were
calculated for each participant using MATLAB R2018a.

Then, we tested three different models (linear scalar model, linear
vector model and state dependent network model) based on previous
hypotheses about time perception (Figures 1 and 3). In all three models,
the same two inputs ITPR, ITPS, and same output ITPSR were utilized.
Three criteria were selected to test the models. 1) Sensitivity: outputs of
the model should correlate with the actual behavioral data. 2) Specificity:
this model should only work for actual time perception datasets and false
positive model fits should stay low. Thus, correlations with model pre-
dictions should disappear when the data input-output relations are
randomly shuffled. 3) Generality: models should be compatible with
different experimental conditions and various type of time judgments.
These criteria were determined through linear correlation analysis and
calculating root mean square error (RMSE) between output of models
and original/shuffled data.

2.4.2. Description of models
The linear scalar model was implemented based on a wide range of

studies that considered the internal clock and scalar expectancy theory
[3, 38]. In this model, saccade and repetition have been considered as
distortion effects that can accelerate or decelerate the accumulation rate
of pacemakers (clocks). This acceleration/deceleration can be multiplied
to perceive time in absence of distortions (tPure) by applying positive
coefficients to adjust the rate of pacemakers (coefficients are higher than
1 for accurate time estimation and lower than 1 for inaccurate estima-
tion). All the possible coefficients were applied to find the best perfor-
mance of the model. A schematic/mathematic framework of this model
has been presented in Figure 3.

The second model was implemented based on state dependent
network models [6, 7, 8]. To this end, a feedforward artificial neural
network (ANN) with multi layer perceptron structure (two inputs per-
ceptron, one hidden layer with 100 perceptron units in hidden layer and
one output perceptron) was employed. A back-propagation algorithm
was used for ANN training. We used 85% of dataset as training data and
15% of the dataset as test data. To evaluate the effect of different datasets
on efficacy of ANN and to avoid overfitting, we used Bayesian regulari-
zation backpropagation algorithm that is a robust algorithm against
overfitting problem [39, 40, 41]. This algorithm uses the objective
Bayesian rules to stop training before overtraining occurs. This algorithm
uses the probabilistic network weights (based on given dataset) and
trains selected effective and relevant network weights instead of all
weights in a fully connected network. Thus, generalizability of the model
is increased but the probability of overfitting is reduced [40, 42]. We



Figure 3. Three models have been shown schematically and mathematically. The tS; tR; tSR were defined as the percentage of trials that were correctly judged in the
saccade, repetition, and saccade/repetition conditions respectively and ITP was defined based on Eq. (1). In all the models, inputs are the ITP in S and R conditions and
output is ITP in SR condition. a) Scalar model. In the linear scalar timing model, an internal clock generates clock pulses and distortion effects (saccade and repetition)
change the rate of pulses. as two scalar parameters with an accumulative property. Mathematically (right side), in the scalar timing model one can assume that both
time distortions effects (i.e. saccade (ts) and repetition (tR)) can be added (by applying arbitrary coefficients or weights) and this scalar summation is equal to perceived
time when both time distortion effects present (i.e. tSR). Since the ITP is achieved from our experimental results, both sides of equation were divided by tpure (second
line). Then based on Eq. (1), tS,R,SR were replaced by ITPS,R,SR (third line). All mathematical procedures in this approach are linear. b) Neural network model. In the
nonlinear neural network model, time may be generated by state dependent networks. These networks were simulated by feedforward multilayer perceptrons. The
synaptic weights are associated with a prior knowledge and based on these synaptic weights, network generates responses for new situations. Mathematically (right
side), each time distortion effect (ts and tR) multiplies by several synaptic weights between layers and adds to the time in absence of distortion effects (tpure). This
summation is equal to time distortion effects in the saccade and repetition condition (tSR). As in the scalar timing model, both sides were dived by tpure and according to
Eq. (1), tS,R,SR were replaced by ITPS,R,SR. c) Vector model. In the linear vector timing model, time units present as vectors in different angles. The angles may be
defined by information processing, entropy, or speed of neural processing. This model can present a computational framework to explain how time units can be
measured or integrated in the brain. Mathematically (right side), time distortion effects (tS and tR) consider as two vectors and can be added to the vector of pure time
(tpure) via vector subtraction/addition operations. The vector sum is performing by applying the cos of the angles between the vectors and this summation is supposed
to equal to perceived time in saccade and repetition condition (tSR) (the first line). Then, both sides were divided by tpure to replace tR,S with ITPR,S (the second and
third rows).
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consider the results of training and testing by looking at correlation value
(R values) and RMSE between fitted values (by ANN model) and original
values (from behavioral experiment). The mathematical processes of this
modeling method are presented in Figure 3. We used artificial neural
network toolbox in MATLAB 2019b to create the ANN model.

The third model was accomplished based on our previous hypothesis
that state time in the brain has the same properties as physical time,
represented by via vector units [30, 31]. In this model, time distortions
are considered as different vector units to strengthen (dilatate) or destroy
(compress) the vector of perceived time, or these effects can cancel in the
absence of distortion effects ðtPureÞ. This linear vector model was imple-
mented by applying the cosðφ;ψÞ (instead of the acceleration/decelera-
tion weights of perceived time in scalar models). Where φ; and ψ were
the assumed angles between the vectors of time distortion effects (i.e.,
saccade and repetition, respectively) and the veridical vector of time in
the absence of time distortion effects. This model follows a linear formula
where two distortion effects are linearly added to tPure. All the possible
angles were tested, and the performance of model was obtained for these
6

various angles. Figure 3 depicts this model mathematically and sche-
matically. All the models have been generated by MATALB 2019b.

3. Results

3.1. Behavioral results

3.1.1. Experiment 1
Ten participants performed this experiment, in counterbalanced

blocks corresponding to three tasks (Figure 2-a). In the main Saccade
Task, stereotypical latency was (268.4 � 35.5ms). Comparisons were
performed among 6 conditions, i.e., Saccade/No-repetition (S-NoRep),
Saccade/Repetition (S-Rep), Fixation/No-repetition (Fix1-NoRep), Fixa-
tion/Repetition (Fix1-Rep), and Retina-matched Fixation/No-repetition
(Fix2-NoRep), Retina-matched Fixation/Repetition (Fix2-Rep). Further-
more, interaction of repetition and task was evaluated.

To help distinguish the effects of saccades (time underestimation) and
repetition (overestimation) we divided the data into incorrect response

mailto:Image of Figure 3|tif
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for shorter versus longer trials. Figure 4-a shows the percentage of
incorrect responses for shorter trials (overestimation) in different con-
ditions (individual responses were presented by color dots and distri-
butions of responses were presented by violin plots). FDR revealed
significant differences between repetition and no-repetition conditions in
all tasks: Fix1-NoRep vs. Fix1-Rep (t¼ -3.55, q¼ 0.0075), Fix2-NoRep vs.
Fix2-Rep (t ¼ -3.79, q ¼ 0.0053), S-NoRep vs. S-Rep (t ¼ -3.14, q ¼
0.013). This result suggests that stimulus repetition causes over-
estimation of time either in the fixation or saccade task. Overestimation
of time after a repeated series of stimuli in the fixation task would agree
Figure 4. Statistical results of the first experiment, showing significant results betwee
were presented by ‘violin plot’ fits (where the horizontal axis shows different cond
Individual responses were presented by color dots (responses of each participant can
One-star (*) indicates (q < 0.05), two-stars (**) indicates (q < 0.01), and three-star
versus longer trials: a) Percentage of incorrect responses for shorter trials (overestim
Fix1Rep (t ¼ -3.55, q ¼ 0.0075), Fix2-NoRep vs. Fix2Rep (t ¼ -3.79, q ¼ 0.0053), S-
longer trials (underestimation of time). Significant differences were observed betwee
Fix2-NoRep vs. Fix2-Rep (t ¼ 4.62, q ¼ 0.002), S-NoRep vs. S-Rep (t ¼ 11.23, q < 0.
NoRep (t ¼ -7.49, q < 0.001).
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with our hypothesis and previous studies [20, 24]. However, it is not
known if pre-saccadic stimulus repetition causes overestimation of time.
No significant interaction was observed between repetition effect and
tasks.

Incorrect responses for longer trials (underestimation) are presented
in Figure 4-b. In this figure individual responses were presented by color
dots and distribution of responses were presented by violin plots. FDR
revealed significant decreased underestimation in repetition conditions
in comparison to no-repetition conditions in all tasks: Fix1-NoRep vs.
Fix1-Rep (t ¼ 4.95, q ¼ 0.001), Fix2-NoRep vs. Fix2-Rep (t ¼ 4.62, q ¼
n different tasks and presentations of test stimulus. The distributions of responses
itions, and the vertical axis shows % overestimated or underestimated trials).
be tracked by a specific color and a specific vertical location in each condition).
s (***) shows (q < 0.001). Data are divided into incorrect responses for shorter
ation of time). Significant differences were observed between: Fix1-NoRep vs.

NoRep vs. S-Rep (t ¼ -3.14, q ¼ 0.013). b) Percentage of incorrect responses for
n 1) repetition vs. no-repetition: Fix1-NoRep vs. Fix1-Rep (t ¼ 4.95, q ¼ 0.001),
001), and tasks: S-NoRep vs. Fix1-NoRep (t ¼ -3.63, q ¼ 0.007), S-NoRep vs. F2-
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0.002), S-NoRep vs. S-Rep (t ¼ 11.23, q < 0.001). Comparisons between
tasks revealed significant time underestimation in the saccade condition
(in comparison to both fixation conditions): S-NoRep vs. Fix1-NoRep (t¼
-3.63, q ¼ 0.007), S-NoRep vs. F2-NoRep (t ¼ -7.49, q < 0.001). This
result shows the well-known saccadic time compression effect [14, 15]
supersedes the stimulus repetition effect. No significant differences were
observed between two eye-fixed conditions. Furthermore, we observed
significant interactions between repetition effects and tasks (S-Repminus
S-NoRep) vs. (Fix1-Rep minus Fix1-NoRep) (t ¼ -3.12, q ¼ 0.014) and
(S-Rep minus S-NoRep) vs. (Fix2-Rep minus Fix2-NoRep) (t ¼ -5.06, q <

0.001). Post hoc analysis revealed that there is no significant difference
between S-Rep, Fix1-Rep, Fix2-Rep conditions. It suggests that repetition
cancels the underestimation effect of saccades.

These results show that overestimation of time was always present
after repetition of the reference stimulus, and that this effect superseded
the time compression effect in the presence of a saccade. The underes-
timation of time for individual participants was always observed in the
saccade-norepetition condition whereas when the reference stimulus was
repeated no significant underestimation was observed in the saccade
task.

3.1.2. Experiment 2
21 participants performed this experiment. This experiment was

similar to the first experiment, except two tasks (fixation and saccade)
(instead of three tasks) were performed by participants and timing was
different (duration of test was 70ms and reference stimulus duration was
one of the variable durations: 30, 50, 90, 110ms). In the Saccade Task,
latency of saccade was 263.7 � 41.4ms.

In general, the results of this experiment confirmed the results of first
experiment. Figure 5-a presents the percentage of incorrect responses for
shorter trials (overestimation of time) in different conditions (individual
responses were presented by color dots and distributions of responses
were presented by violin plots). The FDR analysis revealed that repetition
significantly increased incorrect responses in both tasks that means pre-
stimulus repetition cause to overestimation of time either in fixation or
saccade tasks: F-NoRep vs. F-Rep (t ¼ -12.40, q < 0.001), S-NoRep vs. S-
Rep (t (17) ¼ 10.71, q < 0.001). No significant difference was observed
between fixation and saccade tasks. Overall, the percentage of over-
estimated trials (shorter trials that estimated longer) in F-NoRep, and S-
NoRep conditions was around 20%. The percentage of overestimation in
NoRep trials was lower in the saccade condition (19.6%) than the Fixa-
tion condition (25.1%), consistent with saccade time compression, but
did not reach significance (q ¼ 0.06), likely because there is no time
distortion effect to expand perceived time in fixation trials and then
percentage of overestimated F-NoRep trials remains low. Moreover, the
size of the data subset and variance between individuals are also
involved. Furthermore, interaction between repetition effect and tasks
was not significant. These results consistent with first experiment.

Figure 5-b shows incorrect responses for longer trials (underestima-
tion of time). In this figure, individual responses were identified by color
dots and distribution of responses were presented by violin plots. FDR
revealed significant time underestimation in the saccade/no-repetition
condition in comparison to fixation/no-repetition condition: tasks: S-
NoRep vs. F-NoRep (t ¼ -4.57, q < 0.001). Significant differences were
also observed between repetition and no-repetition conditions in both
tasks: F-NoRep vs. F-Rep (t ¼ 6.93, q < 0.001), S-NoRep vs. S-Rep (t ¼
10.02, q < 0.001). Significant interaction was observed for repetition
effect and task (t ¼ 2.56, q ¼ 0.021). Post hoc analysis showed that there
is no significant difference between SR and FR conditions. This later
result suggests that repetition cancels the underestimation of time in
saccade condition. These results agree with results of first experiment.

Consistently, this experiment showed that repetition of a stimulus
before the test stimulus led to overestimation of perceived duration for
test stimulus. Also, saccade compressed the perceived duration of test
stimulus that was presented 100ms before saccadic eye movement. Like
the first experiment, results of the second experiment confirm that this
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saccadic time compression is canceled when a repeated series of stimuli is
presented before the saccade.

3.2. Modeling results

In the second part of this study, we defined individual timing per-
formance (ITP) by comparing the individual time judgments in trials with
time distortion effects (i.e., repetitions and saccade) and trials without
distortion effects. We integrated behavioral results from both experi-
ments and used the calculated ITPs (for both experiments and longer or
shorter trials) to test between the models shown in Figure 1. To test the
ability of each model to explain our observed Saccade-Repetition (SR)
interactions, the Saccade-NoRepetition condition (S), and Fixation-
Repetition condition (FR) were used as inputs to the model and the
outputs were responses in the Saccade-Repetition condition (SR), i.e.,
each model was required to integrate the separate saccade and repetition
effects in order to reproduce the combined effect. Each model was
trained or optimized to best fit the actual output data. Figure 6 illustrates
the goodness of fit of each model against the data as scatter plots (model
output as a function of actual Saccade-Repetition data), and beneath
these, the corresponding residuals of fit (i.e., Euclidean distances be-
tween outputs of models and the data). The inputs are derived from ITPR
and ITPS in two experiments and output for this set was ITPSR. In the first
experiment, since we had two fixation conditions, ITPS and ITPR were
calculated for fixation/saccade, and retina-fixed/saccade condition com-
binations. This ITP set were separately calculated for longer and shorter
trials. Then, in this experiment, four ITP set (fixation/saccade-longer tri-
als, fixation/saccade-shorter trials, retina-fixed/saccade-longer trials, and
retina-fixed/saccade-shorter trials) were obtained for each participant (for
all nine participants we had totally 4 � 9 ¼ 36 ITPs). For the second
experiment, ITP set of 18 participants were calculated for fixation/
saccade trial combination. For each participant two ITP set were obtained
according to their responses for longer and shorter trials. Then, total
number of ITPs were 2 � 18 ¼ 36 in this experiment.

According to the third criterion, a good model should be valid against
different task conditions (e.g., different durations), then we integrated all
ITPs from two experiments and both longer and shorter trials. Totally 72
ITP sets were used as input/output samples for models. Figure 6-a shows
fits made to the original data whereas the part (b) shows fits made to
shuffled data (see methods) as a control. To quantify the goodness of fit
for each model, we performed regression analysis (Table 2) that
accounted for the different combinations of input used for testing and
participant number as factors and took the Root Mean Square Error
(RMSE) of the residuals. The best model should show good fits that are
specific, i.e., high correlations and low residuals, and only to the original
data, not the shuffle control for all samples (regardless of experiment or
type of trials).

After Bonferroni correction, all three models showed significant
correlations between fitted outputs and original data. High correlation
values (R-values>0.7) were obtained using the vector and ANN models.
The scalar model showed moderate correlation (R-value ¼ 0.64). The
highest accuracy (largest R-value and smallest RMSE) was achieved using
linear vector model (Table 2). This showed that the vector and ANN
models are reliable models to describe both distortion effects in different
condition. But the scalar model is in moderate range of sensitivity.
Figure 6-a showed that scalar model was particularly reliable only in one
experiment.

As shown in Figure 6-b and Table 2, when we tested three models
against random-shuffled data to examine specificity of models, two
models (the scalar and vector models) showed nonsignificant correla-
tions between fitted outputs and random-shuffled outputs. However,
ANN exhibited significant moderate correlation (R ¼ 0.57). This suggest
that the scalar and vector models are specific models for time perception,
but ANN is not a specific model.

In summary, the performance of scalar model was in moderate range,
the neural network model performed better but was not specific to the



Figure 5. Statistical results of the second experiment, showing significant results between different tasks and presentations of test stimulus. The distributions of
responses were presented by ‘violin plot’ fits (where the horizontal axis shows different conditions, and the vertical axis shows % overestimated or underestimated
trials). Individual responses were presented by color dots (responses of each participant can be tracked by a specific color and a specific vertical location in each
condition). One-star (*) indicates (q < 0.05), two-stars (**) indicates (q < 0.01), and three-stars (***) shows (q < 0.001). Data are divided into incorrect responses for
shorter versus longer trials: a) Percentage of incorrect responses for shorter trials (overestimation of time). Significant differences were observed for repetition effect:
F-NoRep vs. F-Rep (t ¼ -12.40, q < 0.001), S-NoRep vs. S-Rep (t (17) ¼ 10.71, q < 0.001). b) Percentage of incorrect responses for longer trials (underestimation of
time). Significant differences were observed between 1) repetition vs. no-repetition: F-NoRep vs. F-Rep (t ¼ 6.93, q < 0.001), S-NoRep vs. S-Rep (t ¼ 10.02, q <

0.001), and tasks: S-NoRep vs. F-NoRep (t ¼ -4.57, q < 0.001)].
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actual dataset, whereas the linear vector model fit both of our criteria: it
performed well and was specific to the original unshuffled datasets for
both experiments.

4. Discussion

In this study, we asked how two separate time distortion effects
(repetition time dilation and perisaccadic time compression) interact, and
9

which time perceptionmodel can best explain the derived results. Overall,
the behavioral results confirm previous findings on perisaccadic time
compression [14, 43] and relative effect of time dilation after a series of
repetitive stimuli [20, 21, 24] but expand on this by showing how they
interact. Results showed the relative time dilation induced by repetition of
a reference stimulus before test stimulus neutralized the presence of an
intervening saccade (i.e., the interactive effect of perisaccadic time
compression and repetition time dilation is similar to single effect of

mailto:Image of Figure 5|tif


Figure 6. The correlations and residuals (Euclidean differences between output of models and behavioural results) showing goodness of fit for each model, where high
correlation and low residuals signify good fit and higher residuals and lower correlation signify relatively poor fits. (a): correlation and residuals for fits to actual data.
The residuals are sorted according to the experiments and trials: longer trials in second experiment (1–18; gray shadow), shorter trials in second experiment (re-
siduals19 to 36; blue shadow), longer trials in first experiment (residuals 37 to 54; red shadow), shorter trials in first experiment (residuals 55 to 72; grey shadow). (b):
residuals between output of models and random shuffled patterns (across participants and states) of behavioural results (outputs were assigned to irrelevant inputs (see
Methods for details). The colors are similar as the part (a). The Scalar Model (left column) yields moderate fits for original data, the Neural Network Model (centre
column) yields good fits, but for both the original and shuffled data, whereas the Vector Model (right column) yields the best fits (i.e., lowest residuals and high
correlation) and only for the original data.
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repetition time dilation alone). To model this interaction, the resulting
data were used as inputs/outputs for models of time perception (scalar
clock, non-linear artificial neural network, linear vector). The linear
10
vector model performed best, both in terms of specificity and ability to fit
the data. Here, we will consider the experimental results in more detail,
and discuss their implications for broader time perception theories.
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Table 2. The performance of different models to predict the behavioural results in four different i.e., condition 1) one repetition in Fixation Task � Saccade Task,
condition 2) two repetitions in Fixation Task � Saccade Task, condition 3) one repetition in Retina-Matched Fixation Task � Saccade Task, and condition 4) two
repetitions in Retina-Matched Fixation Task� Saccade Task. The R2 and p-value were obtained from themultiple linear regression analysis. RMSEwas calculated based on
the Euclidean distance between output of the models and behavioral data.

Dataset Scalar model Vector model ANN model

Original data R ¼ 0.64, p-value<0.01 RMSE ¼ 0.56 R ¼ 0.86, p-value<0.01 RMSE ¼ 0.32 R ¼ 0.78, p-value<0.01 RMSE: 0.49

Random shuffled data R ¼ -0.13, p-value ¼ 0.26 RMSE: 0.93 R ¼ 0.15, P-value ¼ 0.22 RMSE ¼ 0.61 R ¼ 0.57, p-value<0.01 RMSE: 0.54
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In agreement with previous investigations [12, 14, 15, 43], our results
showed that saccades compress the subjective perception of the duration
of a briefly presented visual stimulus. Whereas previous investigations
used empty temporal intervals (i.e. the interval between presentation of
two stimuli [14] has been judged instead of duration of one presented
stimulus), we presented the test stimulus during perisaccadic interval and
participants judged the duration of the stimuli themselves. This demon-
strates that, notwithstanding the presence of different mechanisms for
time perception of brief empty or filled intervals [44], saccadic time
compression occurs in both cases. On the other hand, our results support
previous studies [13, 20, 21, 24] that found the relative duration of a
novel stimulus after a series of repeated stimuli is perceived to be longer
than the last repeated stimulus (in the repetitive series) with the same
objective duration.

In the Retina-Matched Fixation Task (first experiment), the test stim-
ulus was presented in a different spatial location (but same retinal
location) relative to the repeated reference stimulus. Thus, in this task,
the test stimulus shows two types of novelty compared to the reference
stimuli: different location and different orientation. However, in this
condition time dilation was not significantly different from that in our
Fixation Task (where the test stimulus was presented in the same objec-
tive and retinal location as the reference stimulus). This suggests that
objective spatial location did not have a strong effect on perceived time.
This might be because the new location of our test stimulus was always
predictable, and one could predict that the test stimulus would be pre-
sented in another possible location that was different from the location of
reference stimulus. Whereas the randomized number of repetitions was
not predictable in all tasks.

Various, often disconnected explanations have been provided for
these phenomena. Saccadic remapping [14, 45], transient responses in
visual cortex [23], saccadic suppression [16, 27, 45, 46] and attention
[16] have been assumed to be associated with perisaccadic time
compression, whereas time dilation of a novel stimulus (after a series of
repeated stimuli) has been explained by attention [24] and repetition
suppression mechanisms [13, 27]. The latter two explanations (neural
suppression and attention) are common to both phenomena (saccadic
time compression and time dilation after a series of repeated stimuli) but
the other proposed mechanisms for saccadic suppression can not explain
time dilation for the novel stimulus following a repeated stimulus.
Therefore, when considering how these phenomena might interact, we
will focus on attention and neural suppression.

We will first consider the joint effects of attention on time distortions
induced by saccade and repetition [16, 24], because this can be directly
related to the internal time clock model simulated above. In the internal
clock model, attention is considered as a switch between the pacemaker
and accumulator [3, 5, 47] (Figure 1-a). Higher levels of attention allo-
cation can turn on this switch, thus causing the accumulator to collect
more timing pulses and overestimate time [24, 47]. Alternatively, a
recent saccade/time perception study suggested the decreased atten-
tional allocation to the stimulus leads to decreased time pulse accumu-
lation in the internal clock, thus resulting in perisaccadic time
compression [16].

Based on this model, subjective time is a scalar parameter [3] that has
accumulative property. This model thus predicts that a scalar combina-
tion of saccade and repetition trials should correlate with
saccade-repetition trials (Figure 1-a and Figure 3). However, this did not
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clearly occur in our results: instead, repetition obliterated the saccades
effect. Thus, when these data were used to simulate the internal clock
model, moderate correlations resulted.

The idea that suppression of brain activity can compress time
perception was originally presented by Eagleman and Pariyadath as an
energy model in time perception [12, 19, 20, 21, 27]. The basic idea is that
just before and during saccade execution (the perisaccadic interval)
certain brain areas show reduced activity [45, 48, 49, 50], and thus en-
ergy expenditure [12, 13, 27]. Since stimulus novelty (especially after a
repeated stimulus) can increase neural activity/energy expenditure, it
can (according to this theory) also dilate perceived time [13, 27] (see
supplementary igure 1). A limitation of this model is that the causal link
from energy metabolism to information processing is indirect, at best.
However, taking this theory at face value, when both effects (repetition
and saccade) occur simultaneously, the level of energy spent in the brain
will be decreased by one factor (the saccade) and increased by other
(novelty after repetition). Again, this can be represented mathematically
as a combination of two energies (two coefficients) that are spent in
different brain regions. Based on this assumption, behaviorally, we
expect that one effect would cancel or weaken another effect. The cor-
relation between outputs of the scalar model and empirical data was
significant but R-value remained in the moderate range. Thus, in this
case, scalar models of time perception (e.g., internal clock, and energy
models) were partially able to describe the joint time distortion effect of
repetition and saccades.

Since the scalar timing models showed results with moderate accu-
racy to justify the joint time distortion effects of saccade and repetition, a
SDNs model was employed as an alternative method. This model explains
state-dependent computations in neural network level presents subjec-
tive time [7, 8, 51, 52, 53]. Previous SDNs modeling studies have showed
that artificial neural networks can simulate the behavioural responses in
different timing conditions such as rhythm perception [8] and can
encode time-varying sensory and motor patterns [54]. This approach is
similar to other artificial neural network studies that try to model a
connectivity structure between incoming visual/auditory stimuli and
behavioural responses. By this way, non-temporal perceptual classifica-
tion approaches (e.g. feedforward neural networks) that are usually
working based on Hebbian law, can be used to classify and predict sub-
jective time [29]. Consistent with the above studies, our, artificial neural
network was able to fit the data in our study. However, such a network
can fit almost anything, including a random shuffle of our data, i.e., it
may have succeeded through overfitting. Thus, while this model was able
to retroactively predict our data, the prediction was not specific.

A common element between scalar timing and SDN models is that
they do not explicitly consider the concept of time in modern physics
(time in Minkowski space). Objective time in these models is supposed to
be the sequence of events, leading to subjective time perception. There is
an interesting similarity between internal clock model and Newtonian
absolute time, because both frameworks assumed an absolute generator
that can create passage of time (Table 1). On the other hand, the SDN
models assume moments can be coded via a nontemporal classification
network and a Hebbian law is involved in learning and recognition of
temporal patterns. However, based on modern physics theories each
observer measures time as an intrinsic property from the environment,
and this property can be changed based on information (entropy) and
speed of both the environment and observer [32, 55]. If we consider the
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brain as a physical observer, the same timing parameters should be hold
in the brain and in the physical universe (Table 1). As time is charac-
terized as a vector in Minkowski space, we used this concept in our last
modeling approach. This vector model was originally suggested for time
perception in long durations [30] but it can be proposed as a general time
perception model for all intervals [31].

These time vectors can be defined by entropy and speeds in a physical
system. In physiological terms, entropy can be conceptualized through
different hypothesis. For example, order/disorder of states in dynamical
functional connectivity patterns can change information entropy in
functional brain networks and this alteration may compress or dilate
perceived time [30]. From a thermodynamical perspective, fluctuation of
brain tissue temperature (as a thermodynamical system that exchanges
heat with its surrounding) changes brain entropy and likewise may alter
perceived time [31].

Our modeling results show that the vector model [30, 31] exhibited
both sensitive and specific simulations of joint saccadic and repetition
time distortion effects, i.e. in this model separate saccade and repetition
result inputs predicted the combination of both effects. Furthermore, this
model presented accurate results for both experiment (regardless of
duration of intervals and type of trials). By representing perceptual ef-
fects as vectors and predicting the angles between these (Figure 3), this
model was able to predict their interactions accurately and specifically.
Conversely, in this model different time distortion effects can be
considered as vectors in different directions that are added/subtracted
to/from the original time vector (A detailed mathematical description of
the specific vector interactions in our model can be found in Supple-
mentary Discussion).

Overall, the results of vector timing model confirmed our hypothesis
that subjective time has deep similarities to physical time and satisfied
the first postulate of the special relativity theory [55]. In this model,
more information than magnitude (that is considered in scalar models) is
thought to be required to model dilation and compression of subjective
time. Then, subjective time is characterized by vector units of time with
two properties: magnitude and direction. When two time distortion ef-
fects are simultaneously interfered subjective time, two vectors with
different magnitudes and directions are added to subjective time. Pre-
sumably, this information theory model is instantiated at the level of
neural networks and cellular signals, but at this time the biological
mechanism is unknown.

In conclusion,we showhere that global theories of timeperception can
be used to predict interactions between seemingly disparate experimental
phenomena and conversely, those such interactions can help test between
global theories. In particular, this study is the first to show the interaction
between saccadic time suppression and repetition time dilation, and that
this interaction follows the specific predictions of the vectormodel of time
perception. In terms of broader implication, this is the first empirical-
theoretical investigation that directly shows subjective time can be rep-
resented by the same time parameter as that used in physics.
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