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Purpose: The molecular mechanism underlying the carcinogenesis and development of
lung squamous cell carcinoma (LUSC) has not been sufficiently elucidated. This analysis
was performed to find pivotal genes and explore their prognostic roles in LUSC.

Methods: A microarray dataset from GEO (GSE19188) and a TCGA-LUSC dataset were
used to identify differentially co-expressed genes through Weighted Gene Co-expression
Network Analysis (WGCNA) and differential gene expression analysis. We conducted
functional enrichment analyses of differentially co-expressed genes and established a
protein-protein interaction (PPI) network. Then, we identified the top 10 hub genes using
the Maximal Clique Centrality (MCC) algorithm. We performed overall survival (OS) analysis of
these hub genes among LUSC cases. GSEA analyses of survival-related hub genes were
conducted. Ultimately, the GEO and The Human Protein Atlas (THPA) databases and
immunohistochemistry (IHC) results from the real world were used to verify our findings.

Results: A list of 576 differentially co-expressed genes were selected. Functional
enrichment analysis indicated that regulation of vasculature development, cell−cell
junctions, actin binding and PPAR signaling pathways were mainly enriched. The top
10 hub genes were selected according to the ranking of MCC scores, and 5 genes were
closely correlated with OS of LUSC. Additionally, GSEA analysis showed that spliceosome
and cell adhesion molecules were associated with the expression of GNG11 and ADCY4,
respectively. The GSE30219 and THPA databases and IHC results from the real world
indicated that although GNG11 was not detected, ADCY4 was obviously downregulated
in LUSC tissues at the mRNA and protein levels.
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Conclusions: This analysis showed that survival-related hub genes are highly correlated
to the tumorigenesis and development of LUSC. Additionally, ADCY4 is a candidate
therapeutic and prognostic biomarker of LUSC.
Keywords: lung squamous cell carcinoma, differential gene expression analysis, weighted gene co-expression
network analysis, protein-protein interaction network, immunohistochemistry, survival analysis
INTRODUCTION

Lung carcinoma is a common cancer, with nearly 228820 cancer
patients and 135720 deaths in 2020, which places an enormous
burden on patients and their families (1). Non-small cell lung
cancer (NSCLC) accounts for approximately 85% of all cases of
lung carcinoma, and the most common pathological pattern of
NSCLC is lung adenocarcinoma (LUAD), followed by lung
squamous cell carcinoma (LUSC) (2). In recent years, many
studies have suggested that some molecular abnormalities are
associated with cell proliferation, invasion and poor survival of
LUSC (3). Compared to the strategies for LUSC, strategies for the
early diagnosis and therapy of LUSC remain highly limited (4).
Therefore, it is essential to find important biomarkers for the
occurrence and adverse progression of LUSC, which will greatly
accelerate the development of useful therapeutic strategies.

With the speedy development of genomic technology,
researchers have analyzed gene expression profiles using
bioinformatics approaches to explore the underlying molecular
mechanisms of tumors and detect cancer-specific biomarkers (5).
Weighed Gene Co-expression Network Analysis (WGCNA) is
an important algorithm to understand gene co-expression
networks and gene functions (6). Using WGCNA, we can
detect the modules of closely correlated genes related to the
traits of samples, which will provide insights to predict probable
functions of co-expression genes (7). In addition, differential
gene expression analysis is usually applied for the analysis of
transcriptomics datasets, which is beneficial to explore
underlying biological and molecular mechanisms of cancers
and detect quantitative differences between the gene expression
levels of intervention and control cohorts (8).

To achieve a higher capability to discriminate closely related
genes, we used the two approaches mentioned above in our
analysis. First, gene expression profiles of LUSC were obtained
from Gene Expression Omnibus (GEO) and The Cancer
Genome Atlas database (TCGA). Second, we used WGCNA
and differential gene expression analysis to identify common
cancer; LUAD, lung adenocarcinoma;
CNA, Weighed Gene Co-expression
ressed genes; GEO, Gene Expression
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differentially co-expressed genes. Next, functional enrichment
analysis, protein-protein interaction (PPI) analysis and overall
survival (OS) analysis were carried out to detect candidate
indicators related to the carcinogenesis and adverse invasion of
LUSC. Then, gene set enrichment analysis (GSEA) of survival-
related hub genes was conducted using the TCGA-LUSC dataset.
Finally, we validated the mRNA and protein expression levels of
OS-related hub genes through GEO, The Human Protein Atlas
(THPA) and immunohistochemistry (IHC) results from the
real world.
MATERIALS AND METHODS

Figure 1 shows the specific steps including dataset download,
hub gene identification and external verification of LUSC. Each
procedure will be described in the following sub-sections.

Dataset Download
Gene expression profiles of LUSC were acquired from the GEO
and TCGA databases. First, GSE19188 was obtained from GEO
for further analysis, containing 27 LUSC and 65 normal lung
tissues. GSE19188 is based on [HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array. Using the annotation file
provided by the manufacturer, probes were switched to
corresponding gene symbols, probes without gene symbols
were deleted, and several probes of the same gene were
averaged. In total, we obtained 21655 genes for subsequent
analysis. Second, we downloaded the gene expression dataset
and clinical information of LUSC from TCGA database. We
acquired 551 samples from TCGA (Table S1), including 502
LUSC and 49 normal lung tissues, as well as RNA-Seq fragments
per kilobase per million (FPKM) data of 19645 genes.
Furthermore, we transformed FPKM format to transcript per
million (TPM) format for our subsequent analysis. Based on the
Illumina HiSeq 2000 platform, all data were generated and
annotated to a reference transcript set: Human hg38 gene
standard track. The edgeR package tutorial suggests that genes
with low-read counts commonly play insignificant roles in
subsequent analysis (9). Thus, we removed genes with TPM<1
from our analysis, and we acquired 15153 genes for the
following analysis.

Selection of Important Co-Expression
Modules Using WGCNA
The gene co-expression networks of GSE19188 and TCGA-
LUSC dataset were built through the WGCNA package (6).
WGCNA can find closely related genes and aggregate these
June 2021 | Volume 11 | Article 637733
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genes into the same co-expression module correlated with
clinical traits. To establish a scale-free network, we used soft
powers b=11 (Figures 2A, B) and 5 (Figures 3A, B) for the
GSE19188 and TCGA-LUSC datasets. Next, we created an
adjacency matrix with the following formula: aij = |Sij|b (aij:
adjacency matrix between gene i and gene j, Sij: similarity matrix
that is done by Pearson correlation of all gene pairs, b: soft power
value), and we converted this matrix to a topological overlap
matrix (TOM) and its corresponding dissimilarity (1-TOM). The
hierarchical clustering dendrogram of the 1-TOM matrix was
established to aggregate genes with similar expressions into one
co-expression module. Afterward, we explored the module-trait
relations between modules and external traits to find functional
modules in this co-expression network. The module with the
highest correlation coefficient is believed to be the candidate
module that is closely correlated with clinical traits, and we used
this module for our subsequent analysis.

Identification of Differentially
Co-Expressed Genes
The limma package is usually adopted to conduct differential
gene expression analysis of microarray and RNA-Seq datasets
(10). The limma package was used for the differential expression
analysis of the GSE19188 and TCGA-LUSC datasets to obtain
Frontiers in Oncology | www.frontiersin.org 3
differentially expressed genes (DEGs) between LUSC and normal
lung tissues. To decrease the false discovery rate (FDR), we
adjusted the P-value through the Benjamini–Hochberg method.
The selection criteria for DEGs were |logFC|≥1 and adj.P <0.05.
Subsequently, to improve the capability to discriminate closely
related genes, the intersections between the two lists of DEGs and
the two lists of co-expression genes from the two co-expression
networks were taken as common genes, and these common genes
were applied to find potential prognostic indicators of LUSC.

Functional Enrichment Analysis of
Differentially Co-Expressed Genes
Functional enrichment analysis includes two components,
namely, gene ontology (GO) as well as Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analyses. To analyze their
biological functions, we performed GO and KEGG pathway
analyses of differentially co-expressed genes using the
clusterProfiler (11) and GOplot packages. GO is a notable
bioinformatics tool applied to annotate genes and explore their
biological processes (12). GO enrichment analysis includes
biological processes (BP), cellular component (CC) as well as
molecular function (MF). KEGG is helpful to understand high-
level functions and biological systems from large-scale molecular
datasets (13). P<0.05 is regarded as significantly different.
FIGURE 1 | Study design and workflow of our study.
June 2021 | Volume 11 | Article 637733
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FIGURE 2 | Identification of modules correlated with the clinical traits in GSE19188. (A) Sample dendrogram and trait heatmap. (B) Scale independence and Mean
connectivity. (C) The Cluster dendrogram of co-expression network modules is ordered by a hierarchical clustering of genes based on the 1-TOM matrix. Different
colors represent different modules. (D) Module-trait relationships. Each row represents a color module and every column represents a clinical trait (normal and
tumor). Each cell contains the corresponding correlation and P-value.
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FIGURE 3 | Identification of modules correlated with the clinical traits in TCGA-LUSC dataset. (A) Sample dendrogram and trait heatmap. (B) Scale independence
and Mean connectivity. (C) The Cluster dendrogram of co-expression network modules is ordered by a hierarchical clustering of genes based on the 1-TOM matrix.
Different colors represent different modules. (D) Module-trait relationships. Each row represents a color module and every column represents a clinical trait (normal
and tumor). Each cell contains the corresponding correlation and P-value.
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PPI Network Construction and Hub
Gene Selection
The PPI network of differentially co-expressed genes was
established through the Search Tool for the Retrieval of
Interacting Genes (STRING) database (14). Cytoscape was
applied to establish a visual network of molecular interactions
with the combined score>0.6 (15). The plugin Molecular
Complex Detection (MCODE) was applied to detect highly
correlated modules from PPI networks (16). The most
significant gene module from the PPI network was visualized
and shown using the MCODE plug-in. The criteria for filtering
were: MCODE score >5, node score cut-off =0.2, degree cut-off
=2, k-score =2 as well as Max depth =100. Furthermore, the
Maximal Clique Centrality (MCC) algorithm is one of the most
useful approaches to select hub nodes from PPI networks (17).
The MCC values of all genes in the PPI network were calculated
through the CytoHubba plugin. We considered the top 10 genes
with the highest MCC scores as hub genes. Also, we visualized
these hub genes via the CytoHubba plugin.

Overall Survival of Hub Genes
To explore the prognostic roles of the top ten hub genes, we
conducted Kaplan–Meier univariate survival analysis through
the survival package based on the TCGA-LUSC dataset. LUSC
cases without completed follow-up information (n=6) were
excluded from the survival analysis, and then other patients
from the TCGA-LUSC dataset were classified into two cohorts
according to the median expression levels of hub genes. Log-rank
p<0.05 is considered statistically significant.
GSEA Analysis of Survival-Related
Hub Genes
As an important computing method, GSEA recognizes if a
previously defined gene set is statistically significant and
concordantly different between two biological states (18). LUSC
samples were stratified into two cohorts according to the median
expression values of survival-related hub genes. Next, we analyzed
the effects of their expression on some gene sets to obtain related
KEGG pathways through the molecular signatures database
(MSigDB) (c2.cp.kegg.all.v7.1.symbols.gmt) (19). The permutation
of every analysis was repeated 1000 times. |Normalized enrichment
score (NES)|> 1, nominal (NOM) p-value<0.05 and FDR q-value
<0.25 were regarded as significantly different.

External Validation of the GEO and
THPA Databases
To increase the reliability of our analysis, the GEO and THPA
databases were used to verify the expression levels of survival-
related hub genes between LUSC and normal lung tissues. We
explored the mRNA expression levels of these hub genes between
LUSC and non-malignant adjacent tissues using GSE30219 from
GEO. Furthermore, we explored the protein expression patterns
of these hub genes between LUSC and non-malignant adjacent
tissues using IHC from the THPA database (20).
Frontiers in Oncology | www.frontiersin.org 6
Immunohistochemistry Based on the
Real World
To improve the reliability of our findings, LUSC and normal lung
tissue samples were acquired from the Huzhou Central Hospital
(Zhejiang, China). We performed IHC staining on tissue slices
from paraffin-embedded tissues, which was approved by Medical
Ethics Committee of Huzhou Central Hospital. We mounted tissue
slices on glass microscope slides, deparaffinized with dimethyl
benzene, and rehydrated using graded ethanol. Then, we carried
out antigen retrieval at a high temperature in a water bath.
Subsequently, we cooled, rinsed, and quenched the endogenous
peroxidases of slides with 3% hydrogen peroxide. Afterward, slides
were incubated with 5% BSA for 45min at room temperature, and
the slides were incubated overnight with anti-ADCY4 and anti-
GNG11 antibodies (dilutions: 1:150 and 1:350, respectively; Sigma,
USA). We washed and incubated these slides with secondary
antibody for one hour. The protein expression of ADCY4 and
GNG11 was evaluated semiquantitatively according to total scores
of the area of positive-stained cells and staining intensity. The area of
positive-stained cells was scored as 0 = 0~10%, 1 = 10% to 25%, 2 =
25% to 50%, 3 = 50% to 75% and 4 = 75% to 100%, while the staining
intensity was scored as: 0=negative, 1=weakly, 2=moderately,
3=strongly. Independent scores were estimated by two pathologists,
and mean scores were considered the final immunostaining scores.
When final immunostaining scores were larger than 2, the tissue
samples were considered highly expressed; otherwise, the samples
had low expression (21).
RESULTS

Identification of Important Co-Expression
Modules Using WGCNA
To detect the functional modules in LUSC, we established two
gene co-expression networks through the WGCNA package
based on the GSE19188 and TCGA-LUSC datasets, respectively.
We found 8 modules in the GSE19188 dataset (Figure 2C) and 12
modules in the TCGA-LUSC dataset (Figure 3C). Afterward, the
two heatmaps explored the relationship between these modules
and two clinical traits (normal lung and LUSC tissues) in the
GSE19188 (Figure 2D) and TCGA-LUSC datasets (Figure 3D),
suggesting that the turquoise module in GSE19188 and the
turquoise module in the TCGA-LUSC dataset were highly
correlated with normal lung tissues (turquoise module in
GSE19188: r=0.94, P=6e-43; turquoise module in TCGA-LUSC
dataset: r=0.85, P=3e-154).

Selection of Differentially
Co-Expressed Genes
The volcano plots revealed that 1989 DEGs in GSE19188
(Figure 4A) and 5133 DEGs in TCGA-LUSC dataset
(Figure 4B) were obviously dysregulated between LUSC and
non-malignant adjacent tissues. The heatmaps illustrated the
expression patterns of 50 upregulated and 50 downregulated
genes in the GSE19188 (Figure 4C) and TCGA-LUSC datasets
June 2021 | Volume 11 | Article 637733
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FIGURE 4 | Identification of differentially expressed genes (DEGs) among GSE19188 TCGA-LUSC dataset with the cut-off criteria of |logFC|>1 and adj.P <0.05.
(A) Heatmap of top 50 upregulated and 50 downregulated DEGs of GSE19188. (B) Heatmap of top 50 upregulated and 50 downregulated DEGs of TCGA-LUSC
dataset. (C) Volcano plot of DEGs in GSE19188. (D) Volcano plot of DEGs in the TCGA-LUSC dataset. (E) The Venn diagram of genes among the two DEG lists
and the two lists of co-expression genes. In total, 576 overlapping differential co-expression genes are found.
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FIGURE 5 | Functional enrichment analysis of differential co-expression genes using the clusterProfiler package. (A) Gene ontology (GO) enrichment analysis of
differential co-expression genes. The color represents the adjusted P-value, and the size of the spots represents the gene number. (B) Kyoto encyclopedia of genes
and genomes pathway (KEGG) of differential co-expression genes.
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FIGURE 6 | Visualization of the protein-protein interaction (PPI) network, the most significant modules and hub genes. (A) PPI network of differential co-expression
genes. (B) The most significant module from PPI network. (C) The second most significant module from PPI network. (D) Selection of hub genes from PPI network
through maximal clique centrality (MCC) algorithm. The turquoise nodes represent the genes. Edges suggest the protein-protein relations. The red nodes represent
genes with high MCC values, whereas the yellow nodes represent genes with low MCC values.
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(Figure 4D). Figure 4E clearly shows the intersection of two lists
of DEGs (Tables S2 and S3) and two lists of co-expression genes
(Tables S4 and S5), which included a total of 576 genes (Table
S6) that were applied for our next analysis.

Functional Enrichment Analysis
To acquire further insights into potential biological functions,
GO and KEGG pathway analyses of these differentially co-
expressed genes were conducted. We observed that BP analysis
of the 576 genes was primarily enriched for the regulation of
vasculature development and cell-substrate adhesion. The CC
analysis suggested that collagen−containing extracellular matrix
and cell−cell junction were associated with the 576 genes.
According to the results of MF analysis, actin binding and
enzyme inhibitor activity were mainly enriched (Figure 5A).
Additionally, KEGG pathway analysis showed that PPAR
signaling pathway and ABC transporters were significantly
enriched (Figure 5B).

PPI Network Construction and Hub
Gene Selection
The PPI network of these genes with 357 nodes and 744 edges is
clearly shown (Figure 6A). The most significant module was
detected using the MCODE plugin, containing 29 nodes and 124
edges (Figure 6B). Also, the second most significant module was
detected, including 22 nodes and 71 edges (Figure 6C).
Subsequently, genes with top ten highest MCC scores were
Frontiers in Oncology | www.frontiersin.org 10
designated as hub genes (GNG11, ADCY4, GAS6, ADRB2,
ADRB1, SPP1, LAMB2, CYR61, CHRDL1 and FSTL3). The
top ten hub genes from this PPI network are vividly displayed,
and the color shade represents the magnitude of the MCC values
of hub genes (Figure 6D).

Prognostic Roles of Hub Genes
To explore the prognostic roles of the top 10 hub genes in LUSC,
we conducted overall survival analysis of the top 10 hub genes
using the clinical information from the TCGA-LUSC dataset
(Figures 7A–J). Five hub genes were found to be highly
correlated with the survival of patients with LUSC, namely, the
higher expression of GNG11, ADCY4, FSTL3, GAS6, and
CHRDL1 was significantly correlated with worse survival of
LUSC (Figures 7A–E).

GSEA Analysis of Survival-Related
Hub Genes
GSEA analysis demonstrated that spliceosome and viral
myocarditis were correlated with GNG11 (Figure 8A). GSEA
analysis showed that cell adhesion molecules (cams) and the cell
cycle were associated with ADCY4 (Figure 8B). Furthermore,
GSEA analysis revealed that spliceosome and ECM receptor
interaction were associated with FSTL3 expression (Figure 8C).
GSEA analysis suggested that cytokine-cytokine receptor
interactions and one carbon pool modulated by folate were
correlated with GAS6 expression (Figure 8D). However, the
A B D

E F G

I

H

J

C

FIGURE 7 | Overall survival (OS) analysis of the top 10 hub genes among patients from TCGA-LUSC dataset. Survival analysis for (A) GNG11, (B) ADCY4,
(C) FSTL3, (D) GAS6, (E) CHRDL1, (F) ARDB2, (G) CYR61, (H) ARDB1, (I) LAMB2, and (J) SPP1 in LUSC. The LUSC patients are divided into high expression
cohort (red) and low expression cohort (blue) according to the median expression of hub genes. Log-rank P ≤ 0.05 is believed as statistical difference.
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FIGURE 8 | Enrichment plots by Gene Set Enrichment Analysis (GSEA). Relative pathways associated with the expression of (A) GNG11, (B) ADCY4, (C) FSTL3,
and (D) GAS6 are displayed.
TABLE 1 | Relative pathways associated with the expression of GNG11 and ADCY4 using GSEA.

Gene Name ES NES NOM p-value FDR q-value

GNG11 KEGG_LYSINE_DEGRADATION -0.54 -1.92 <0.0001 0.101
KEGG_SPLICEOSOME -0.59 -1.89 0.002 0.077
KEGG_HOMOLOGOUS_RECOMBINATION -0.67 -1.84 0.008 0.086
KEGG_CELL_CYCLE -0.49 -1.76 0.004 0.142
KEGG_AMINOACYL_TRNA_BIOSYNTHESIS -0.61 -1.69 0.014 0.202
KEGG_DNA_REPLICATION -0.66 -1.67 0.031 0.204
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 0.66 2.21 <0.0001 0.002
KEGG_VIRAL_MYOCARDITIS 0.72 2.17 <0.0001 0.001
KEGG_CELL_ADHESION_MOLECULES_CAMS 0.62 2.08 <0.0001 0.003
KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 0.70 2.05 <0.0001 0.004

ADCY4 KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 0.63 2.18 <0.0001 <0.0001
KEGG_CELL_ADHESION_MOLECULES_CAMS 0.63 2.16 <0.0001 <0.0001
KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 0.70 1.99 0.002 0.009
KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION 0.80 1.95 0.006 0.015
KEGG_CELL_CYCLE -0.62 -2.16 <0.0001 0.002
KEGG_RNA_DEGRADATION -0.61 -2.05 <0.0001 0.011
KEGG_PROTEASOME -0.75 -1.92 0.002 0.035
KEGG_NUCLEOTIDE_EXCISION_REPAIR -0.61 -1.92 0.002 0.029
KEGG_BASAL_TRANSCRIPTION_FACTORS -0.6 -1.88 0.002 0.039
KEGG_DNA_REPLICATION -0.74 -1.87 0.002 0.037
Frontiers in Oncol
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FIGURE 9 | External validation of survival-related hub genes based on Gene Expression Omnibus (GEO) and the human protein atlas (THPA) databases. The mRNA
expression patterns of (A) ADCY4, (B) GNG11, (C) FSTL3, and (D) GAS6 are compared between LUSC and normal lung tissues based on GSE30219. The protein
expression patterns of (E) ADCY4, (F) GNG11, (G) FSTL3, and (H) GAS6 are compared between LUSC and normal lung tissues based on THPA database.
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GSEA analysis of CHRDL1 revealed that no KEGG pathway met
our selection criteria. In detail, the results of the GSEA analysis
are shown in Table 1 and Table S7.
External Verification of the GEO and THPA
Databases and Immunohistochemistry
To improve the reliability of our findings, external datasets were used
for validation in this analysis. Firstly, we compared the mRNA
expression levels of survival-related genes between LUSC and
normal tissues using GSE30219. Compared with normal tissues,
the mRNA expression of ADCY4 (Figure 9A), GNG11 (Figure 9B),
FSTL3 (Figure 9C), GAS6 (Figure 9D) and CHRDL1 (Figure S1A)
Frontiers in Oncology | www.frontiersin.org 13
was lower in LUSC tissues. Secondly, the protein expression levels of
OS-related genes were compared in LUSC and normal lung tissues
using the THPA database. Although GNG11 was not detected in
LUSC and normal lung tissues (Figure 9F), the protein expression
patterns of ADCY4 (Figure 9E), FSTL3 (Figure 9G), GAS6
(Figure 9H) and CHRDL1 (Figure S1B) were consistent with
their mRNA expression levels. Table 2 illustrates the detailed
information on IHC for the 5 OS-related genes between LUSC
and normal lung tissues. Furthermore, IHC results from the real
world demonstrated that ADCY4 was apparently downregulated in
LUSC tissues, and GNG11 was not detected in LUSC and normal
lung tissues (Figure 10), suggesting that ADCY4 probably plays an
important role in LUSC.
A B

DC

FIGURE 10 | External validation of immunohistochemistry (IHC) outcomes from the real world. The (A) ADCY4 and (B) GNG11 expression levels in normal lung
tissues. The (C) ADCY4 and (D) GNG11 expression levels in LUSC tissues.
TABLE 2 | The detailed information of IHC results from THPA database.

Gene Normal lung tissues LUSC tissues

Macrophages Pneumocytes Tumor cells

Staining Intensity Quantity Location Staining Intensity Quantity Location Staining Intensity Quantity Location

ADCY4 Medium Moderate 75%-
25%

Cytoplasmic/
membranous

Medium Moderate 75%-
25%

Cytoplasmic/
membranous

Low Moderate <25% Cytoplasmic/
membranous

GNG11 Not
detected

Negative None None Not
detected

Negative None None Not
detected

Negative None None

FSTL3 Low Moderate <25% Nuclear Low Weak 75%-
25%

Nuclear Low Weak 75%-25% Nuclear

GAS6 Low Weak >75% Cytoplasmic/
membranous

Not
detected

Negative None None Not
detected

Negative None None

CHRDL1 Medium Moderate 75%-
25%

Cytoplasmic/
membranous

Low Weak 75%-
25%

Cytoplasmic/
membranous

Not
detected

Negative None None
June 2
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IHC, immunohistochemistry; THPA, The Human Protein Atlas; LUSC, lung squamous cell carcinoma.
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DISCUSSION

As a prevalent malignant tumor with high mortality, lung cancer
confers enormous socio-economic pressure on patients and
families. Progress in the early diagnosis, treatment and predicted
prognosis of LUSC is still limited. Therefore, it is urgent to find
cancer-specific indicators for monitoring the progression and
predicting the prognosis of LUSC patients. In this study, a total
of 576 differentially co-expressed genes were found via integrated
bioinformatics methods based on the GSE19188 and TCGA-LUSC
datasets. Functional annotation analyses of these differentially co-
expressed genes suggested that regulation of vasculature
development, collagen−containing extracellular matrix, actin
binding and PPAR signaling pathway were primarily enriched.
Differentially co-expressed genes with the top ten highest MCC
scores were designated as hub genes associated with LUSC.
Subsequently, we observed that 5 hub genes (GNG11, ADCY4,
FSTL3, GAS6, and CHRDL1) were highly correlated with the
prognosis of LUSC patients. GSEA analysis illustrated that
spliceosome, cell adhesion molecules, ECM receptor interaction
and cytokine-cytokine receptor interactions were correlated with
the expression of GNG11, ADCY4, FSTL3 and GAS6, respectively.
Finally, based on the GSE30219 and THPA databases and IHC
outcomes from the real world, we observed that although GNG11
was not detected, ADCY4 was significantly downregulated in
LUSC tissues at the mRNA and protein levels.

ADCY4, adenylate cyclase 4, promoted the formation of the
signaling molecule cAMP to respond to G-protein signaling (22).
ADCY4 was found to be correlated with calcium signaling
pathways, and intracellular Ca2+ activation might influence the
carcinogenesis and adverse invasion of LUAD cells (23, 24). Several
studies have reported that ADCY4 showed lower expression in
various cancer tissues compared to normal tissues (25). In fact, few
studies have reported the role of ADCY4 in cancer. ADCY4 is the
core gene that is apparently downregulated in LUSC tissues (26).
Similarly, Yu et al. revealed that ADCY was downregulated in
LUAD tissues, and they demonstrated that ADCY4 was highly
associated with overall survival among LUAD patients using the
Kaplan-Meier plotter (27). In addition, Fan, et al. illustrated that
ADCY4 was obviously downregulated in primary breast cancer
(P<1.00e-12) compared to normal tissues, and this downregulation
was closely correlated with ADCY4 promoter hypermethylation
(28). Furthermore, IHC results from the real world validated the low
expression of ADCY4 in LUSC compared to normal lung tissues.
Given these outcomes, we believe that ADCY4 might be closely
associated with the carcinogenesis and progression of LUSC, and
ADCY4 may be a candidate therapeutic target and indicator to
monitor progression and predict prognosis among LUSC patients.

Undeniably, there are some limitations of our study. (1)
Although we conducted integrated bioinformatics analysis and
IHC validation to select potential prognostic indicators in LUSC,
this approach may not be extremely precise for patients with
different LUSC stages and grades. (2) Though the GSE19188 and
TCGA-LUSC datasets provided many samples of LUSC and
non-malignant tissues for analysis, only the two datasets were
included and analyzed. Additional related investigations are
needed to further elucidate the role of ADCY4 in LUSC.
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CONCLUSION

In general, our analysis was conducted to find hub genes that
may be correlated with the tumorigenesis and development of
LUSC through differential gene expression analysis and
WGCNA. Ten hub genes were selected according to the
ranking of MCC scores, and five hub genes were apparently
correlated with the prognosis of LUSC patients. Based on the
GSE30219 and THPA databases and IHC results from the real
world, we found that although GNG11 was not detected, ADCY4
was significantly downregulated in LUSC tissues. Thus, ADCY4
is a potential therapeutic and prognostic indicator in LUSC
patients. However, more studies are needed to further verify
and explore the biological relationships among these survival-
related hub genes in LUSC.
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