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Abstract
Aging is a complex biological process that is far from being completely understood. Analyzing transcriptional
differences across age might help uncover genetic bases of aging. In this study, 1573 differentially expressed genes,
related to chronological age, from the Genotype-Tissue Expression (GTEx) project, were categorized as upregulated
age-associated genes (UAGs) and downregulated age-associated genes (DAGs). Characteristics in evolution,
expression, function and molecular networks were comprehensively described and compared for UAGs, DAGs and
other genes. Analyses revealed that UAGs are more clustered, more quickly evolving, more tissue specific and have
accumulated more single-nucleotide polymorphisms (SNPs) and disease genes than DAGs. DAGs were found with a
lower evolutionary rate, higher expression level, greater homologous gene number, smaller phyletic age and earlier
expression in body development. UAGs are more likely to be located in the extracellular region and to occur in both
immune-relevant processes and cancer-related pathways. By contrast, DAGs are more likely to be located intracellularly
and to be enriched in catabolic and metabolic processes. Moreover, DAGs are also critical in a protein–protein
interaction (PPI) network, whereas UAGs have more influence on a signaling network. This study highlights
characteristics of the aging transcriptional landscape in a healthy population, which may benefit future studies on the
aging process and provide a broader horizon for age-dependent precision medicine.

Introduction
Aging is considered to be a dominating risk factor for

many fatal diseases, including cancer, cardiovascular dis-
eases and neurodegenerative diseases1–6. A large number
of studies have found that aging is associated with telo-
mere attrition, mitochondrial dysfunction, DNA damage,
immune system impairment etc., and can be inhibited by
calorie restriction7–11. However, the detailed mechanisms
involved in aging remain unclear. In recent years, rapidly

developing high-throughput omics have provided a
broader insight, with the identification of a number of
longevity-relevant loci based on genome-wide association
studies(GWAS) and epigenome analyses12,13. As previous
studies have shown, aging is distinct at molecular, cellular
and tissue levels14, which indicates that the relatively
dynamic transcriptome might also provide important
clues for the study of aging. A large number of human
age-associated genes have been identified in previous
transcriptomic studies, based on specific tissues like
muscle, blood, skin, adipose, brain etc., and have been
compared across tissues15–24. The identified age-
associated genes in these studies vary from each other,
which could be partly due to differences in the health
condition of donors, sample size, sample quality, tissue,
platform and the method of identifying age-associated
genes. Also, the divergent results may be accounted for by
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the generally low repeatability of microarray data that
most of the analyses were based on. In addition, given that
aging is likely to confound with other factors, profiling the
aging factor alone can be difficult, which may lead to
biases in screening age-associated genes. Among these
studies, the age-associated gene set from the Genotype-
Tissue Expression (GTEx) project25 is of high quality.
This set of aging-associated genes was screened out by
using a regression model on large-sample RNA-Seq data,
collected from >40 tissues from hundreds of healthy
individuals; whereas sex, race, and tissue were controlled
as a covariate to avoid biases24. However, characteristics
of these genes still remain unexplored. A comprehensive
analysis of these genes might help to improve the
understanding of aging process and provide valuable clues
for strategies in anti-aging interventions. Here, we com-
prehensively explored characteristics of the age-associated
genes derived from GTEx. The results revealed that dif-
ferences and interactions exist in evolution, expression,
function, associated diseases and molecular network
between the upregulated age-associated genes (UAGs)
and downregulated age-associated genes (DAGs).

Result
The human transcriptional age-associated genes from
GTEx
To characterize the age-associated genes, we extracted a

protein-coding transcriptional age-associated gene set
from a GTEx transcriptional analysis (see Materials and
methods section). The gene set analysis procedure is
summarized in Fig. 1a. Ultimately, we extracted 710
UAGs and 863 DAGs across tissues. The age-associated
genes account for 7.71% of the protein-coding genes
(Fig. 1b and Supplementary Table 1). Genomic informa-
tion of UAGs and DAGs is shown in Supplementary
Tables 2 and 3, respectively.

Distribution of the age-associated genes across
chromosomes
To characterize the age-associated genes at the genomic

level, we investigated the chromosomal distribution pat-
tern of the age-associated genes. Results showed age-
associated genes are widespread across chromosomes.
Over 97% of the age-associated genes are located on
autosomes, where the proportion of DAGs is higher than
that of UAGs, with the exception of five autosomes.
Although no age-associated genes were found on the Y
chromosome, possibly due to the adjustment for sex in
the regression model used to discover age-associated
genes, some UAGs (2.86%) and a smaller number of
DAGs (1.83%) were observed on the X chromosome
(Figs. 1c, d).
Genes with similar functions are likely to locate adja-

cently on chromosomes26. To study whether the age-

associated genes are close to each other on chromosomes,
we calculated the genomic distances of each pair of genes
on the same chromosome, within one age-associated gene
group only (UDs, DDs), and between groups (UDDs).
Results showed these three distances are significantly dif-
ferent from each other (median values of UDs, DDs and
UDDs are 3.52e+ 7, 4.67e+ 7 and 4.42e+ 7, respectively).
Of the three distances, UDs possess the smallest value
compared with DDs (P= 7.52e-56, Wilcoxon test) and
UDDs (P= 1.17e-57, Wilcoxon test). Surprisingly, UDDs
show smaller value than DDs (P= 0.0038, Wilcoxon test)
(Fig. 1e). These results suggest that on the same chro-
mosome, UAGs are more clustered than DAGs and non-
age-associated genes (NAGs); DAGs on the other hand are
relatively dissociated, whereas some of them tend to be
more adjacent to UAGs than other DAGs.

Evolutionary characteristics and expression profile of age-
associated genes
To gain a better insight into the evolutionary back-

ground of genes, the evolutionary characteristics of
age-associated genes were investigated in three aspects:
evolutionary rate, homologous gene number and phyletic
age. Results showed that DAGs have the lowest dN/dS
ratio (P= 1.43e-50, Wilcoxon test), the highest homo-
logous gene number (P= 5.73e-55 Wilcoxon test) and
have a relatively earlier origin in phyletic age compared
with UAGs (P= 7.37e-24, chi-squared test). The corre-
sponding values for NAGs are P= 5.02e-45, P= 3.39e-60
and P= 4.74e-32. Comparatively, UAGs evolves most
rapidly, with the smallest homologous gene number, and
originated later than DAGs but earlier than NAGs
(Figs. 2a–c; Table 1). These results revealed that DAGs
are more conserved in evolution, suggesting the DAGs are
more crucial to fundamental functions in humans. How-
ever, UAGs are less stable and have a shorter history,
which implies they are likely to function in more specific
and advanced functions.
Essential genes are those that function in basic biolo-

gical processes and must exist for an organism to sur-
vive27. As expected, DAGs are significantly more enriched
in human essential genes (15.3% of DAG genes), com-
pared with NAGs (11.8%; P= 0.0035, chi-squared test)
(Table 1). UAGs (11.8%) and NAGs (11.9%) have no
significant difference.
The expression profile also provides important char-

acteristics for a gene and often gives valuable clues to
potential gene function. Therefore, we explored the
expression characteristics of age-associated genes from
three aspects: average expression level across tissue, tissue
specificity and the earliest expression stage. We found
DAGs have the highest expression level and lowest tissue
specificity compared with UAGs and NAGs, suggesting
DAGs have a more global function, providing basic
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support to the whole body. UAGs are significantly higher
in expression level and tissue specificity than NAGs,
which suggests UAGs are also important in function, but
more tissue specific (Figs. 2d, e; Table 1). As for the
earliest expression stage, although the stage of embryoid
body is predominant for expression in all three groups,

DAGs are far more expressed than UAGs and NAGs at
this stage. UAGs on the other hand outnumber DAGs and
NAGs in the following stages of blastocyst and fetus
(Fig. 2f; Table 1). Altogether the age-associated genes tend
to express in earlier stages than other genes, underlining

Fig. 1 The transcriptional age-associated genes. a The workflow for characterizing age-associated genes. b A pie chart showing the proportion of
age-associated genes within all protein-coding genes. c Chromosomal distribution of the 1573 age-associated genes. d Circos54 plot displaying the
age-associated genes. e Genomic distances between age-associated genes. UDs distances of each pair of UAGs on the same chromosome, DDs
distances of each pair of DAGs on the same chromosome, UDDs distances of any pair of genes on the same chromosome between UAGs and DAGs
groups. **P < 0.01, ***P < 0.001 from Wilcoxon test
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they are likely to play important roles in early
development.

Functional annotation for age-associated genes
Functional enrichment analyses were carried out to

explore the functions of UAGs and DAGs. First, we

investigated the subcellular locations of UAGs and DAGs
to see if they are located differently. Genes located in
nucleus (NU), cytoplasm (CY), membrane (ME) and
extracellular region (ER) were filtered from gene ontology
(GO) terms and the age-associated genes were mapped
into these cellular locations. The number of UAGs and

Fig. 2 Evolutionary characteristic and expression profile of age-associated genes. Box plots and bar graphs show UAGs, DAGs and NAGs
compared in the following characteristics: a dN/dS ratio of each human–mouse homolog gene. b Number of homologous genes. c Origin in phyletic
evolution. d Average expression level across tissues. e Tissue specificity of gene expression. f Earliest expression stage. *P < 0.05, ***P < 0.001 from
Wilcoxon test
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DAGs in these four locations were, 78 versus 118 (10.99%
versus 13.67%, NU), 163 versus 231 (22.96% versus
26.77%, CY), 67 versus 123 (9.44% versus 14.25%, ME)
and 85 versus 15 (11.97% versus 1.74%, ER), respectively,
see Fig. 3a. The distributions of UAGs and DAGs
in subcellular locations are significantly different
(P= 1.971e-16, chi-squared test). Noted that there is a
striking difference in the fraction of UAGs and DAGs in
ER, suggesting the UAG group includes far more secre-
tory protein genes.

Next, we focused on the biological processes and
pathways. GO biological process analysis was carried out
for 626 UAGs and 772 DAGs mapped in DAVID. A total
of 759 and 549 enriched terms were filtered for UAGs and
DAGs with the threshold of P-value < 0.05. Most terms
enriched with UAGs are relevant to the immune system,
such as processes related to immune cells, ‘response to
stimulus’ (54.8%, P= 1.10e-10) or ‘defense response’
(15.10%, P= 1.20e-10). In all, 178 UAGs are most sig-
nificantly enriched in the term ‘immune system process’
(25.1%, P= 1.40e-19), whereas 292 are enriched in the
term ‘cell communication’, with a fairly high number
(41.1%, P= 1.10e-6) (Supplementary Fig. 1). Apart from
processes related to cell migration, the data showed that
cell proliferation, cell adhesion and cell differentiation are
also highly enriched with UAGs, hinting that UAGs are
likely to be involved in processes relevant to
tumorigenesis.
As for DAGs, terms related to catabolic processes are

enriched most significantly (with 31 terms in total);
whereas metabolic process-relevant terms appear in most
genes (with 80 terms in total). In total, 87 DAGs (10.1%,
P= 5.20e-19) are most significantly enriched in the term
‘proteolysis involved in cellular protein catabolic process’,
whereas 571 genes are enriched in the term ‘metabolic
process’ (66.2%, P= 6.40e-7). In addition, 37 terms are
relevant to mitochondria, and 19 terms are associated
with cell cycle (111 genes are enriched in term ‘cell cycle’,
P= 6.30e-5). Moreover, 11 terms with the keyword
‘immune’ were also observed in DAGs enriched processes,
5 terms have the keyword ‘innate immune’ and 37 DAGs
are enriched in the term ‘positive regulation of innate
immune response’ (3.8%, P= 4.80e-6) (Supplementary
Fig. 2).
Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analysis revealed 26 and 32 enriched
terms (with the threshold of P < 0.05) for 257 UAGs and
355 DAGs (Figs. 3b, c). Notably, apart from being enri-
ched in pathways related to inflammation and infection,
several pathways enriched with UAGs are oncogenic
pathways. DAGs are enriched in foundational metabolic
pathways, which is similar with the result of the enrich-
ment analysis for biological processes. In addition, there
are pathways related to neurodegenerative diseases enri-
ched with DAGs, as a relevant study mentions28. Con-
sidering DAGs are downregulated across age, this result
indicates that healthy old individuals may suffer from a
functional decline in relevant pathways, but this result
may not serve as direct evidence for the relation between
healthy aging and these diseases.

Table 1 Statistical results for characteristic analyses in
evolution and expression

DAGs versus

UAGs

DAGs versus

NAGs

UAGs versus

NAGs

dN/dS

Median U: 0.22 D: 0.09 N: 0.16

W-value 227,110 2,243,300 3,179,700

P-value 1.43e-50 5.02e-45 5.11e-12

Homologous gene number

Median U: 9 D: 12 N: 10

W-value 155,150 9,421,800 5,009,300

P-value 5.73e-55 3.39e-60 7.05e-9

Phyletic evolution

Chi-square 121.64 160.46 24.01

P-value 7.37e-24 4.74e-32 5.21e-4

Average expression level

Median U: 29,873.5 D: 42,838 N: 27,993

W-value 196,500 7,431,900 4,885,500

P-value 2.91e-13 2.41e-37 0.032

Tissue specificity

Median U: 0.24 D: 0.19 N: 0.21

W-value 349,390 4,727,100 5,389,400

P-value 2.27e-31 2.73e-20 1.24e-11

Earliest expression stage

Chi-square 149.99 164.91 19.266

P-value 7.77e-30 5.39e-33 0.0037

Essential genes

Proportion U: 11.83% (84 of

710)

D: 15.30% (132 of

863)

N: 11.92% (2248 of

18,855)

Chi-square 3.67 8.53 2.23e-4

P-value 0.06 3.49e-3 0.99

dN/dS ratio, homologous gene number and expression pattern were analyzed
by Wilcoxon test, the phyletic evolution, earliest expression stage and essential
genes enrichment analyses were performed by chi-squared test
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UAGs have higher SNP density and are more enriched in
disease genes
In the human genome, single-nucleotide polymorphism

(SNP) is the most common genetic variation. To investi-
gate the difference between SNP in age-associated gene
and other genes, we calculated the SNP density (the
number of SNPs in a gene divided by the gene’s length)
for UAGs, DAGs and NAGs, and compared their dis-
tributions across chromosomes (Fig. 4a). As expected,
DAGs bear the lowest SNP density compared with UAGs
and NAGs (P= 0.0012 and 0.0011, respectively, Wilcoxon
test, the median value of UAGs, DAGs and NAGs are

0.037, 0.012 and 0.025, respectively; Fig. 4b), which is
consistent with the evolutionary characteristic analysis
that DAGs tend to be more conserved.
To further study whether UAGs have more disease-

relevant SNPs (dSNPs) compared with other groups, we
mapped the dSNPs to each gene, and calculated the
fraction of the number of dSNPs, versus total number of
SNPs, in each gene group (Fig. 4c). Surprisingly, no sig-
nificant difference was found between the age-associated
genes (data not shown), whereas NAGs have a higher
dSNP fraction than UAGs and DAGs (P= 0.011and
0.0045, respectively, Wilcoxon test, the median value for

Fig. 3 Functional enrichment analysis for age-associated genes. a The number of UAGs and DAGs in four subcellular locations is shown. ER
extracellular region, ME membrane, CY cytoplasm, NU nucleus. UAGs and DAGs are presented in red and blue, respectively. b KEGG enrichment
analysis for UAGs with the threshold of P < 0.05. c KEGG enrichment analysis for DAGs with the threshold of P < 0.05
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the fraction of dSNP to total SNP for UAGs, DAGs and
NAGs is 0.31%, 0.29% and 0.52%, respectively; Fig. 4d).
Given that the individuals contributing age-associated
genes are healthy, it is not likely that they have many fatal
mutations as reflected in the UAGs and DAGs.
In addition, 7291 disease genes from DisGeNET data-

base were used to analyze the enrichment of the three
gene groups to see whether there are differences between
groups (Fig. 4e). Results showed that UAGs are enriched

the most in disease genes, with the median proportion of
47.69% across chromosomes, compared with DAGs
(38.36%, P= 0.0031, Wilcoxon test) and NAGs (35.82%,
P= 1.02e-4, Wilcoxon test). No significant difference was
observed between DAGs and NAGs (Fig. 4f). Disease
genes in UAGs and DAGs are listed in Supplementary
Table 4.
Moreover, for 495 UAGs, 93 items are significantly

enriched in Genetic Association Database (GAD) diseases

Fig. 4 SNP distribution and disease relation of age-associated genes. a Distribution of average SNP density value for UAGs, DAGs and NAGs
across chromosomes. The standard error of mean (SEM) in every chromosome is presented by error bars. b Cumulative distribution plot for the
average SNP density across chromosomes. c Distribution for the fraction of disease-related SNP (dSNP) in the total number of SNPs across
chromosomes among UAGs, DAGs and NAGs. d Cumulative distribution plot for the proportion of dSNP compared with total SNP. e The proportion
of disease-related genes contained in UAGs, DAGs and NAGs across chromosomes. UAGs presented a much closer relationship with diseases.
dGenes: disease-related genes; U, D, N: short for UAG, DAG, NAG, respectively. f Cumulative distribution plot for the proportion of disease-related
genes. *P < 0.05, **P < 0.01, ***P < 0.001 from Wilcoxon test
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(with threshold P < 0.05). In all, 134 UAGs are most sig-
nificantly enriched in term ‘Type 2 Diabetes|edema|rosi-
glitazone’ (18.9%, P= 9.30e-9), whereas ‘hypertension’,
‘multiple sclerosis’, various infectious diseases and cancers
were also observed. As for the GAD disease class, 162
UAGs are significantly enriched in ‘pharmacogenomics’
(22.8%, P= 5.10e-10), also there are 172, 153, 106 and 182
UAGs enriched in terms ‘immune’, ‘cancer’, ‘infection’
and ‘cardiovascular’, respectively. DAGs are only enriched
in one GAD item ‘infection’, with the proportion of 19.2%
(P= 1.10e-14) (Supplementary Fig. 3).

Age-associated genes in PPI and signaling networks
Genes cooperate with each other to maintain home-

ostasis in the human body. To investigate the network
characteristics of age-associated genes, we first estimated
the centrality difference for each gene node in a non-
directional protein–protein interaction (PPI) network
through three metrics: degree, betweenness centrality and
closeness centrality. These serve as important character-
istics to evaluate whether a gene node in the network is
‘well-connected’ to other nodes. Among the three gene
groups, DAG nodes have the highest degree, betweenness
centrality and closeness centrality, compared with UAG
nodes and NAG nodes, whereas UAG nodes have lower
degrees than NAG nodes (Figs. 5a–c). Statistical results
are shown in Table 2. To further explore how closely
UAGs and DAGs are linked to each other in the PPI
network, first we performed a permutation test, which
revealed that the number of direct DAG-DAG links (DLs)
and UAG-DAG links (UDLs) tend to be greater than
when gene nodes are randomly distributed to the three
gene groups (P= 0 and 6e-4, respectively) (Figs. 5e, f),
whereas no significant results were observed for UAG-
UAG links (ULs). Similar results, revealed by network
distance analysis, are that DAGs have the shorter dis-
tances from each other than NAG nodes (median value of
average D-D distances and D-N distances are 2.68 and
2.88, respectively), UAGs have the longest distances
within the group, with no significant difference between
the distance to NAGs (median value of average U-U
distance and U-N distance are 3.07 and 3.06, respectively),
and the UAG-DAG distances remain shorter than
UAG-UAG distances (Fig. 5d and Table 3). These results
suggest DAGs are of great connectivity and are cross-
functioning, whereas UAGs are likely to stay in smaller
groups and be more specialized in function. The fact that
these two groups are fairly connected to each other in the
PPI network, implies some of the UAGs and DAGs
function similarly and may be attached to the same
pathways.
In addition, we explored the characteristics of UAGs

and DAGs in a cellular signaling network, in which 299
UAGs, 319 DAGs were mapped, with 5506 other genes

considered as NAG nodes29. Centrality and distance
analysis for UAGs and DAGs, in the signaling network,
revealed different results, compared to PPI network,
which UAGs have higher betweenness and closeness
centrality value than DAGs and NAGs (Figs. 6c, d and
Table 2). Concomitantly, DAGs have higher values than
NAGs. Besides, UAGs have more positive links and
negative links, compared with DAGs, respectively in out-
degree and in-degree (Figs. 6a, b and Table 2). As for the
distance analysis, more U-U links, D-D links and U-D/D-
U links were observed in the UAG and DAG node groups
compared with randomized groups (P= 0, 0, 0.021,
respectively, permutation test) (Supplementary Fig. 4),
whereas U-U distances remain the shortest when com-
pared with U-D, D-D and U-N. D-D and U-D distances
are also shorter, in comparison with distances to other
nodes (Fig. 6e and Table 3). These results showed UAGs
and DAGs both have high connectivity in the signaling
network; nonetheless UAGs are more clustered and of
great centrality, suggesting that UAGs are more inter-
connected in the signaling network.

Discussion
Aging is a process characterized by progressive loss of

physiological integrity, which leads to impaired function
and increased vulnerability to death30. By analyzing the
aging differences revealed by gene expression, important
clues can be gained to better understand the process of
aging at the transcriptional level. Here, we systematically
characterized the characteristics of transcriptional age-
associated genes in multiple aspects. To sum up, genes
that increase expression with age are less conserved in
evolution, more tissue specific in expression and more
enriched in SNPs and disease genes. They are more active
in the signaling network and are located more in the
extracellular region, with clustered functions mostly
involving the immune system and are likely to play crucial
roles in various cancer-related pathways. Genes with a
decreased level of expression with age have a longer
phyletic history, tend to be stable over time, expressed
globally across tissues and are expressed early in a human
lifetime. These genes function mostly in basic metabolic
or catabolic process that are vital for human survival, and
play important roles in gene networks, especially in the
PPI network.
Notably, these age-associated genes, in the up and

downregulated directions, tend to be close to each other
in genomic distances and distances in both PPI and sig-
naling networks. To further study potentially aging-
related processes, 323 interacting UAGs and DAGs
nodes were extracted from the signaling network, visua-
lized (Supplementary Fig. 5) and functionally annotated
(results for GO BP and pathway enrichment analysis with
threshold FDR < 0.05 are shown in Supplementary
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Tables 5 and 6, respectively) by Cytoscape31. Examples for
the interacting age-associated gene nodes enriched in
process ‘T-cell receptor signaling pathway’ and enriched
in pathway ‘pathways in cancers’ are shown in Supple-
mentary Figure 6.
Apart from this, some DAGs are overlapped in function

with UAGs, other DAGs are more dispersive with func-
tions in multiple aspects, whereas UAGs are consistently
more clustered and co-functioned. These dispersive

distributed DAGs are enriched in terms related to cata-
bolic, metabolic, mitochondrion-related and innate
immune processes, which is consistent with previous
studies that aging is a process with mitochondrial and
immune dysfunction9,32. UAGs are mostly clustered in
immune-related function and more located in the extra-
cellular region, indicating the tendency of senescent cells
to secrete pro-inflammatory cytokines, which lead to a
chronic inflammatory state in healthy aging individuals.

Fig. 5 Characteristics of age-associated genes in the PPI network. a-c: Box plots display the difference among UAGs, DAGs and NAGs for the
following characteristics in the PPI network: a Degree. b Betweenness centrality. c Closeness centrality. d Average length of the shortest paths of each
group is shown in boxplot. **P < 0.01, ***P < 0.001 from Wilcoxon test. e The actual link number between DAG nodes, compared with link number in
10,000 randomized DAG node groups. The arrow shows link number in actual DAG node groups. f The actual link number between UAG and DAGs
nodes compared with link number in 10,000 randomized UAG and DAG node groups. ***P < 0.001 from permutation test
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Besides, these immune-relevant UAGs and some of their
interacted DAGs are also highly enriched in oncogenic
signaling pathways, including Ras, nuclear factor kappa-
light-chain-enhancer of activated B cells(NF-kappa B),
phosphatidylinositol 3-kinase(PI3K)/AKT, Notch and

P53 signaling pathways, which implies that senescent cells
resemble cancer cells. This needs to be further verified by
comparing aging profiles to specifically precancerous
profiles. When mapping the 1020 cancer genes from
OncoKB33 to all gene groups, UAGs were observed to
bear the highest cancer genes proportion (7.75%) com-
pared with DAGs (4.17%, P= 0.0036, chi-squared test)
and NAGs (4.97%, P= 0.0013, chi-squared test). DAGs
have the lowest proportion and no significant difference is
shown between DAGs and NAGs. The cancer genes
mapped in UAGs and DAGs are listed in Supplementary
Table 7. In addition, we observed 15 and 14 cancer driver
genes, respectively, from a 299 pan-cancer driver gene set
provided by a recent study of TCGA’s Pan-Cancer34

in UAGs and DAGs, such as ERBB2 (level 1 driver gene in
OncoKB33), TNFAIP3 in UAGs, and MAPK1, PIK3CB
in DAGs (driver genes mapped in UAGs and DAGs are
listed in Supplementary Table 8). As these driver genes
are mostly increased in expression in tumorigenesis pro-
cess, the driver genes found in DAGs may serve as a
protective factor in this driving process. However, a pre-
vious study showed some driving processes are not likely
to co-occur in cancer35, therefore the decreased level in
these driver genes may accompany an increased level of
other driver genes.
Aging is widely considered to be caused by accumulated

cellular damage36,37, which is led by random mutations.
SNP enrichment analysis shows more variations in UAGs,
which means these genes are likely to be the positions that

Table 2 Statistical results for topological characteristic
analyses in the networks

DAGs versus

UAGs

DAGs versus

NAGs

UAGs versus

NAGs

PPI network

Degree

Median U: 12 D: 31 N: 15

W-value 141,360 7,002,200 3,693,300

P-value 4.30e-36 1.35e-45 2.99e-4

Betweenness centrality

Median U: 7.26e-06 D: 4.13e-05 N: 1.23e-05

W-value 148,890 6,878,900 378,200

P-value 1.11e-30 3.84e-39 0.0011

Closeness centrality

Median U: 0.327 D: 0.347 N: 0.331

W-value 138,520 7,041,200 3,693,600

P-value 3.11e-38 1.10e-47 3.06e-4

Signaling network

Positive regulation links in out-degree

Proportion U: 80.79% (2057

of 2546)

D: 78.32% (2366 of

3021)

Chi-square 5.03

P-value 0.025

Positive regulation links in in-degree

Proportion U: 78.93% (2338

of 2692)

D: 84.68% (2134 of

2520)

Chi-square 29.57

P-value 5.41e-8

Betweenness centrality

Median U: 8.16e-06 D: 5.84e-07 N: 4.57e-07

W-value 52,407 887,190 914,810

P-value 0.027 0.75 6.15e-04

Closeness centrality

Median U: 0.184 D: 0.176 N: 0.174

W-value 54,246 883,440 943,580

P-value 0.0031 0.86 1.84e-05

The degree for PPI network, betweenness and centrality in both networks were
compared by Wilcoxon test, the proportion of positive links in in-degree and
out-degree in signaling network were compared by chi-squared test

Table 3 Statistical results for network distance analyses

UD

versus

DD

UD

versus

UND

DD

versus

UDD

DD

versus

DND

UD

versus

UDD

UDD

versus

UDND

PPI network

Median UU: 3.07 UN: 3.06 DD: 2.68 DN: 2.88 UD: 2.90 UDN: 2.96

W-value 426,260 192,850 140,320 194,510 255,200 388,610

P-value 4.47e-

117

0.423 2.11e-

45

8.79e-

47

1.78e-

27

7.04e-5

Signaling network

Median UU: 3.57 UN: 3.75 DD: 3.74 DN: 3.81 UD: 3.7 UDN: 3.77

W-value 22,554 406,120 54,985 455,310 44,784 1,804,700

P-value 0.0040 2.19e-

05

0.62 0.046 0.0021 0.018

The network distances were represented by average length of the shortest paths
for nodes in each group and compared by Wilcoxon test. For the signaling
network, distances were counted from both directions in each distance group
UD network distances between UAG nodes within the group, DD distances
between DAG nodes within the group, UDD distances between UAG and DAG
node groups, UND distances between UAG and NAG node groups, DND
distances between DAG and NAG node groups, UDND distances in UND and
DND were added up to UDND group
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random mutation occurred. There is a possibility that the
mutation in some UAGs cause them to increase in
expression, and interfere with other interactive DAGs and
UAGs. These changes may contribute to part of the aging
transcriptional landscape. Considering DAGs experience
less selection with lower evolutionary rates, mutations in
DAGs are likely to be fatal, which would cause more

disruptive outcomes that would be hard to observe in
healthy individuals. Besides, as previous studies noted13,38,39,
the decreased expression in DAGs may be mainly caused by
age-associated epigenetic drift. The analyses in evolutionary
characteristics, expression pattern and connectivity in the
PPI network, showed consistent results with previous stu-
dies that UAGs are younger genes than DAGs, as studies

Fig. 6 The signaling network provide more detailed characteristics for age-associated genes. a The proportion of positive and negative links
in out-degree. UAGs have greater number of positive links than DAGs. b Greater number of negative links in in-degree of UAGs as compared with
DAGs. *P < 0.05, ***P < 0.001 from chi-squared test. c, d Box plots present the difference in c betweenness centrality and d closeness centrality
between groups in signaling networks. e The network distances revealed by average of the shortest paths are shown in boxplot. *P < 0.05, **P < 0.01,
***P < 0.001 from Wilcoxon test
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showed that younger genes evolve more rapidly40, are more
likely to present different temporal and spatial expression
patterns41 and have fewer interactions in the PPI network42.
Although UAGs and DAGs are both of high connectivity in
the signaling network, UAGs remain more interactive,
which suggests aging may accompany more accumulated in
signaling crucial proteins.
Moreover, when performing the functional enrichment

analysis, it was of note that the number of enriched terms
that have a positive and a negative regulating function are
about the same. This suggests those differentially
expressed genes in healthy old individuals are not likely to
cause imbalances that lead to conspicuously disruptive
outcomes. As for an effort in precise medicine, 82 and 88
FDA-approved target genes from DrugBank43, mapped in
UAGs and DAGs (Supplementary Table 9), are provided,
respectively, which hopefully can help future research in
different drug use for the young and old. Overall, our
findings provide multiple biological implications for fur-
ther study in healthy aging.

Materials and methods
The age-associated gene set
The age-associated gene set was extracted from a

dataset of genes expressed differentially across age, as
given in the GTEx project. These genes were screened out
using a linear mixed model where sex, race and tissue
were controlled to avoid the biases24. Our study focused
on protein-coding genes, thus noncoding RNA genes
were excluded from the gene set and the remaining genes
were then categorized into two groups according to the
regression coefficient. Genes with positive and negative
coefficients were described as UAGs and DAGs, respec-
tively. The original Ensembl IDs in the dataset were
transformed into Entrez gene IDs and official gene sym-
bols for further analysis. Apart from the age-associated
genes, the rest of the protein-coding genes were regarded
as NAGs.

Chromosomal distribution and genomic distance analyses
Chromosomal distribution of age-associated genes was

revealed by calculating and comparing the proportion of
both UAGs and DAGs in the totality of genes on each
chromosome. The genomic distances of every pair of
UAGs/DAGs (UDs/DDs), as well as the distances between
a UAG and a DAG (UDDs) on the same chromosome,
were calculated. The Wilcoxon rank-sum test was used to
compare the distribution of UDs, DDs and UDDs across
chromosomes.

Evolutionary and expression characteristic analyses
The average expression level across tissues and tissue

specificity of each gene were calculated based on a gene
atlas database from Su et al.44. The dN/dS ratio dataset of

each human–mouse homolog was derived from the
Ensembl database (release 83) to illustrate gene evolu-
tionary rate. The homologous gene number dataset was
obtained from the Homologene database45 (build 68), the
phyletic evolution and earliest expression stage datasets
were obtained from Online Gene Essentiality database46

and the essential gene dataset was obtained from the DEG
database (version 10.6)27. The Wilcoxon test was per-
formed to statistically compare the evolutionary rate,
expression level, expression specificity and homologous
gene number of UAGs, DAGs and NAGs, whereas a chi-
squared test was used to compare the proportion of ear-
liest expression stage, phyletic evolution and the essential
genes between the three gene sets.

Functional enrichment analysis for age-associated genes
We calculated the number of genes in four terms of the

GO: NU, CY, ME and ER, and compared the numbers
between UAGs, DAGs and NAGs by performing chi-
squared tests. Meanwhile, functional enrichment analysis
of GO biological process and KEGG pathway annotations
were both performed using the DAVID Web server47.

Analysis of SNP densities
A dataset of SNPs in human protein-coding genes

(SNPs and indels, excluding flagged variants) (GRCh38.
p2) with genome coordinates was derived from the
Ensembl database48. SNP density of each gene was defined
as the total number of mapped SNPs, divided by gene
length. SNPs were mapped to all protein-coding genes,
and the average SNP densities on each chromosome of
UAGs, DAGs and NAGs were compared using the Wil-
coxon test.

The enrichment analysis of disease-related SNP and
disease genes
The disease-related SNPs (dSNPs) were obtained from

the ClinVar database49 and Human Gene Mutation
Database;50 data without a dbSNP ID or labeled as ‘pro-
tective’, ‘(likely) benign’, ‘uncertain significance’, ‘con-
flicting data from submitters’, ‘other’ and ‘not provided’
were excluded. dSNPs were mapped to each chromosome
and the fractions of dSNPs to total SNPs in UAGs, DAGs
and NAGs were calculated and compared using the
Wilcoxon test. As for disease gene analysis, the DAVID
Web server47 was used to perform functional enrichment
analysis for terms of specific disease and disease class in
the GAD, and the curated gene–disease association
dataset downloaded from the DisGeNET database51 was
also used to compare the fraction of disease genes for
UAGs, DAGs and NAGs across chromosomes by per-
forming the Wilcoxon test.
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Network analysis
The human PPI network was downloaded from the

BioGRID database (build 3.4.140) with the deletion of links
that include non-human protein52. The human cellular
signaling network was taken from our previous study29.
The Wilcoxon test was performed to investigate the
degree, betweenness centrality and closeness centrality
differences for the UAG, DAG and NAG nodes in the PPI
network. For the degree analysis in the signaling network,
the proportion of positive links to the sum of positive links
and negative links in UAGs and DAGs was compared for
both in-degree and out-degree by performing chi-squared
tests. As for network distance analysis, permutation tests
were performed to compare the numbers of UAG-UAG
links (ULs), DAG-DAG links (DLs) and UAG-DAG/DAG-
UAG links (UDLs) in our identified networks with the
numbers of those three types of links for 10,000 rando-
mized node groups. The P-value was calculated as the
frequency of times when link number in randomized
groups was greater than that in identified groups. In
addition, the average length of the shortest paths for UAG
and DAG nodes in their own group, between each group
and with the NAG nodes were also compared by per-
forming the Wilcoxon test. The degree, betweenness
centrality, closeness centrality and length of the shortest
path values were calculated by using the python package
NetworkX53. For the signaling network, distances were
counted from both directions in each distance group.
Network visualization and functional enrichment analysis
for interacting age-associated gene nodes in the signaling
network were carried out by Cytoscape31.
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