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Menopause transition can be interpreted as a vulnerable state characterized by estrogen

deficiency with detrimental systemic effects as the low-grade chronic inflammation

that appears with aging and partly explains age-related disorders as cancer, diabetes

mellitus and increased risk of cognitive impairment. Over the course of a lifetime,

estrogen produces several beneficial effects in healthy neurological tissues as well as

cardioprotective effects, and anti-inflammatory effects. However, clinical evidence on the

efficacy of hormone treatment in menopausal women has failed to confirm the benefit

reported in observational studies. Unambiguously, enhanced verbal memory is the most

robust finding from longitudinal and cross-sectional studies, what merits consideration

for future studies aiming to determine estrogen neuroprotective efficacy. Estrogen related

brain activity and functional connectivity remain, however, unexplored. In this context,

the resting state paradigm may provide valuable information about reproductive aging

and hormonal treatment effects, and their relationship with brain imaging of functional

connectivity may be key to understand and anticipate estrogen cognitive protective

effects. To go in-depth into the molecular and cellular mechanisms underlying rapid-

to-long lasting protective effects of estrogen, we will provide a comprehensive review of

cognitive tasks used in animal studies to evaluate the effect of hormone treatment on

cognitive performance and discuss about the tasks best suited to the demonstration of

clinically significant differences in cognitive performance to be applied in human studies.

Eventually, we will focus on studies evaluating the DMN activity and responsiveness to

pharmacological stimulation in humans.
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INTRODUCTION

Menopause is a biological milestone linked to the onset of
cognitive impairment, amongst several deleterious systemic
effects. There would be a window of opportunity to provide
hormone therapy (HT) that would benefit users. Clinical
studies show cognitive improvements mainly in verbal memory
(Maki, 2000) in women exposed to HT during this period.
Studies are, however, hardly comparable due to heterogeneity in
menopause origin, HT formulations, neuropsychological tests,
and neuroimaging techniques. Experimental studies present
differences in methodologies, type, and age of animal injury
model that explain the apparent failure of scientific research to
show the clinical benefit of estrogens.

Clinical studies have revealed higher activation of fronto-
cingulate regions in menopausal women under estrogen
treatment by brain functional magnetic resonance imaging
(fMRI), although in many cases, no difference in cognitive
performance was demonstrated. fMRI studies may also
have different appreciations, thus the abnormal activation
observed in some individuals who executed adequately
the imposed task could be interpreted as a compensatory
activation due to sub-clinical cognitive impairment
(Comasco and Frokjaer, 2014).

During rest, synchronous hemodynamic activity occurs in
different brain networks, the so-called Resting State Networks
(RSN) (Ramírez-Barrantes et al., 2019), one of which being the
default mode network (DMN). The DMN has been consistently
implied as a biomarker of cognitive function and aging-related
decline. Estrogen has been implicated in the modulation of DMN
in pre and post-menopausal women (Petersen et al., 2014; Weis
and Hodgetts, 2019). Resting state fMRI may thus be valuable
to explore rapid estrogen effects avoiding confusion related to
the application of cognitive tasks. According to the “healthy cell
bias of estrogen benefit,” rapid estrogen effects in women with
preserved DMN function may provide more insights into the
complex nature of responsiveness to estrogen treatment cell bias
of estrogen benefit (Brinton, 2008).

FROM ANIMAL STUDIES TO THE
UNDERSTANDING OF HUMAN COGNITIVE
FUNCTIONS

Sex hormones have important effects on non-reproductive
organs such as the brain. Estrogen associates with the
modulation of brain circuits involved in motivated behaviors,
emotions, memory, and executive functions (Beyer, 1999;
McEwen and Alves, 1999; Bethea et al., 2002; Almey and
Milner, 2015). The relationship of plasma estrogen with these
behaviors has been modeled in menopausal animals through
ovariectomization (OVX) or by the administration of estrogen
synthesis inhibitors. Several cognitive tasks modulated by
estrogens have been extrapolated to human studies, either in
young or post-menopausal women. We will expose examples of
cognitive alterations observed in animals and humans and their
relationship with estrogen therapy.

OVX-INDUCED COGNITIVE ALTERATIONS

Ovariectomization is a safe surgery to produce undetectable
serum levels of 17β-estradiol (E2) within 2–4 weeks (Medina-
Contreras et al., 2020). Recently, in 5.5-month-old OVX
rats, physical and psychological stressors were synergistic
to decrease exploration, learning, and memory behaviors
(Medina-Contreras et al., 2020). As E2 therapy reverses
these alterations, a neuroprotective role of E2 has been
suggested in post-menopausal women exposed to chronic stress
(Khaleghi et al., 2021).

17β-estradiol effects are less intense in OVX administered in
older (12 months) than middle-aged rats, since E2 only reversed
anxious behaviors in the open field test without significant
changes in the anxiety score in elevated plus maze or memory
in novel object recognition test (Renczes et al., 2020). Chronic
stress, chronic exposure to obesogenic, and hypercaloric diets
can potentiate cognitive and behavioral alterations in OVX rats.
In OVX macaques previously fed with a 6-week western diet,
the animals treated with E2 for 30 months performed better
spatial tasks than animals that received treatment via vehicle
(Zimmerman et al., 2020).

DRUG INDUCED MENOPAUSE PRODUCES
COGNITIVE ALTERATIONS

4-vinylcyclohexene diepoxide (VCD) produces a gradual loss
of ovarian follicles and E2 synthesis (Mayer et al., 2004). The
30-day VCD administration produces neurochemical alterations
in monoamine and metabolite contents in the hippocampus,
prefrontal cortex, and striatum, all of which express estrogen
receptors (Long et al., 2019). E2 was more effective in restoring
normal monoamine levels in the surgical model of menopause
than in the VCD model (Long et al., 2019) and thus, it would
be more effective in restoring cognitive performance in surgical
menopause. The intracerebroventricular (icv) administration
of the aromatase inhibitor letrozole produces dose-dependent
cognitive alterations associated with a reduction in hippocampal
E2 and a decrease in the firing rate of pyramidal neurons
(Marbouti et al., 2020). Aromatase inhibition increases the
expression of estrogen receptor α (Erα) and estrogen receptor β

(Erβ) and decreases the expression of G protein-coupled estrogen
receptor 1 (GPER) in the hippocampus (Marbouti et al., 2020),
probably hampering memory formation. In humans, higher
estradiol levels have ben correlated with greater hippocampal
volume in men. Hippocampal activity has been reduced by
letrozole, while a partially compensating increased prefrontal
activity as in AD and aging that might mask estradiol’s effect
on observable behavior, i.e., memory performance, in some of
the studies, can be observed. Subtle memory deficits in women
under letrozole for therapeutical reasons may illuminate further
analyses on these such E2-abstinence effects.

PATHOLOGICAL MODELS INDUCED
COGNITIVE ALTERATIONS

In 3-month-old rats, icv streptozotocin (STZ) produces similar
memory and learning alterations to those observed in animal

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 May 2022 | Volume 16 | Article 866122

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Marchant et al. Rapid Estrogen Neural Effects

models of Alzheimer’s disease (AD) (Wei et al., 2019). STZ
induces oxidative alterations in the prefrontal cortex and
hippocampus (Wei et al., 2019). The STZ administration,
followed by chronic 21-day treatment with GPER agonist
daidzein, increases the navigation time in the target quadrant and
decreases the latency time to find the platform in Morris water
maze (Wei et al., 2019). This study underlines the therapeutic
potential of phytoestrogens in cognitive disorders (Echeverria
et al., 2021).

The poly-I:C injection, a Toll-like receptor 3 agonist in
pregnant mice, produces cognitive alterations in adult female
offspring, which are reversed by the selective E2 receptor
modulator raloxifene (Schroeder et al., 2019). Neonatal hypoxia
due to carotid artery occlusion for 1 h at post-natal day 7 induces
long-term cognitive deficits in rats (Anastacio et al., 2019)
that are counteracted by phytoestrogen coumestrol until 3 h of
hypoxia, as indicated by cognitive and morphological changes in
hippocampus at post-natal day 60 (Hampson, 2018).

ESTROGENS AND COGNITIVE TASKS IN
HUMANS

The neuroprotective efficacy of HT remains unclarified.
Considering that in the next decade, there would be 1.2 billion
of menopausal and post-menopausal women (Hampson, 2018;
Echeverria et al., 2021), it is necessary to standardize the
cognitive task to be carried out in this population along with
the pharmacological treatments to use. In humans, cognitive
ability can be assessed by the mental rotation task (MRT) which
considers perception, identification, orientation, judgment,
response, and execution processes (Xue et al., 2017). In normal
menstrual cycling women, luteal phase high progesterone
levels are associated with better performance in visuospatial
tasks in the MRT (Shirazi et al., 2021). In post-menopausal
women with schizophrenia cognitive decline, the raloxifene
administration did not produce significant changes in cognitive
function compared to the group of patients receiving treatment
via vehicle (Huerta-Ramos et al., 2020). Rather than associated
with a loss of pharmacological HT effect, the diversity of
human E2 effects should be correlated with psychiatric or
neurodegenerative co-morbid conditions where the degree of
cognitive deficit is variable in intensity and not necessarily
reversed by neuromodulators.

RECEPTOR-DEPENDENT RAPID
ESTROGEN MECHANISMS

The ability of estradiol to influence cognition during
development, at adulthood, and during aging has been
demonstrated years ago (Luine, 2012). E2 enhances in vitro
the consolidation of hippocampal memories 5–30min after
treatment through the activation of several cell signaling cascades
(Frick, 2015). E2 regulates the hippocampal morphology and
function, spine density, neurogenesis, synaptic plasticity,
neurotransmission, and gene expression, which are all facilitators
of memory consolidation (Patel et al., 2022). It regulates

the dendritic spine density in the medial prefrontal cortex,
somatosensory cortex, amygdala, and dendritic length in
the basal forebrain (Frick, 2015). E2 improves hippocampal-
dependent spatial memory and object and spatial recognition
memory in OVX rats.

As endocrine contributor, brain synthesizes E2 from androgen
precursors by the enzyme aromatase, namely, the so-called
neuron derived E2 (NDE2), found at synapses and presynaptic
terminals in neurons in both male and female brains of
rodents, monkeys, birds, amphibians, and humans. NDE2
regulates sexual differentiation, reproduction, synaptic plasticity,
cognition, neuroinflammation, and neuroprotection (Brann
et al., 2021). In the rat hippocampus, changing E2 levels across
estrous phases suggest that CNS-synthesized E2 may be affected
by the estrous cycle in rodents. Besides fluctuating hematic
progesterone into the brain and its subsequent conversion into E2
(Kato et al., 2013), neural E2 changes might be related to changes
of P450 aromatase depending on fluctuation of kinases related to
synaptic plasticity (Hojo, 2018; Tozzi and Bellingacci, 2020).

In rat hippocampal slices treated with aromatase inhibitors,
the amplitude of long-term potentiation is reduced with
consequently reduced spatial, recognition, and contextual-
fear memory, suggesting an important role of NDE2. NDE2
relates to synaptic plasticity and memory via the regulation of
actin cytoskeleton polymerization/depolymerization and post-
synaptic density dynamics, which is key for spine formation,
enhancement of MAPK/ERK and PI3K-AKT signaling,
regulation of CREB-BDNF signaling, and mediation by estrogen
receptors and SRC-1 (Nelson, 2001; Spencer et al., 2008;
Simpkins et al., 2012; Terasawa, 2018).

COGNITIVE TASKS ASSESSMENTS

Rapid E2 mechanisms on hippocampal memory in rodents have
been most assessed in spatial tasks, i.e., Morris water maze, radial
armmaze, delayed non-match to position, object placement task,
and object recognition tasks. Other tools are social learning
paradigms like the social transmission of food preferences, female
mate choice copying, and social recognition (Zhao et al., 2017;
Patel et al., 2022). ERα and ERβ agonists are also good alternatives
to depict the molecular rapid E2 mechanisms. To observe
rapid actions, E2 or ER agonists must be administered either
systemically or intracranially minutes before the cognitive task
since the rapid E2 effect expresses on neural plasticity within 1 h,
modulating cell signaling, synaptic transmission, and dendritic
spine density (Phan et al., 2011). ERα agonist propyl pyrazole
triol (PPT) and ERβ agonist diarylpropionitrile (DPN) in vitro
have shown to alter cell signaling, synaptic transmission, and
long-term depression in hippocampal sections within 1.5 h of
application (Phan et al., 2011). E2 can alter the performance
in learning tests within 40min of administration in OVX mice.
Similarly, PPT administered to mice at 50 or 75 µg/mice s.c.
15min before a social discrimination paradigm increased social
recognition induced by ERα agonism. In addition, PPT or
E2 improved object recognition and object placement learning
(Phan et al., 2011, 2012; Gabor et al., 2015). Administered
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post training, systemically or into the dorsal hippocampus, E2
enhances spatial and object recognition memory consolidation
in Morris water maze, spatial memory consolidation in an object
location task, and object recognition memory consolidation
(Gresack, 2006; Boulware and Heisler, 2013; Patel et al., 2022).

DEFAULT MODE NETWORK ACTIVITY AND
FUNCTIONAL MAGNETIC RESONANCE
IMAGING

Magnetic resonance images have been useful to explore brain
functions for quite some time, as Ogawa et al. (1992) emphasized
that the magnetic resonance (MR) signal, called “BOLD signal,” is
blood oxygenation level dependent as observed in a task-related
imaging set-up. The basis of BOLD signal is the ratio of oxy- vs.
deoxy-hemoglobin in local venous blood that results from the rise
in oxygen consumption and local blood flow when local neuronal
activity increases. As the oxy- vs. deoxy-hemoglobin do not have
the same paramagnetic properties, the MR signal is modified
through a variation in T∗

2 . It is noteworthy that the peak of signal
variation is observed close to 5 s after the stimulus onset (Presa
et al., 2020).

These first observations in fMRI are associated to the
realization of a specific task of heterogeneous design that relies
on patient cooperation with significant variability. A solution,
as follows, was proposed by Biswal et al. (1995): with no
special instruction to the patient but to just stay still, the
time course of low-frequency fluctuation of some regions in
the brain were shown to present high temporal correlation.
Functional networks of different cortical regions were observed,
identifying functionally connected nodes, such as the right
and left motor cortex together, or the right and left visual
cortex. As no stimulus was presented to the patient, the maps
created were denominated resting-state functional MRI (rs-
fMRI) (Damoiseaux et al., 2006). In either task-based fMRI
or rs-fMRI, the precise physiological mechanisms underlying
the temporal synchronous signal fluctuation between cortical
areas are not yet clearly defined. The coupling or uncoupling
of neuronal activity and vascular reactivity is an active field of
study (Rossetti et al., 2021; Stiernman et al., 2021). The RSN
is elicited by a wide variety of sensory, motor, and cognitive
tasks, representing 20% of the overall energy consumed by a
person (Raichle, 2010). It is composed by the salience network,
executive network, auditory network, sensory motor network,
visuospatial network, and default mode network (Smitha et al.,
2017). The DMN is observed in awake individuals, containing
areasmainly in themedial prefrontal cortex, andmedial temporal
lobe, and in the posterior cingulate cortex and angular gyrus
(Buckner and Andrews-Hanna, 2008). Observations with other
imaging modality, such as glucose imaging using positron
emission tomography, supported the consideration that the
DMN consists of specific areas connected in a stable network
(Buckner and Andrews-Hanna, 2008). Exploration of DMN and
its disruption has gained increasing interest in neuropsychiatric
disorders as attention deficit hyperactivity disorder or ADHD
(Mohan and Roberto, 2016). rs-fMRI provides identification

of nodes that are functionally related and allows quantifying
correlation, graph analysis, and functional connectivity analysis
(Yang and Gohel, 2020). Further cognitive exploration can
then be undertaken using different dynamic causal modeling
(Friston, 2009). Various processing methods have been proposed
in rs-fMRI with still no convergence on a standard one (Yang
and Gohel, 2020). Seed-based connectivity analysis looks for
correlation between regions-of-interest (ROI) with the associated
question on how to define those ROI. Independent component
analysis (ICA) can be applied in different manners, with
the associated question on how many components must be
considered and how to interpret each obtained component.
There is also processing using amplitude of low frequency
fluctuation (ALFF) or regional homogeneity analysis (ReHo)
(Satterthwaite et al., 2012; Yang and Gohel, 2020).

Using task-based fMRI, Dietrich et al. (2001) and Stevens
and Clark (2005) stressed the idea that the hemodynamic
response function (HRF), whose canonical form lies behind
most of the fMRI analysis, is modulated by blood estrogen
and by estrogen therapy (Stevens and Clark, 2005). Plasma
E2 could thus introduce confusion effects through probable
modulation of the vascular compartment and of the neuro-
vascular coupling, making it difficult to interpret fMRI results.
Rangaprakash et al. (2018) showed that if the HRF variability,
between individuals and cortical regions, is not considered in
rs-fMRI, then up to 15% of error in functional connectivity
estimation could occur and false connectivity detection could
be increased. rs-fMRI is without a doubt a powerful tool that
still presents some methodological challenges to implement in a
robust manner.

HOW DOES ESTROGEN TREATMENT
INFLUENCE THE DEFAULT MODE
NETWORK ACTIVITY?

The DMN is characterized by the synchronous activation of
brain regions as the medial prefrontal cortex, posterior cingulate
cortex, precuneus, inferior parietal lobule, and inferolateral
temporal cortex (Sood, 2013; Raichle, 2015) without external
stimuli. It is presumably related to introspective and self-
referential thought processes and becomes attenuated during
goal-directed tasks (Ramírez-Barrantes et al., 2019), suggesting
that its suppression during task execution favors the goal success
(Fox et al., 2005; Hampson et al., 2006; Leech et al., 2011). The
activation of DMN associates with processes like creativity and
mind wandering, while abnormal activation and deactivation is
related to psychiatric and medical conditions like anxiety, major
depressive disorder, schizophrenia, and AD (Greicius et al., 2004;
Anticevic et al., 2012; Whitfield-Gabrieli, 2012; Sunavsky, 2020).

Despite the important role of the RSN and the DMN in human
cognition and wellbeing, little is known about physiological
variability of the RSN connectivity across lifespan or between
genders. A potential role of sex hormones on differential
formation and activation of these RSNs would explain gender
differences in cognitive tasks (Weis and Hodgetts, 2019; Pritschet
et al., 2020), although the results are still inconsistent probably
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FIGURE 1 | Rapid to long-lasting estrogen effects.

due to methodological differences between resting state studies.
The function of DMN could be modulated across the menstrual
cycle phases while it remains stable in men (Weis and Hodgetts,
2019). Predominantly composed by prefrontal areas that are
very sensitive to sex hormones, DMN is presumably highly
susceptible to menstrual cycle effects. In women, an increased
DMN connectivity within the left middle frontal area in the
menstrual phase as opposed to the follicular phase has been
reported (Weis and Hodgetts, 2019). Other studies indicated
that women in the luteal phase had reduced coherence between
the left angular gyrus and the remaining network compared to
women in the follicular phase. Oral contraceptive users in the
active phase of their pill cycle showed reduced coherence between
the left angular gyrus and the remaining network than women
in follicular phase without contraceptive treatment (Petersen
et al., 2014). Altered function of cell cycle or contraceptive
methods could thus modify both abstract and self-referential
reasoning and contribute to development of disease states
involving DMN connectivity.

Estradiol determines central gender dimorphism (Ramírez-
Barrantes and Marchant, 2016; Russell and Jones, 2019) and
influences the performance in frontally mediated cognitive tasks,
such as top-down cognitive control (Hjelmervik et al., 2014;
Thimm et al., 2014). Hence, the withdrawal of E2 in the limbic
system could be related with changes in mood, behavior, and
cognition (Genazzani et al., 2007). In pre-menopausal women,
during low E2 menstrual phase, activation of DMN in the left
middle frontal area was increased (Weis and Hodgetts, 2019),
while greater connectivity was demonstrated during the high-
estrogen follicular menstrual phase (Petersen et al., 2014). These
associations were observed with both studies having focused

their investigation on the anterior frontoparietal network. Wang
et al. showed an opposite effect of progesterone and estradiol
in DMN (Wang et al., 2020). Estradiol, but not progesterone,
could facilitate the medial prefrontal cortex-to-inferior parietal
lobule functional connectivity, the posterior component of
DMN (Wang et al., 2020). A huge study of the functional
reorganization of brain networks during menstrual cycle found
that progesterone is associated with negative connection in brain
networks, while improved brain functional connectivity is mainly
characterized by increased concentration of estradiol throughout
the cycle (Pritschet et al., 2020). The activation of DMN
probably contributes to memory problems described during the
menopause transition. HT has been useful to improve verbal
memory and activation of hippocampus in post-menopausal
women compared to their counterparts who had never used HT
(Ramírez-Barrantes et al., 2020).

Exogenous E2 has been associated with better cognitive
performance during aging and reduced risk of AD where
DMN is also involved (Henderson, 2006), but this potential
effect is still in debate. Oral contraceptive pills have exhibited
specific modulation of DMN in women with post-traumatic
stress disorders (Wen et al., 2021). Ninety healthy women
aged from 18 to 30 years underwent a 3-day fear conditioning
and extinction paradigm. They were separated in two groups,
namely, oral contraceptive regular users (n = 57) and never
users of oral contraceptive pills (n = 33), and their DMN
connectivity and attention networks were recorded by fMRI. E2
was beneficial to modulate attention and conscious processes
promoting normal fear extinction learning and extinction
memory retention. This kind of modulation by exogenous E2
has not been related to a unique network modulation, but to
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an activation of whole-brain functional connectivity, implying
functionally distinct systems as the anterior component of DMN,
i.e., regions with high levels of E2 receptors (Wen et al., 2021).
Therefore, in addition to endogenous E2 across normalmenstrual
cycle, exogenous E2 couldmodulate DMN contributing processes
like conscious awareness, affective learning, and memory
consolidation in combination with attention network (Higgins
et al., 2021).

FROM RAPID TO LONG-LASTING
ESTROGEN EFFECTS

Different timescales underlie E2 effects (Figure 1). Genomic E2
mechanisms via ERs α and β trigger synthesis, release, and
metabolism of neuropeptides and neuroesteroids. Non-genomic
E2 actions trigger effects that appear in seconds to minutes
(Sbarouni et al., 1997), modulate electrical excitability, and
neuronal cell death (Zhao, 2007; Raz et al., 2008; Mukai et al.,
2010; Ramírez-Barrantes et al., 2020). Rapid E2 mechanisms can
modulate hippocampal memory consolidation within minutes of
E2 exposure. In the context of direct acute E2 effect, we have

demonstrated that it induces specific mitochondrial-mediated
resistance to oxidative stress dependent of the function of
membrane channel transient receptor potential cation channel
subfamily V member 1 (TRPV1) (Ramírez-Barrantes et al.,
2020). Altered mitochondrial proteostasis could thus impede
the compensatory mechanisms against cell damage. The rapid
modification of the activity of non-classical E2 receptors,
such as TRPV1, might be critical for the maintenance of
intracerebral functional connectivity during acute E2 stimulation.
Future clinical trials focused on these rapid signal changes
following estrogen exposure may identify predictors of long-
lasting HT effectiveness.
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