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Abstract The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) were
cloned and/or established as xenobiotic receptors in 1998. Due to their activities in the transcriptional regulation of
phase I and phase II enzymes as well as drug transporters, PXR and CAR have been defined as the master
regulators of xenobiotic responses. The discovery of PXR and CAR provides the essential molecular basis by
which drugs and other xenobiotic compounds regulate the expression of xenobiotic enzymes and transporters. This
article is intended to provide a historical overview on the discovery of PXR and CAR as xenobiotic receptors.
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1. Discovery of PXR as a xenobiotic receptor

The drug responsive regulation of the expression and activity of
enzymes or transporters has long been appreciated. This regulation
can affect the degree of absorption or elimination of drugs, and
potentially alter the therapeutic or toxicological response to a drug.
The molecular mechanisms by which drugs regulate enzyme and
transporter expression have been elusive up until the discovery and
characterization of the xenobiotic nuclear receptor pregnane X
receptor (PXR) in 1998, which was independently cloned in the
laboratories of Steve Kliewer1 then at the Glaxo Wellcome, and
Ron Evans2 at the Salk Institute. The Kliewer laboratory dis-
covered the mouse PXR from a gene fragment in the Washington
University mouse expressed-sequence tag (EST) database by Gene
Trapper solution hybridization cloning technology using a mouse
liver cDNA library1. PXR was named based on its activation by
the pregnanes 21-carbon steroids1. The Evans laboratory cloned
the human PXR as a homolog of the Xenopus benzoate X
receptors (BXR) from a human genomic library/liver cDNA
library hybridized with a full-length cDNA encoding the Xenopus
BXR, which was originally discovered in a screen for maternally
expressed nuclear hormone receptors and cloned from a Xenopus
egg cDNA library2,3. The human PXR was originally named by
the Evans laboratory as steroid and xenobiotic receptor (SXR) due
to its activation by multiple natural and synthetic steroids as well
as xenobiotics2.

The discovery of PXR benefited from earlier work published by
Phil Guzelian's laboratory4,5 at the University of Colorado who
suggested that there are “cellular factor” and defined “DNA
element” that are responsible for the drug responsive regulation
of the human CYP3A and rodent Cyp3a genes in hepatocytes. The
consensus glucocorticoid-responsive “DNA element” identified by
DNase I footprint turned out to be the PXR response element in
the CYP3A gene promoter, which is occupied by the “cellular
factor” PXR. Therefore, Cyp3a is considered a prototypical target
gene of PXR. The in vivo role of PXR as a xenosensor has been
firmly established through the creation and characterization of
Pxr knockout mice, in which the Cyp3a induction in response to
prototypic inducers, such as pregnenolone-16α-carbonitrile (PCN)
and dexamethasone (DEX) was completely abolished6,7. The
identification of PXR as a xenosensor also provides a molecular
basis for the species specificity of CYP3A induction4. hPXR and
mPXR have high homology (95% at the amino acid level) in the
DNA-binding domain (DBD), so they can share PXR binding sites
found in promoters of the human CYP3A or rodent Cyp3a genes.
In contrast, the homology in the ligand-binding domain (LBD) is
significantly lower (73% at the amino acid level), which may have
explained the ligand specificity between these two receptors. This
notion was supported by the X-ray crystal structure analysis of the
PXR LBD8. The spherical ligand-binding pocket of PXR was
estimated to be at least twice as large as those of the other steroid
hormone or retinoid receptors. In addition, the ligand-binding
pocket of PXR was extremely hydrophobic and flexible. These
structural features may have accounted for the promiscuity of this
receptor in recognizing a wide range of xenobiotics8. Using both
transfection and transgenic approaches, it has been functionally
demonstrated that the species origin of the PXR receptor, rather
than the promoter structure of CYP3A genes, dictates the species-
specific pattern of CYP3A inducibility6. These findings also led to
the creation of the so-called “humanized” hPXR transgenic mice,
in which the mouse PXR in the liver was genetically replaced by
its human counterpart hPXR. The humanized mice exhibit the
human profile of drug response, such as their responsiveness to the
human-specific inducer rifampicin and a lack of response to the
rodent-specific inducer PCN6. Since the propensity of drugs to
induce CYP3A and many other drug metabolizing enzymes are
implicated in drug metabolism, drug–drug interactions, and drug
toxicity, the humanized mice represent a major step toward
creating humanized toxicological models that may aid in the
development of safer drugs and nutraceuticals.
2. Characterization of CAR as a xenobiotic receptor

The xenobiotic receptor identity of the constitutive androstane
receptor (CAR), a human orphan nuclear receptor cloned in David
Moore's laboratory9 in 1994 whose physiological function was
then unknown, was revealed shortly after the discovery of PXR in
1998. CAR was initially identified as MB67 from the human
cDNA library using a degenerate oligonucleotide directed to the P-
box sequence of the thyroid hormone receptor (TR)/retinoid acid
receptor (RAR)/orphan receptor subgroup. The receptor was
shown to activate a direct repeat spaced by five-nucleotides
(DR-5) type of retinoid acid response element (RARE) in a
ligand-independent manner, which can be further augmented by
the addition of the heterodimerization partner retinoid X receptor
(RXR)9. The mouse Car was cloned using the human CAR
(MB67) cDNA probe in 199710. The identity of CAR as a
xenobiotic receptor was first hinted by the ability of selective
androstane metabolites to inhibit its constitutive activity11. The
role of CAR in the positive xenobiotic regulation was suggested
when CAR was shown to activate the phenobarbital response
element (PBRE) found in the promoters of phenobarbital (PB)-
inducible Cyp2b genes that were independent reported by several
laboratories12–14. Masa Negishi's laboratory15–18 at the National
Institute of Environmental Health Sciences (NIEHS) was the first
to purify CAR from mouse hepatocytes as a protein bound to the
phenobarbital-responsive enhancer module (PBREM) of the
Cyp2b10 gene, the mouse homolog of CYP2B, where it hetero-
dimerizes with RXR. CYP2B is therefore a prototypical target gene
of CAR. The in vivo xenobiotic function of CAR was firmly
established through the creation and characterization of Car
knockout mice. Disruption of the mouse CAR locus by homo-
logous recombination resulted in the loss of PB and 1,4-bis(2-(3,5-
dichloropyridyloxy))benzene (TCPOBOP)-activation of Cyp2b10
gene19.
3. Functions of PXR and CAR beyond being “xenobiotic
receptors”

As xenobiotic receptors, PXR and CAR were initially shown to
regulate the expression of phase I P450 enzymes, such as the
CYP3A and CYP2B enzymes. Subsequent studies from many
laboratories have led to the conclusion that PXR and CAR can
function as master regulators of the xenobiotic response by
regulating the expression of both the phase I and II drug
metabolizing enzymes as well as the drug transporters. This
regulation has broad implications in drug/xenobiotic metabolism,
drug–drug interactions, and drug/xenobiotic toxicity, a topic that
has been extensively reviewed20–23. More recently, it has become
clear that PXR- and CAR-mediated regulation of enzymes and
transporters can not only impact drug metabolism, but also
influence many physiological and disease pathways by affecting



Figure 1 Summarized functions of PXR and CAR in drug metabo-
lism and energy metabolism. (A) Regulation of drug metabolism by
PXR and CAR is achieved by the binding of PXR-RXR or CAR-RXR
heterodimers to their binding sites in the promoter regions of drug
metabolizing enzymes and transporters. (B) PXR and CAR can
regulate energy metabolism by directly regulating genes that are
involved in energy metabolism, or by crosstaking with other transcrip-
tional factors (TFs) that are implicated in energy metabolism.
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the homeostasis of endogenous chemicals, such as bile acids,
bilirubin, steroid hormones, glucose, and lipids. These new
developments suggest that the functions of PXR and CAR are
actually beyond being the “xenobiotic receptors”. Fig. 1 sum-
marizes the functions of PXR and CAR in both drug metabolism
and energy metabolism, which is an example of the endobiotic
functions of PXR and CAR.
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