
Research Article
Upper Limb Rehabilitation Robot Powered by PAMs
Cooperates with FES Arrays to Realize Reach-to-Grasp Trainings

Xikai Tu,1 Hualin Han,1 Jian Huang,2 Jian Li,3 Chen Su,1 Xiaobo Jiang,1 and Jiping He4,5

1School of Industrial Design, Hubei University of Technology, Wuhan 430068, China
2School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China
3School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
4Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
5Arizona State University, Tempe, AZ 85287, USA

Correspondence should be addressed to Jian Huang; huang_jan@mail.hust.edu.cn and Jiping He; jiping.he@asu.edu

Received 30 December 2016; Accepted 1 March 2017; Published 15 June 2017

Academic Editor: Chengzhi Hu

Copyright © 2017 Xikai Tu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The reach-to-grasp activities play an important role in our daily lives. The developed RUPERT for stroke patients with high stiffness
in arm flexor muscles is a low-cost lightweight portable exoskeleton rehabilitation robot whose joints are unidirectionally actuated
by pneumatic artificial muscles (PAMs). In order to expand the useful range of RUPERT especially for patients with flaccid
paralysis, functional electrical stimulation (FES) is taken to activate paralyzed arm muscles. As both the exoskeleton robot
driven by PAMs and the neuromuscular skeletal system under FES possess the highly nonlinear and time-varying
characteristics, iterative learning control (ILC) is studied and is taken to control this newly designed hybrid rehabilitation
system for reaching trainings. Hand function rehabilitation refers to grasping. Because of tiny finger muscles, grasping and
releasing are realized by FES array electrodes and matrix scan method. By using the surface electromyography (EMG)
technique, the subject’s active intent is identified. The upper limb rehabilitation robot powered by PAMs cooperates with FES
arrays to realize active reach-to-grasp trainings, which was verified through experiments.

1. Introduction

Nowadays, the population of patients with limb motor
dysfunction is increasing, which is caused by nerve inju-
ries associated with stroke, traumatic brain injury, or mul-
tiple sclerosis. Particularly, the prevalence rate of stroke in
China is increasing rapidly. Stroke survivors with various
degrees of motor dysfunction not only endure inconve-
nience of the daily lives but also feel great psychological
pressure, in addition to economic burden on the family
and society. Many types of rehabilitation robots have
been developed to assist rehabilitation in individuals with
stroke [1–9]. In order to help stroke patients to receive
intensive rehabilitation trainings as much as possible,
cost-efficient portable rehabilitation equipment used in
the community or home should be developed for patients
after discharge, which would be a major improvement of
limb rehabilitation.

Many stroke rehabilitation experiments show a positive
role in using FES for recovery of motor function. FES is a
method for activating sensory-motor systems by delivering
electrical charge in the form of bursts of electrical pulses.
By surface electrodes, FES stimulates motor or sensory nerves
of muscles and facilitates motor rehabilitation and function
reconstruction. Wu et al. [10] adopted a hybrid method of
combining bilateral arm training with FES in patients post-
stroke to improve hand function, and a linear guide platform
with FES feedback control is developed to execute the train-
ing of bilateral reaching movements. A robotic workstation
for stroke rehabilitation of upper extremity using FES is
developed by Freeman et al. [11]. They use voluntary control
with the addition of electrical stimulation applied to muscles
in the impaired shoulder and arm. FES can also realize the
inhibition of abnormal reflexes and induce active movements
[12]. Freeman et al. [13–15] in the University of Southamp-
ton have developed a portable upper limb exoskeleton system
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for reaching rehabilitation trainings. The rehabilitation sys-
tem is composed of a FES stimulator and the passive Armeo
Spring [16]. It uses the spring force to compensate for the
gravity of the patient’s upper limb and uses FES to activate
paralyzed muscles to produce driving power. Rehabilitation
training is a kind of continuous training with a certain inten-
sity, but it will not be continuous due to muscle fatigue
caused by electrical stimulation. The power of this system is
all generated from FES stimulating the muscle, so training
time and intensity of training will depend on whether the
muscle state is fatigue or not.

RUPERT, a portable upper limb exoskeleton rehabilita-
tion robot, is developed by Arizona State University. The
system with five degrees of freedom (DOFs) is activated by
low-cost PAMs and controlled by adaptive sensory feedback
control algorithms for smooth- and safe-guarded movements
during the task-oriented training. The unique features of the
proposed robotic system are that it (1) is anchored on each
user’s trunk and aligned at the shoulder of the trained arm;
(2) generates unidirectional assistive pulling force in each
joint to encourage active participation of the user during each
movement; (3) provides gravity compensation only if the
user is too weak; and (4) evaluates the effectiveness of therapy
by performance analysis, which includes kinematic criteria
and users’ effort. The new design makes the proposed robotic
device portable for the user and can be used in various posi-
tions (sitting or standing) and different locations. By using
less actuators, the weight and cost of the robot have been
significantly reduced. The therapeutic benefits of the robot
are not limited since antigravity tasks can be carried out
by the motion control system which adapts to specific grav-
ity compensation. In comparison with our previous studies
[6, 17-18], this research mainly focuses on the safety and
feasibility of our latest robotic arm, which has one more
DOF of humeral internal/external rotation for enlarging
the reaching space. More stroke patients were enrolled,
and further biometric analyses were performed including
clinical laboratory therapy sessions and in-home therapy
sessions for the purpose of enabling frequent training at
home. Despite all this, RUPERT with one way actuator of
the joint is not suitable for stroke patients with weak mus-
cles in the flaccid paralysis period. In order to expand the
range of RUPERT rehabilitation application including
reaching exercises for ordinary patients with flaccid paraly-
sis, FES is used to activate paralyzed muscles. FES induced
muscle force, and a pneumatic muscle pull force is a new
kind of combination actuation, which can produce muscle
torque and compensate the drawbacks of RUPERT. They
cooperate together and realize the robotic joint two-way
movement. Our proposed hybrid system in this research
can allow patients to receive more lasting endurance rehabil-
itation trainings than the system developed by C.T. Freeman
et al. As both the exoskeleton robot driven by PAMs and
neuromuscular skeletal system under FES possess the highly
nonlinear and time-varying characteristics, which add con-
trol difficulty to the hybrid dynamic system, ILC is studied
and taken to control this newly designed hybrid rehabilita-
tion system to realize repetitive task trainings. The transfer
of ILC to rehabilitation is based on the patient making

repeated attempts to complete a task, such as reaching out
over a table top to an object.

The ability of grasping and releasing the object plays an
important role in our daily lives. Most patients with stroke
suffer from the hand dysfunction, the symptoms of which
are that finger flexor muscle tone is high and patients cannot
open their own hands actively. The hand rehabilitation
includes two kinds of intelligent strategies: robot-assisted
and FES. Heo et al. summarized the existing multi-DOF hand
rehabilitation exoskeletons [19]. The number of the hand’s
joints is up to 22 DOF, which will make the mechanical
and electrical designs of the hand exoskeleton very compli-
cated. As stroke patients’ hands show the phenomenon of
abnormal nerve reflex, the rehabilitation exoskeleton is hard
for patients to wear, even patients experiencing the secondary
damage in the process of putting it on. FES can activate par-
alyzed muscles to produce joint movement through stimulus
pulses conducted by use of surface-adhesive electrodes, but
the precise finger joint movement by FES is not realized
and therefore it is difficult to produce FES-induced func-
tional grasping and releasing. The reasons are that the shapes
of ordinary self-adhesive electrodes are bigger and their stim-
ulus selectivity is not enough and yet it can activate many fin-
ger muscles at the same time. Westerveld et al. [20] invented
an artificial way to paste small pad electrodes above the
motor points of finger flexors and extensors and imple-
mented the hand grasping and releasing with the help of
FES and model predict control. The shortcomings of this
method are that it takes much time of the therapist to place
small electrodes accurately on the corresponding motor
points. Malešević et al. [21] developed a 4× 4 electrode array,
which can achieve the intelligent trainings of hand grasping
and releasing by virtue of FES, but it cannot implement
reach-to-grasp trainings. In order to realize reach to grasp
trainings, Westerveld et al. added a 3-DOF end-effector reha-
bilitation robot to the FES system with pad electrode [22].
They used robot and FES to achieve reaching and grasping,
respectively [23], but this end-effector rehabilitation system
guided the patient’s upper limb movement only through
his/her hand but the shoulder, elbow, and wrist joints
could not be rehabilitated individually. RUPERT upper
limb rehabilitation exoskeleton integrated with FES can
overcome the above shortcomings by the search algorithm.
The surface electrode array is composed of many small
electrodes arranged in matrix 4× 6 form, which can realize
each finger selective stimulation. This setup can solve the
time-consuming problem of self-adhesive electrode place-
ment while RUPERT can realize the multijoint coordina-
tion trainings.

Active training involves motion intention recognition,
and now these sensors most widely used include two catego-
ries: electromechanical and bioelectrical. Electromechanical
sensors mainly include position and force/torque ones, and
this kind of sensors has electromagnetic mechanical time
delay, especially expensive high-performance multiaxis
force/torque sensors. Bioelectric sensors collect biological
signals such as ECG, EMG, and EEG, and the time delay of
this kind is shorter than the previous kind. EMG occurs
20–30 milliseconds ahead of muscles producing joint
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movement. Many rehabilitation devices use surface EMG to
extract biological information as a way of identifying human
motion intention. It is also used in the intention-based FES to
actively activate the muscles to produce movement, but sur-
face EMG is buried in stimulus artifact and induced muscle
response (M wave). Comb filter and blanking window
methods are used to extract intention information for the
active intent.

In this paper, it introduces that upper limb rehabilitation
robot powered by PAMs cooperates with FES arrays to
realize active reach-to-grasp trainings for stroke patients.
In Section 2, the dynamic models of a pneumatic muscle
and FES-induced muscle are built for reaching trainings.
In Section 3, the subject’s active intent is identified using
EMG and grasping and releasing are realized by FES array
electrodes. Section 4 introduces the ILC control strategy
and its practical application to reach-to-grasp trainings
by virtue of robot and FES. Section 5 reports the experi-
mental results of PAMs in cooperation with FES arrays
to realize active reach-to-grasp trainings. Conclusion and
future work are shown in Section 6.

2. Dynamic Models of PAMs and FES Muscle for
Reaching Trainings

2.1. The Modeling and Identification of RUPERT. The
RUPERT upper limb rehabilitation robot has 5 DOFs:
shoulder flexion/extension, humeral internal/external rota-
tion, elbow flexion/extension, forearm pronation/supina-
tion, and wrist flexion/extension shown in the Figure 1(a).
Figure 1(b) shows the mechanical design of the RUPERT
robot. For each DOF, a pneumatic muscle is used as a uni-
directional actuator to generate a joint pulling force. This

accords with the stroke patients’ symptoms and that means
the muscle is in a condition of high muscular tension while
flexor muscles will produce involuntary contraction. As FES
can stimulate paralyzed muscles to move against a PM-
driving direction, RUPERT can achieve two-way joint
movement with the help of FES, which enables more
patients to use RUPERT to do rehabilitation trainings in dif-
ferent recovering phases. The depiction of a subject wearing
the RUPERT robot is shown in Figure 2.
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Figure 1: (a) The assembly drawing of the 5-DOF upper limb exoskeleton of the RUPERT and (b) the coordinate system diagram of
RUPERT [6].

Figure 2: The diagram of the subject wearing the 5-DOF
RUPERT [6].
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M θ θ + B θ θ + K θ θ +G θ + Δτ = τp − τFES 1

The hybrid dynamic system of RUPERT exoskeleton
and FES neuromuscular model is shown in (1) and in which
θ,θ,θ ∈ R5 are joint angle, angular velocity, and angular
acceleration of 5-DOF RUPERT, respectively. M θ ∈ R5×5

is symmetric positive definite inertia matrix, and B θ̇ ,
K θ ∈ R5×5 are damping matrix and stiffness matrix, respec-
tively. G θ ∈ R5 is the gravity moment. Based on the previ-
ous work [17, 18, 24, 25], it is known that M θ , B θ , and
K θ are diagonal matrix and B θ and K θ are set to a
constant value shown in (2). The values of M θ and G θ
vary according to the different subjects by use of the specific
calculation method according to the literature [17]. Δτ is
torque generated by patients’ muscle forces and other dis-
turbances. τp is the torque generated by pneumatic muscle,
and τFESis torque generated by neuromuscular electrical
stimulation. The dynamic models of pneumatic muscle
play an important role in this hybrid combination. So this
chapter introduces the modeling and identification of
pneumatic muscle.

B θ = diag 0 01, 0 015, 0 03, 0 02, 0 02
K θ = diag 0 005, 0 02, 0 01, 0 005, 0 01

2

By virtue of the physical model, the controlling of the
pneumatic system would become more complex, as some
parameters are not easy to be detected. After linear simpli-
fication, damping-related items are omitted, which are not
conducive to the relatively rapid real-time control of the
lower limb gait. The phenomenon model is taken from
the external observation, which is usually represented by
a mass-stiffness-damping dynamic system. This kind of
model is also called the three-element model of pneumatic
muscle, and its equations can be described as shown in the
following:

M x + g + B P x + K P x = F P
B P = B0 + B1P

K P = K0 + K1P

F P = F0 + F1P

B P = B0i + B1iP inf lation
B P = B0d + B1dP def lation

3

Three elements include inertia M, damping B, and stiff-
ness K shown in Figure 3. The only input control variable is
pneumatic pressure P, and F (P) is active contraction force.
Damping B has different values according to the process of
inflation and deflation, respectively. B P x is the viscous
force impeding the pneumatic muscle movement itself, and
K P x is the spring force impeding the pneumatic muscle
shortening. M x + g is the driving force for the load, of
which M is the load mass, g is the gravity acceleration, and
x is the axial contraction length of the pneumatic muscle.
x = 0 is marked as the initial position of the pneumatic mus-
cle in a completely bleeding state. The contraction coefficient
and stiffness coefficient are obtained by using different pres-
sures and least square method (LSM) through the static force
balance experiments. Damping system is obtained through
the static disturbance experiment, and for their specific iden-
tification process, please refer to the literature [26]. Pneu-
matic muscle experimental platform is shown in Figure 4
while the identification results are shown in Table 1.

2.2. Modeling and Identification of FES Muscle.Neuromuscu-
lar electrical stimulation models are widely used in various
fields of researches, which can explore the characteristics of
isometric and nonisometric contraction of muscles. In the
case of nonisometric contraction, the force produced by the
muscle is not only related to the length of contraction, but
also the rate of muscle contraction. If the muscle lies in the
condition of equal length changes such as elongation or
shortening in the case of isometric contraction, the muscle
produces the maximum contraction force and then the max-
imummuscle contraction force will be reduced. Hill model is
the most commonly used model for muscle modeling, by use
of mass-spring-damping to describe the dynamic behavior of
muscle. Durfee model [27] is expanded on the basis of the
Hill muscle model.

u k is the input variable of electrical stimulation signal,
and k is the kth sampling. f u k is the “static nonlinear”
function of the discrete-time Hammerstein model shown in
Figure 5, and linear dynamic function is G q−1 . q−1 is delay
factor, and m and n are the poles and zeroes of the transfer
function G q−1 , respectively. d is the sample number of time
delay. v k is disturbance, and y k is the output of the neuro-
muscular electrical stimulation of muscle force or torque.
Nonlinear function f u k is the cubic spline function; u1,
u2,u3,…,ul are cubic spline interpolation points shown in
the following [28]:

G q−1 = B q−1

A q−1
= q−d b0 + b1q

−1 +⋯ + bnq
−n

1 + a1q−1 +⋯ + amq−m
4

θG =
θa

θb
= a1 ⋯ a1 b0 b1 ⋯ bn

T 5

f u k = 〠
l−2

i=1
ciu k − ui+1 k 3 + cl−1 + clu k + cl+1u

2 k

+ cl+2u
3 k , umin = u1 < u2 < u3 <⋯ < ul = umax

6

F(P) K(P) B(P)

LoadΔx
x = 0 

Figure 3: Three-element model of pneumatic muscle.
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θf = c1 c2 ⋯ cl + 2
T 7

θ =
θG

θf
8

v 2
2 = 〠

N

k=1
v2 k 9

Therefore, (9) can be regarded as the problem of least
square shown in (10) to (11). Hammerstein structure non-
linear function and linear system parameter identification
are taken by the use of an iterative algorithm using the
ARX model.

argmin
θf

Yf y,θ̂a −Φf u,θ̂b θf 2 10

θ̂G =ΦG u,y,θ̂f
T
ΦG u,y,θ̂f

−1
ΦG u,y,θ̂f

T
Y′ 11

The surface electrical stimulator (Hasomed, Rehastim2)
is a constant current source with eight stimulus channels.

f(u(k)) G(q−1) +

y(k)

v(k)

1

A(q−1)

u(k) w(k)

Figure 5: Discrete-time Hammerstein model.
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Figure 4: The platform for modeling the characteristics of pneumatic muscle, (a) the pneumatic circuit and control platform, and (b) the
experimental device for modeling pneumatic muscle.

Table 1: Three-element model of pneumatic muscle model identification parameters.

Coefficient Contraction Stiffness
Damping
(inflation)

Damping (deflation)

PAM F0 F K0 K1 B0 B1 B0 B1
Shoulder flexion 269.5 1.71 8.65 0.0505 1.31 0.008 0.68 0.0009

Humeral rotation 130.3 0.98 6.11 0.0295 0.88 0.005 0.48 0.0006

Elbow extension 160.7 1.23 6.56 0.0341 0.98 0.006 0.53 0.0007

Forearm pronation 120.3 0.86 5.48 0.0265 0.76 0.004 0.42 0.0005

Wrist extension 115.1 0.81 5.73 0.0243 0.73 0.004 0.39 0.0005
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Real-time control can be realized based on the ScienceMode2
communication protocol by the use of RS232 serial port with
Simulink xPC Target.

The process of generating test data is called TR (triangu-
lar ramp). The value of pulse width is linear from 0 to 350μs
and then back to 0 value. Its range has been distributed while
the stimulus frequency is 20Hz, and the stimulus amplitude
is 20mA. Nonlinear (6) of this proposed electrical stimula-
tion model is rewritten as (12). Neuromuscular electrical
stimulation dynamic contraction process can be expressed
with the two order system [28], so the parameter values of
linear expression (4) are d = 1, n = 1,m = 2, respectively.
The electrical stimulation model parameters of the biceps
are shown in Table 2, and the functional equation of identifi-
cation is shown in (13) to (14). Consider

f u = β1u− 1503 + β2 + β3u + β4u
2 + β5u

3 12

f u = −0 0294 + 0 0023u− 6 98 × 10−6u2 + 1 56
× 10−8u3 + 2 41 × 10−8u− 1503

13

G q−1 = q−1 1− 0 364q−1
1− 1 21q−1 + 0 117q−2 14

3. EMG Triggered Active Grasping and
Releasing Trainings

3.1. Surface Array Electrodes Used in the Grasping and
Releasing. Surface finger muscles related with grasping and
releasing include flexor pollicis longus (FPL), extensor digi-
torum communis (EDC), and thumb thenar muscle. Grasp-
ing is generally divided into two categories: power grasping
and precision grip. To test the effectiveness of grasping and
releasing by using the exoskeleton and FES, “power grasping”
under electrical stimulation is relatively simple and taken as
the research paradigm. To be simplified, flexor pollicis longus
(FPL) and extensor digitorum communis (EDC) are selected
as the stimulus objects shown in Figure 6. 42% of hand
movement only needs four fingers, including the index fin-
ger, middle finger, ring finger, and little finger. Metacarpal
phalangeal (MCP) is the metacarpophalangeal joint, and
proximal interphalangeal (PIP) is the proximal interphalan-
geal joint. ϕkM is the angle of the palm and finger joint while
ϕkP is the proximal interphalangeal joint angle, and
k = 1, 2, 3, 4 represent the index finger, middle finger, ring
finger, and little finger, respectively, as shown in Figure 7.
4× 6 array electrodes in Figure 8were used while stimulation
system adopted German Rehastim2, which used the Omron
G3MB solid-state relay with switch frequency 5 kHz. MCP
and PIP joint angles were measured by using Cyberglove.

RMS = 1
8〠

4

k=1
ϕdM t −ϕkM t

2 + ϕdP t −ϕkP t
2

15

The desired hand gesture was realized by matrix scanning
method applied to array electrodes. The joint angle errors
were kept within the plus or minus 3 degrees. Electrical stim-
ulation frequency was 20Hz, and stimulating pulse width 350
was constant. Stimulating pulse width 0–15mA was regarded
as the stimulus variable, and u was the electrical stimulation
amplitude. Root mean square error RMS in (15) was taken
as a performance optimization goal. When RMS was the
smallest, the corresponding combination of electrode array
targets was selected by trials and errors. The range of
stimulus amplitude was from 2mA to 15mA while electrode
array target number was from n = 2 to n = 12, as shown
in Figure 9.

3.2. Real-Time Intention Extraction of Surface EMG under
FES. Intention-based EMG can be taken as the trigger signal
of robot and FES, but it is contaminated by FES stimulus
artifact in this research. A strategy was developed that
real-time intention surface EMG was extracted from FES
stimulus signals. Surface EMG sensor was using the model
SX230 of Biometrics Corporation. Simulink xPC target
system was used, as shown in Figure 10.

y k = x k − x k−Ns

2
16

Electrical stimulation artifact was detected using Simu-
link Comb filter [29], shown in (16) to (17). x k is the kth
sample of the original signal, and Ns is the sampling number
of two adjacent stimulus intervals. 2 is the energy matching
coefficient, and y k is the filter EMG. In order to make the
active intention EMG suitable for trigger control, it needs
to be normalized. EMGf is the actual electrical amplitude
while EMG0 is the envelope line. EMGMax is the envelope line
in the condition of muscle isometric contraction. αpresents
the active intent coordination coefficient, and its arrange is
[0-1]. 0 means no intention output while 1 stands for maxi-
mum active power.

α =
EMGf − EMG0
EMGMax − EMG0

17

4. Iterative Learning Control

Rehabilitation training is a kind of repetitive training. Body
state of patients will improve with an increase in the number

Table 2: The identification value of neuromuscular electrical stimulation.

Parameter
Corresponding parameters of muscle model

β1 β2 β3 β4 β5 a1 a2 b0 b1
Value 2 41 × 10−8 −0 0294 0 0023 −6 98 × 10−6 1 56 × 10−8 −1.21 0.117 0.1 0
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Figure 6: Control diagram of FES array electrodes to realize hand grasping and releasing.
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Figure 8: (a) Array electrode for FPL, (b) array electrode for EDC, and (c) array electrode prototype.
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of training while the auxiliary level of robot and electrical
stimulation will be reduced. In addition, it becomes more
difficult to control the exoskeleton system because of its
highly nonlinear and time-varying characteristics, which
are caused in the existence of nonlinear actuators including
PMAs and FES. Iterative learning control improves the
dynamic system control performance by use of the previous
errors and control inputs, which is consistent with the pro-
cess of rehabilitation training. Patients try to complete the
appointed tasks with the help of RUPERT and FES, and the
desired trajectory and the actual trajectory will produce
movement error. After the one training finishes, the robot
returns to the initial position and the motion error informa-
tion can be used as a prior knowledge of the next training.

Iterative learning control is in line with this repetitive train-
ing mode shown in Figure 11.

With an increase of assisted rehabilitation trainings,
patients’ upper limb motor function will improve gradu-
ally, so the contribution of patients’ active muscular force
will increase and the assistance of RUPERT and FES will
reduce. Newton’s iterative learning control (ILC Newton)
is applied in this hybrid rehabilitation system [30, 31].
k is the number of iterations, and θd , θk, ek, and uk are the
expected angle, the actual angle, the angle error, and the
control input of the k times iterations, respectively, shown
in the following:

xk p + 1 = f xk p , uk p = Axk p + Buk p
θk p = h xk p = Cxk p , xk 0 = x0

θk = θTk 0 θTk 1 ⋯ θTk T
T

uk = uTk 0 uTk 1 ⋯ uTk T
T

θd = θTd 0 θTd 1 ⋯ θTd T
T

uk+1 = uk + Lek
ek = θd − θk

lim
k→∞

ek = 0, lim
k→∞

uk − ud = 0

θ 0 = Cx 0 = g0 x 0
θ 1 = Cx 1 = C Ax 0 + Bf u 0

= g1 x 0 , u 0
θ 2 = Cx 2 = C Ax 1 + Bf u 1

= CA Ax 0 + Bf u 0 + CBf u 1
= g2 x 0 , u 0 , u 1

⋮

θ N − 1 = Cx N − 1 = C Ax N − 2 + Bf u N − 2
= gN−1 x 0 , u 0 , u 1 ,…, u N − 2

θ = g ⋅ = g0 ⋅ ,g1 ⋅ ,g2 ⋅ ,…,gN−1 ⋅ T

18

Newtonmethod is well known for searching approximate
real roots of nonlinear functions through successive approx-
imation, and the specific process is to develop the real valued
function θd − g uk by using the Taylor series. By select-
ing a few terms of the Taylor approximation series of real
valued functions and using iterative method for solving
θd − g uk = 0, approximate roots are gotten. Given a func-
tion θd − g uk and its derivative g′ uk , the root of the
iterative estimation is shown in the following equations.
uk is the iteration estimates of k times, and uk+1 is the iter-
ation estimates of the k+1 times. Newton method con-
verges fast, because the mathematical expression of its
convergence rate is the second order rather than linear,
and the premise is the existence of inverse g′ uk that means
the existence of g′ uk −1.
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Figure 9: Block diagram of array electrode matrix scanning
method.

Figure 10: The picture of intention EMG extraction under electrical
stimulation.
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Proportional
valve

FES stimulator

Iterative learning controller

Pneumatic
muscle model

FES
muscle model

Joint
dynamics

−
+

−

+

−

+

𝜃

𝜃d

𝜃

𝜃

𝜏p

𝜏FES
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Figure 13: (a) Stretch and grip preparation stages, (b) stretching (ascending process), accompanied by hand release, (c) to achieve the
intended goal, hand grip, and (d) stretch (descent process).

9Journal of Healthcare Engineering



uk+1 = uk −
θd − g uk
g′ uk

L = ∂ θd −g uk
∂uk

−1
= −g′ uk −1

uk+1 = uk − g′ uk −1ek
Δuk+1 = uk+1 − uk

ek = −g′ uk ⋅ uk+1

19

5. Experiments of Reach-to-Grasp

When the angle error θd − θ of elbow joint is more than zero,
the error value is set to θFES. When the angle error θd − θ of
elbow joint is less than zero, the error value is set to θp which
shown in (20). The elbow joint motion is controlled by the
proportional valve and FES by use of iterative learning con-
troller as shown in Figure 12.

 θp
θFES

=
−1
+1

θd − θ 20

Belbow , Kelbow , and Melbow are damping coefficient, stiff-
ness coefficient, and inertia coefficient of elbow joint, respec-
tively. Gelbow is the gravity moment of elbow joint, and Δτ is
the active muscular torque and other bounded disturbances.
τp and τFES are the torques the pneumatic muscle and FES
produce in (21), (22), and (23), respectively. Fp, Kp, and Bp

are the contraction coefficient, stiffness coefficient, and

damping coefficient of pneumatic muscle, respectively. xp is
the pneumatic muscle contraction length, and r is the radius
of elbow joint. Bp and BFES are the torque coefficients of the

pneumatic muscle and FES, respectively. Fl,v θ, θ is the
effect of the elbow angle and angular velocity on the FES-
induced torque shown in (24). Melbow , Belbow, and Kelbow are
0.02, 0.03, and 0.01, respectively. In order to facilitate the
calculation, Δτ is set to zero and the linearization of Gelbow
is equal to 0 02θ. Equation (25) is the expression combina-
tion of elbow joint drivers. The sampling time Ts is 1 milli-
second. up and uFESare the control inputs of pneumatic
muscle and FES, respectively, both of which use P-type itera-
tive learning control to update the input. In the process of
iterative learning control, when the angle error is within 2
degrees, the iterative process is stopped.

θ

θ
=

0 1
−Kelbow
Melbow

−Belbow
Melbow

θ

θ
+

0
−Gelbow + Δτ

Melbow

+
0

Bi

Melbow

ui, i = p, FES

21

τp = Bpup, τFES = BFESuFES 22

τp = Fp up − Kp up xp − Bp up xp r 23

τFES = β1uFES − 1503 + β2 + β3uFES + β4u
2
FES + β5u

3
FES

× q−1 b0 + b1q
−1

1 + a1q−1 + a2q−2
× Fl,v θ, θ

24

θ

θ
=

0 1
−0 48 −1 5

θ

θ
+

0
Biui
0 02

i = p, FES 25

This experiment uses the Simulink xPC target real-time
control platform, communicating with the surface electrical
stimulator Rehastim2 through RS232 serial port to achieve
the real-time control. The sampling frequency of xPC target
real-time system is 20 kHz, and a PCI-6229 NI acquisition
card can output 4-channel DA and control 4-way electro-
magnetic proportional valves. Pressure signal, force sensor
signal, and absolute angle sensors are feedback to the real-
time system through the PCI-6229AD acquisition card.
Incremental angle sensors are feedback to the control system
through NI PCI-6602. Shoulder joint and elbow joint target
angles were θd t = 60° 45° . The task time was T = 10
seconds, and RMS was less than 2 degrees.

After the approval of the ethics committee of
Huazhong University of Science and Technology, three
healthy subjects were recruited to the treadmill-based
exoskeleton gait training experiments (subject 1, male, 32
years old; subject 2, female, 34 years old; and subject 3,
male, 29 years old). Before the trainings began, three
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Figure 14: (a) Hand grasping under FES array electrode for subject
1, (b) hand releasing under FES array electrode for subject 1, (c)
hand grasping under FES array electrode for subject 2, (d) hand
releasing under FES array electrode for subject 2, (e) hand
grasping under FES array electrode for subject 3, and (f) hand
releasing under FES array electrode for subject 3.
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subjects were informed of the experimental content and
purpose shown in Figure 13. In the process of robot and
FES-assisted trainings, the subjects were asked to relax as

much as possible. The task time is T for grasping, and
active coordination intention parameter is α. In order to
reduce the experimental difficulty, the external/internal
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Figure 15: Joint trajectory tracking diagrams of grasping and releasing under FES, (a) shoulder joint for subject 1, (b) elbow joint for subject 1,
(c) shoulder joint for subject 2, (d) elbow joint for subject 2, (e) shoulder joint for subject 3, and (f) elbow joint for subject 3.
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rotation was fixed to 30 degrees, and only the shoulder and
elbow joints were executed. When α is less than 0.3, it means
hand releasing. When α is more than 0.3, it means hand

grasping. Stimulus intensity is calculated according to (26).
For the above three subjects, k1 and k2 were set as 14 and
43, 13 and 43, 17 and 47, respectively.
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Figure 16: Joint trajectory tracking error diagrams of grasping and releasing under FES, (a) shoulder joint for subject 1, (b) elbow joint for
subject 1, (c) shoulder joint for subject 2, (d) elbow joint for subject 2, (e) shoulder joint for subject 3, and (f) elbow joint for subject 3.
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PAFPL = k1 × α− 0 3 , α > 0 3
PAEDC = k2 × α, α < 0 3

26

6. Experimental Results

For the same desired hand posture, mapping targets of the
three subjects’ grasping and releasing under array electrical
stimulation are different, shown in Figure 14. Grasping
targets of subject 1 are a total of 6 targets with stimulation
current amplitude of I = 10mA, A1, A4, B2, B3, B4, and
C2, respectively. Releasing targets of subject 1 are a total
of 9 targets with stimulation current amplitude of
I = 13mA, E3, E4, F2, F3, F4, G1, G2, G3, and H2, respec-
tively. Grasping targets of subject 2 are a total of 7 targets
with stimulation current amplitude of I = 9mA, A2, A4,
B2, B3, B4, C1, and C3, respectively. Releasing targets of
subject 2 are a total of 9 targets with stimulation current
amplitude of I = 13mA, E3, F1, F2, F3, F4, G1, G2, G3,
and H2, respectively. Grasping targets of subject 3 are a
total of 7 targets with stimulation current amplitude of
I = 12mA, A4, B2, B3, B4, C1, C2, and C3, respectively.
Releasing targets of subject 3 are a total of 9 targets with
stimulation current amplitude of I = 14mA, E2, E3, F1,

F2, F3, F4, G2, G3, and H2, respectively. About hand
grasping and releasing experiments, it can be concluded
that each subject’s stimulus threshold currents are not
the same. These differences are caused by several aspects,
including arm morphology, locations of array electrode
placement, neuromuscular activation depth, and so on.

From Figure 15, it shows that the tracking errors of
shoulder and elbow joint movement become smaller and
smaller with the increasing of times. For the same error per-
formance indicator, the number of iterations of three subject
is 7 times, 8 times, and 9 times, respectively. This difference
in the number of iterations may be caused by individual var-
iations of the subjects.

Figure 16 shows the angle errors of trajectory tracking in
the process of iterations. The tracking errors of shoulder joint
have not changed obviously. The elbow joint errors greatly
vary between the first time and the last time, and finally the
error gradually decreases.

As is shown in Figure 17, for all the three subjects in the
first iteration of the training process, intention-based grasp-
ing task is not activated, which indicates that it may be
related to the adaptability of experiments. When it is in the
fourth iteration of the training process, grasping intention
is detected and grasping task of each subject is activated,
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but the duration that each subject spent was different. The
last iteration is compared with the fourth iteration, which
indicates that grasping movement is activated in advance
for each subject. This adaptation to intention-based rehabil-
itation training can help patients to actively participate in
trainings and promote the motor function rehabilitation.

7. Conclusions and Future Work

In this research, it is presented that upper limb rehabilitation
robot powered by PAMs cooperates with FES arrays to real-
ize active reach-to-grasp trainings. FES is taken to activate
paralyzed muscles and achieve two-way joint movement
targeted for reaching trainings. Modeling of PMA and neuro-
muscular system under FES and ILC methods is used. The
array electrode by virtue of matrix scanning method can
solve the problem of the traditional self-adhesive electrode
which is time consuming in searching optimum stimulation
target. Intention-based FES actively activates the muscles to
produce movement. The experimental results validated the
effectiveness of this hybrid rehabilitation of robot and FES
to realize active reach-to-grasp trainings.

In consideration of their own characteristics of stroke
subjects, our proposed integrative strategy is using RUPERT
exoskeleton with FES electrically evoked paralyzed ankle
muscles to realize reach-to-grasp trainings, which is a prom-
ising approach to alleviate the size and mechanical complex-
ity of the robot, thereby the cost of the rehabilitation robot.
The future research is discussed for design principle of how
to take advantage of each technique in developing a more
functional effective hybrid FES and robot-assisted system
for upper limb rehabilitation trainings.
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