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Abstract: Chronic kidney disease (CKD) is generally regarded as a final common pathway of several
renal diseases, often leading to end-stage kidney disease (ESKD) and a need for renal replacement
therapy. Estimated GFR (eGFR) has been used to predict this outcome recognizing its robust associa-
tion with renal disease progression and the eventual need for dialysis in large, mainly cross-sectional
epidemiological studies. However, GFR is implicitly limited as follows: (1) GFR reflects only one
of the many physiological functions of the kidney; (2) it is dependent on several non-renal factors;
(3) it has intrinsic variability that is a function of dietary intake, fluid and cardiovascular status, and
blood pressure especially with impaired autoregulation or medication use; (4) it has been shown to
change with age with a unique non-linear pattern; and (5) eGFR may not correlate with GFR in certain
conditions and disease states. Yet, many clinicians, especially our non-nephrologist colleagues, tend
to regard eGFR obtained from a simple laboratory test as both a valid reflection of renal function and
a reliable diagnostic tool in establishing the diagnosis of CKD. What is the validity of these beliefs?
This review will critically reassess the limitations of such single-focused attention, with a particular
focus on inter-individual variability. What does science actually tell us about the usefulness of eGFR
in diagnosing CKD?

Keywords: chronic kidney disease; end-stage kidney disease; glomerular filtration rate; eGFR

Key Contribution: This banner paper for this Special Edition of Toxins reviews and assess the implicit
limitations of using eGFR snapshots for CKD diagnosis; a comprehensive approach to establish
individual risk profile in CKD patients including age, eGFR slope, proteinuria, GFR variability,
nutritional and metabolic profile suggested.

1. Introduction: History of a Concept with Assumptions Conveniently Forgotten
1.1. The Concept of Glomerular Filtration Rate and Its Estimation by Creatinine Clearance

Glomerular filtration rate (GFR) was originally introduced to estimate glomerular
function by calculating the amount of fluid filtered through the renal glomeruli per unit of
time. It is not a measure of single-nephron glomerular function; rather, it is a measure re-
flecting the summation of the filtration of all glomerular capillaries in the human kidney [1].
When a solute is freely filtered through the glomeruli and is neither reabsorbed nor secreted
by tubules, as in the case of inulin, then the clearance of that solute may be used to measure
GFR. Thus, GFR has been determined by finding the volume of blood glomeruli clear of
insulin per minute and is calculated by the formula urine concentration times urine flow
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per plasma concentration [2,3]. In clinical practice, creatinine is substituted for inulin as
creatinine is present naturally in the body so it does not need to be injected like inulin [4,5].
However, creatinine is not an ideal marker for estimating GFR due to its tubular secretion
that increases through the course of renal disease; the more advanced the disease the larger
the ratio of secreted to freely filtered creatinine [6]. In addition, creatinine being a waste
product of protein metabolism in muscles, one must assume that creatinine clearance as a
true reflection of intrinsic renal pathology may theoretically depend on the condition of a
steady state with a constant and stable generation of creatinine in the muscle unaffected
by catabolism (1), no changes in muscle activity (2), or dietary influences (3). It may also
be assumed that creatinine should have a stable distribution with a relatively constant
concentration in the serum (4) and adequate delivery to the glomerular capillaries using the
so-called one compartment model (5) necessitating stable cardiovascular status and good
vascular supply to the kidneys with the absence of acute changes in cardiac output or hy-
dration status, current administration of non-steroid anti-inflammatory drugs (NSAID) or
of any other medication acutely affecting renal blood flow (RBF) including blood pressure
lowering agents, especially angiotensin converting enzyme (ACE) inhibitors or angiotensin
II type 1 receptor blockers (ARBs). Functionally, the human kidneys can be simplified into
two conceptual compartments—one of a filter and the other one the repressor; however, it
is only the latter one that is energy expensive in terms of O2 utilization. Hence, reducing
GFR without reducing overall RBF would confer a better overall O2 supply to the tubuli
and the medulla.

It is important to recognize that creatinine clearance as a reflection of decreased filtra-
tion due to actual renal disease is dependent on all these assumptions and that especially if
the autoregulation of the afferent arterioles is affected by chronic disease such as diabetes
mellitus, hypertension, congestive heart failure, or many others [7,8], creatinine clearance
will be highly variable creating a snapshot effect should creatinine clearance be measured,
like in many studies, only a few times a year.

1.2. The Concept of the Estimation of Glomerular Filtration Rate by Estimating the Clearance of a
Marker: The Estimation of an Estimation

Since the calculation of creatinine clearance by a 24-hour urine collection has been
cumbersome and is subject to much imprecision during collection, mGFR (measured GFR)
as measured by urine collection of filtered creatinine has been largely replaced by eGFR,
derived from approximations obtained through large epidemiological studies establishing
correlations between serum creatinine and mGFR as influenced by parameters known to
modify this relationship including age, sex, race, and others [9–11]. One such formula
is CKD-EPI [12,13], which was obtained from large cross-sectional studies of patients
with or without renal disease where correlation between serum creatinine values and
mGFR as measured by clearance of exogenous filtration markers such as iothalamate has
been established using the formula GFR = 141 ×min (Scr/κ, 1)α ×max(Scr/κ, 1)−1.209 ×
0.993Age × 1.018 (if female) × 1.159 (if black), accounting for variables of age, sex, and race
(black vs. non-black). Yet, in the study populations used for establishing this formula, the
elderly, especially subjects above 65 years of age, black subjects, and patients with an actual
diagnosis of CKD were largely under-represented [12]. Furthermore, the equation obtained
is based on a population-based average ignoring such unique individual factors as muscle
mass, body composition, or the presence or absence of steady state; the latter commonly
occurring in states of catabolism. The most recent development is the acceptance of a
race-free formula in the United States [14]; however, none of these concepts fully consider
the slow evolvement of the human body composition and significant changes of diet,
lifestyle, and physical activity with the post-industrial era, all potentially impacting the
eGFR formula and rendering any formulas less accurate 1 or 2 decades later.

It is commonly accepted that the use of mGFR would provide higher accuracy than
most eGFR equations. The performance goal is for eGFR to be within 30% of mGFR
values 90% of the time per KDIGO 2012 clinical practice guidelines [15]. Whether any
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of eGFR equations that use creatinine or Cystatin C accurately reflect kidney function
has been debated. Porrini et al. [16] analyzed 70 studies comparing eGFR with mGFR
involving 40,000 kidney transplant patients and showed that eGFR often differed from
mGFR by ±30% or more, which incorrectly staged CKD in 60% of patients, with eGFR and
mGFR showing different rates of GFR decline. Some authors believe that this discrepancy
might be partially mitigated by the incorporation of more filtration markers or using their
combination to increase predicting value of eGFR. A combination of cystatin C-based eGFR,
the inverse of β2-microglobulin concentration and creatinine-based eGFR was found to be
a stronger predictor of ESKD than creatinine-based eGFR alone [17]. In addition, cystatin
C-based formulae may obviate the need for race-based correction and may more accurately
reflect actual GFR in the context of sarcopenia [18]. This may be especially important in
the elderly where functional renal decline may be associated with a complex change in
metabolic profile [19] including weight loss and changes in serum albumin, C-reactive
protein, and a host of other important parameters.

It is obvious that more research is needed to determine the accuracy of GFR estimations; these
research efforts may include more precise assessments of novel filtration markers [20,21]. In the
meantime, clinicians should keep in mind the limitations of using currently available equations.

An additional real-life problem is the precision of estimating GFR in the elderly
leading to a potential bias to diagnose renal disease in the elderly [22–25] based on eGFR:
a relevant clinical problem that may lead to unnecessary procedures and psychological
burden especially in the elderly. This issue will be discussed in full detail below.

1.3. Summary of Historical Introduction

It is important to realize the potential assumptions implicit in using eGFR to esti-
mate renal function as should be clear from the historical introduction above and further
summarized in Table 1. Such assumptions include all of the following: the totality of
renal function can be estimated by measuring glomerular function alone (1), renal function
can be estimated by measuring the elimination of an ideal substance under steady state
circumstances (2), creatinine can be substituted for such an ideal substance (3), ignoring
not just its tubular secretion but assuming steady production without variations due to
catabolism, or muscle injury (4), lack of major oscillations due to dietary variability (5), one
compartment distribution with maintained circulation (6), and perhaps most importantly,
disregarding variability in renal blood supply (7).

Table 1. Pitfalls of equating low estimated GFR with progressive renal pathology.

Theoretical:

-eGFR reflects only one of the many functions of the human kidney

-eGFR correlates only loosely with important predictors such as proteinuria, fluid status, blood
pressure, metabolic acidosis, anemia, metabolic bone disease, iron deficiency, inflammation,

tubular function

Clinical:

-eGFR has intrinsic day-to-day variability depending on dietary intake, cardiac output, fluid
status, blood pressure, and medication use including RAS inhibitors

-eGFR has a unique non-linear pattern of decline with age and without renal pathology

-eGFR variability and slope may themselves be predictors of outcome

Methodical:

-under-represented populations when validating eGFR as a clinical marker

-variable correlation with clinical outcomes in certain glomerulopathies and diabetic
kidney disease

This is especially misleading when renal autoregulation is impaired and a snapshot
view of “GFR” changes may partially reflect the actual hemodynamic situation with hy-
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dration status, cardiac output, medications such as diuretics, NSAIDS, ACE inhibitors,
ARBs, actual blood pressure, or glomerular pressure all potentially playing a role. Finally,
estimation of mGFR by a formula derived from correlations in a population where patients
with renal disease, elderly patients, and non-whites were largely under-represented may
also lead to a potential error when using eGFR to diagnose CKD in an individual patient.

2. Renal Function vs. GFR: Fluid Status, Renal Blood Supply, and GFR Variability

Compared to historical concepts delineated above, in the last several decades it has
become abundantly clear that the human kidney has important physiological functions
above and beyond glomerular filtration. Do these functions correlate with GFR?

One of the most clinically relevant of the many functions of the human kidney is
the regulation of fluid homeostasis [26]. It has been recognized that hypervolemia does
correlate with mortality at any level of GFR in part by triggering myocardial remodeling
and systemic inflammation [27–30]. One of the most important aspects of ESKD care is
to maintain residual renal function precisely to aid the achievement of euvolemia and to
slow down the development of left ventricular hypertrophy, cardiac remodeling, and my-
ocardial stunning in dialysis patients [31–34]. Hypervolemia is closely related to systemic
inflammation [35,36] partly by increasing intestinal permeability resulting in endotoxin
absorption [37,38] and the resultant activation of cytokines as observed in both heart fail-
ure [39–41] and hemodialysis populations [42,43]. Inflammation in turn is closely related
to the malnutrition-inflammation syndrome in end-stage renal disease and is significantly
correlated with mortality [35,44,45], while it has an inverse correlation with residual renal
function in hemodialysis patients [46]. Surely, the chance for hypervolemia is increased
with GFR decline, potentially explaining some of the correlation between low GFR and car-
diovascular morbidity and mortality [47]. However, changes in fluid status may influence
both measured and estimated GFR by multiple mechanisms that may play a role in GFR
variability, itself a significant predictor of renal progression and mortality [7,8]. Specifically,
it has been shown that a stricter blood pressure control with a decline in GFR may not
predict increased risk of ESKD [48] and may confer benefits lowering ESKD risk in certain
populations [49] and aggressive diuresis in decompensated heart failure even with initial
GFR decline may be associated with better renal outcomes, including the eventual stabiliza-
tion of renal function [50,51]. It has also been observed that while at any GFR, the degree of
proteinuria is a predictor of both renal [52] and cardiovascular [53] outcomes, an improved
control of proteinuria, in part by correcting fluid status and using RAS blockade, improves
renal outcomes despite initially lowering GFR reducing or in some instances reverting GFR
slopes [54]. It appears that in these circumstances snapshot eGFR determinations do not
say it all: time dynamics need to be carefully studied as initial GFR decline may actually
reflect a beneficial improvement in GFR slopes in the long run in many such patients.

Moreover, in the case of hypervolemia, such as in congestive heart failure, GFR may
be less stable as it introduces a highly dietary dependent and partly reversible influence on
renal blood supply especially when renal autoregulation is impaired as is often the case
with long standing vascular disease [7,8,50,51]. As cardiac output varies due to changing
fluid status with varying position on the Starling curve, renal blood supply also changes
with alterations in the degree of venous congestion actively influencing GFR [55]. Snapshots
of eGFR will then tend to be less precise if they are intended to be used as true reflections
of underlying renal pathology or a predictor of renal outcomes.

In fact, it has been shown that GFR variability is an independent predictor for both
reaching end-stage kidney disease and death, perhaps at least in part due to its association
with cardiovascular disease and hypervolemia as detailed above [7,8].

3. Renal Function vs. GFR: Proteinuria

Proteinuria has been part of the definition of CKD [56,57] realizing that at any level
of eGFR, the amount of proteinuria is a predictor of end stage kidney disease [58]. In fact,
a high degree of proteinuria as assessed by albumin-to-creatinine ratio (>0.3 g/g) at an
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eGFR of 45–60 seems to predict a much stronger risk for all-cause mortality, progressive
decline in renal function, and end-stage kidney failure than an eGFR of 30–45 but with
low albuminuria [58–60]; in addition, unlike low GFR, persistent proteinuria is nearly
always a reflection of intrinsic renal pathology with the degree of proteinuria correlating
with clinical outcomes [61]. From the classical studies demonstrating improved renal
and cardiovascular outcomes on reducing proteinuria with ACE inhibitors in diabetic
nephropathy [62] to more recent studies of similar improvements noted in both non-diabetic
kidney disease [63,64] and diabetic nephropathy [65–67] treated with SGLT-2 inhibitors,
the significance of reducing proteinuria remains widely appreciated by nephrologists,
though not always by our non-nephrologist colleagues. Furthermore, a decreased but
stable GFR with a low amount of proteinuria may often reflect a primarily non-renal
pathology such as is the case from cardiorenal syndrome especially with right sided heart
failure to dehydration, renovascular disease, obstructive sleep apnea, obstructive uropathy,
and many others. A decreased GFR without a large amount of proteinuria may also predict
favorable clinical outcomes during diuresis in congestive heart failure [50,51] or a better
control of blood pressure in primary hypertension [48,49]. These observations highlight the
main difference between the two parameters present in the definition of CKD: glomerular
filtration as assessed by eGFR is highly dependent on extrarenal factors and may be quite
variable day-to-day depending on dietary changes, actual cardiac output, the presence
and degree of catabolism, exercise and blood pressure control, and is subject to even
more variability with impaired autoregulation [7,8]. On the other hand, while persistent
proteinuria is clearly dependent on blood pressure control, volume status and glomerular
pressure, it nevertheless almost always reflects true intrinsic renal pathology that can
be improved by reducing proteinuria [8,61]. This presents a very important challenge in
everyday clinical practice: whereas many of our primarily non-nephrologist colleagues tend
to equate even a single snapshot of low eGFR with chronic intrinsic renal pathology and
make a presumptive diagnosis of CKD when intrinsic renal pathology may not be present,
the importance of proteinuria is sometimes neglected [68] leading to inadequate treatment
or late diagnosis of progressive renal disease in those who would benefit from early
intervention. There is an intrinsic danger in oversimplification as reflected in the famous
quote from a prominent physicist: “Every explanation should be made as simple as possible,
but no simpler.” Equating an easy-to-obtain laboratory parameter with the presumptive
presence of a chronic disease was recognized to be a risk for over-diagnosis [69,70] or
late diagnosis [70] of progressive renal disease especially when other risk factors, such as
albuminuria, are not considered in the diagnosis and risk assessment.

4. GFR Variability and Slopes

Once it is realized that kidney function as estimated by eGFR may be subject to
substantial intra-individual variability and susceptible to potentially reversible extra-renal
factors, a logical step would be to introduce intra-individual “auto-control” by following
up eGFR over time to assess patterns of change. However, depending on intra-individual
variability, eGFR snapshots may need to be taken frequently enough in order to establish a
clear pattern. In addition, if eGFR slopes, i.e., potentially crude linear approximations of
changes in eGFR described using a graphic representation with time as the independent
variable, are assessed for a sufficiently long period of time, then age-related changes of
eGFR need to be factored in suspecting that with true renal pathology, eGFR slopes would
be different compared to patterns reflecting age-related changes alone. For this, one needs
a clear idea of how eGFR changes trend in a more elderly population without renal disease.
Fortunately, we do have several studies asking precisely these questions, though as we
shall see, these studies tend to be either cross-sectional or longitudinal with either too short
follow-up and/or too few eGFR values assessed with relatively low frequency. Yet, after a
full review of these clinical studies, a pattern seems to emerge.
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4.1. GFR Variability

Simple logic dictates that the more measurements are taken to assess eGFR in an
individual over time, the more intra-individual variability with a non-linear pattern may be
uncovered especially if true renal pathology is present. Obviously, two values will exactly
determine a linear slope using one of the most basic rules of Euclidian geometry creating
a self-fulfilling assumption; on the other hand, a pattern may be more difficult to fit into
a linear slope if several measurements are taken revealing true intra-individual variabil-
ity including potentially reversible acute injury or changes in GFR following temporary
alterations in hemodynamic or nutritional status. For eGFR slopes to be meaningful, long
follow up and multiple measurements are necessary. This is precisely what some of the
research on the issue of GFR variability tells us [71,72]. First, it appears that patients with
faster than average renal progression tend to have a less linear course of eGFR decline with
more intra-individual variability of eGFR [7,8]. Second, patients with more intra-individual
variability seem to be burdened more by diabetes and cardiovascular disease raising the
possibility that eGFR variability, at least in this population of patients, may be partly due to
variable cardiac output, fluid status, and blood pressure with relatively rapid changes in
glomerular pressure secondary to loss of autoregulation [8]. Third, GFR variability is an in-
dependent risk factor for poor renal outcomes even after adjusting for CKD stage and eGFR
slopes, an unsurprising finding since GFR variability is more common in faster progressors
and those with more cardiovascular morbidity [7,8]. This information may be completely
lost to us unless eGFR measurements are taken often enough to uncover their true pattern
over time avoiding a snapshot effect and creating a comprehensive narrative, adjusting for
reversible, unrepresentative drops in eGFR partly due to cardiovascular factors [72].

Yet, this is precisely what happens in many of the studies assessing GFR slopes and
outcomes where a linear decline is assumed and conveniently found using annual eGFR
measurements over a period of 2–3 years. Nonetheless, when assessed in a sufficiently
large number of patients, eGFR slopes do seem to predict renal [72,73], cardiovascular [74],
and mortality [75,76] outcomes.

4.2. eGFR Slopes with Renal Disease

The predicting value of eGFR slopes for both renal and cardiovascular outcomes,
where eGFR slopes were used as a measure of the rate of decline in renal function, have
been described in several recent studies. Largely, these studies fall into one of four cate-
gories: some focused on the general “healthy” population potentially including incidental
lower eGFR with or without established renal pathology [77] (1); others assessed the
predicting value of eGFR slopes in patients at risk for kidney disease such as diabet-
ics [72] (2); some studies have been performed in patients with already well-established
renal disease [73,78,79] (3); and finally others focused on a healthy elderly population to
establish patterns of eGFR decline with ageing but without kidney disease [80] (4). In some
of the studies with mixed populations, a faster eGFR decline seems to predict worse renal
outcomes [77], a non-independent effect largely due to factors of increased age, female sex,
and the presence of comorbidities. In diabetic subjects on ACE inhibitors and diuretics, a
steeper slope suggesting a more rapid decline seemed to predict worse renal and cardio-
vascular outcomes [72]. Patients with steeper slopes also tended to have more proteinuria.
This robust finding is significant in the face of reviews pointing out the large margin of
error of eGFR vs. mGFR when the former was used for the longitudinal follow-up of renal
function in type 2 diabetics [81].

In patients with established CKD, a meta-analysis of 22 cohorts [73] showed evidence
that patients with steeper eGFR slopes and lower “baseline” eGFR had a higher risk for
subsequent renal replacement therapy: at baseline eGFR levels of 20, 30, and 40 mL/min
per 1.73 m2, the independent effects of a slope greater than −6 mL/min per 1.73 m2 per
year predicting worse renal outcomes were robust. Steeper slopes were again associated
with higher levels of albuminuria. This analysis also revealed that low eGFR, even with
a slope of 0, which suggests stable renal function, substantially increases the risk for end
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stage kidney disease. Clearly, this may be due to an acute adverse event, renal or extra-
renal, having the ability to “tip over” an already low renal function with little renal reserve
remaining to compensate leading to the need for initiating renal replacement therapy.

Three recent studies in moderate to severe CKD patients confirmed these findings
extending the risk associated with steeper eGFR slopes from renal to non-renal outcomes
including all-cause mortality [75,76] and cardiovascular morbidity [74]. Specifically, pa-
tients with steeper eGFR slopes had a substantial increase in the risk for both renal and
non-renal outcomes. How does this compare with healthy patients with a decline in eGFR
solely due to ageing?

4.3. GFR Slope with Ageing

With ageing, there is a steady increase in the number of cysts in healthy kidney donors,
which itself contributes to decreased GFR [82]. Though focal and global glomerulosclerosis
of the obsolete type, interstitial fibrosis with tubular atrophy, and arteriosclerosis increase
with ageing kidneys, focal segmental glomerulosclerosis is not a characteristic of ageing;
rather, it denotes pathology from other diseases. Rule et al. report that in a study using
kidney biopsies from 1203 living donors, the prevalence of nephrosclerosis increased
markedly with age, from less than 5% for ages 18–29 years to 30% for 40–49 years and 60%
for persons aged 60–69 years [83].

Nephron number and GFR decrease progressively with normal ageing. Denic et al.
biopsied 1638 healthy kidney donors, representing a sizable population of healthy humans
in the general population with no comorbidities. The results suggested that the mean
nephron number as well as the number of non-sclerotic glomeruli decreased with age,
while global glomerulosclerosis increased [84]. Thus, even though these findings were not
correlated with eGFR decline during these studies, the question arises whether age-related
microscopic and macroscopic changes of the kidneys including nephrosclerosis could by
themselves decrease GFR and lead to worsened clinical outcomes in certain individuals.

However, there may be a substantial difference in the course and individual risk
profile of GFR decline due to ageing alone vs. ageing with specific renal pathology with a
potentially significant inter-individual variability.

Specifically, once it is established that the eGFR slope is an independent risk factor for
mortality and predicts adverse renal and non-renal outcomes in patients with established
chronic renal disease, we need to understand if eGFR decline due to ageing alone confers
a similar risk. From a large longitudinal study conducted in Japan [80] on 72521 healthy
patients, it seems that the higher the baseline, the steeper the eGFR decline, but at some
point, the eGFR decline slows down in the vast majority of patients.

A longitudinal study also from Japan following healthy subjects over 40 years of
age for 10 years [77] found that the eGFR slope depended on blood pressure, proteinuria,
and baseline eGFR, the latter effect being dependent on the age group. A faster eGFR
decline was seen below an initial GFR < 50 mL/min/1.73 m2 among subjects younger
than 70 years of age; and GFR < 40 mL/min/1.73 m2 in the group of ages 70–79. This
suggests that in different age groups, different levels of eGFR predict a subsequent decline
in renal function as assessed by eGFR, at least in this Japanese population. If these findings
could be confirmed, then it appears that (1) the pattern of the age-related decline in GFR
in healthy subjects may be different depending on “baseline” eGFR with steeper declines
with higher initial eGFRs that may level off in time, and (2) among those below the
age-dependent eGFR threshold, a further decline may occur, depending on the control
of blood pressure and proteinuria. In either case, it is logical to assume that incidental
measurements of eGFR without an assessment of the eGFR slope, proteinuria, blood
pressure, age, and co-morbidities should not establish the diagnosis of organic disease in
the elderly population. Furthermore, the definition of CKD by snapshots of eGFR may be
misleading when population-based results are used for individual assessments of elderly
patients; especially in those cases where eGFR slopes may be influenced by the initiation of
blood pressure medications including ACE inhibitors or ARBs. Therefore, it appears that
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rather than focusing on “age-dependent eGFR thresholds”, the diagnosis of CKD in the
elderly should be highly individualized taking into account the GFR slope, proteinuria,
blood pressure, fluid status, and the use of blood pressure medications potentially altering
the context in which the significance of eGFR snapshots is interpreted. Figure 1 delineates
a number of potential pitfalls associated with either linear extrapolation of eGFR snapshots
or using the absolute value of eGFR as the main predictor of future clinical events in the
context of inter-individual variability of CKD progression.

Figure 1. Potential theoretical patterns of non-linear eGFR decline unmasking a snapshot effect for
infrequent eGFR determinations with linear extrapolation and pitfalls of basing risk on low absolute
eGFR alone.

5. Nutrition, Frailty, Metabolic Acidosis, Serum Phosphorus, and
Chronic Inflammation

There is no doubt that an association exists between malnutrition and advanced CKD
as assessed by eGFR [85]; nevertheless, a considerable inter-individual variety may be
present at any given eGFR including even in CKD-5D patients depending on age, comorbid-
ity, presence of metabolic acidosis, anemia, chronic inflammation, hypervolemia, intestinal
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dysbiosis, and other factors [86]. Metabolic acidosis that may or may not correlate with
eGFR in a particular individual has been independently correlated with malnutrition [87],
catabolism [88], as well as cardiovascular [89] and renal outcomes including a faster progres-
sion of CKD [90]. Even the prevalence of anemia [91] and patterns of metabolic bone [92]
disease have been found to be variable at any given eGFR and there is little doubt that
both anemia [93] and hyperphosphatemia [94] are important independent predictors of
cardiovascular morbidity and mortality.

The argument has been made to consider clinical and nutritional assessments as an
important factor determining the timing of renal replacement therapy initiation [95]. It is
also clear that a subjective assessment of nutrition with or without an assessment of frailty
is one of the most important predictors of clinical outcomes on both hemodialysis and
peritoneal dialysis and are superior to assessments of dialysis clearance in this regard [86].
While we may regard eGFR or eKT/v urea as our predominant tool for the assessment of
the risk for clinical outcome in CKD especially at the population level, we must be cog-
nizant of the fact that even though these parameters are easy to obtain, easy to document,
objective, quantifiable, reproducible, and might seem easy to interpret, they nevertheless
do not represent a comprehensive tool in assessing risk and may not correlate well with
other independent predictors of outcome, including the subjective global assessment of
nutrition [96] in a given individual. On the contrary, a complex “subjective assessment” of
clinical status based on strong clinical predictors including nutritional status, inflammation,
volume status, serum phosphorus, anemia, the degree of metabolic acidosis, frailty, pro-
teinuria, and perhaps intestinal dysbiosis seems to be the superior strategy in diagnosing
intrinsic renal pathology or assessing cardiovascular or mortality risk or even considering
the optimal time for initiation of renal replacement therapy.

The main underlying factor is the fact that the human kidney is not merely “a filter”,
and its function cannot be assessed by the estimation of “filtering capacity”; rather, the
kidney is a multi-function organ with an important role in maintaining fluid homeosta-
sis, serum pH, normal blood cell count, serum phosphorus and vitamin D metabolism,
anabolic state without protein losses, a functioning immune system, myocardial function,
sympathetic nervous system activity, systemic inflammation, and the protection of the
intestinal microbiome, among many others. As mentioned earlier, conceptually, the human
kidneys can be split into two conceptual compartments—one of a filter and the other
one the repressor of the filtered primary urine; however, it is only the latter one that is
energy expensive in terms of O2 utilization. Hence, reducing GFR without reducing overall
renal blood flow would confer a better overall O2 supply of the tubuli and the medulla.
Unloading the kidney to prolong renal survival invokes reducing the repressors’ work
either via decreasing primary filtrate volume without impairing RBF (like an ACE inhibitor)
or reducing the need to recall certain substances (e.g., glucose with SGLT-2 inhibitor) or
reducing the burden of new alkaline generation via exogenous NaHCO3 supplementation.
While the deterioration of some of these functions may correlate on a population level
with the decline in eGFR, all these factors need to be individually assessed in a particular
patient to get a clear picture of the degree of deterioration of the renal function and its
actual consequences.

6. Residual Renal Function and Dialysis

Perhaps the most typical example for the consequences of the fallacy of equating
renal function with clearance as well as equating actual clinical risk with clearance-based
assessments is in the setting of dialysis [31,86,97], which provides a unique picture of
what is happening when replacing filtering function alone. First, not all clearances are
created equal. It has been convincingly shown that residual renal function (Kr) cor-
relates with survival [98–101], volume control [102], serum albumin [103], markers of
inflammation [46,104], intra-dialytic hypotension [105], nutritional status [103], levels of
phosphorus [106] and uremic toxins such as p-cresol, indoxyl sulfate as well as highly
protein-bound organic anions [107], whereas dialysis clearance (Kd) does not correlate with
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the aforementioned parameters or does so under certain circumstances such as correlating
with survival on hemodialysis in anuric patients [101]. This means that dialysis and residual
clearances cannot be regarded “equal” (Kr 6= Kd). Second, dialysis clearance as assessed by
Kt/V urea ignores the independent effect of dialysis duration (t) on survival [31,108–111],
blood pressure and volume control [108,112–117], left ventricular hypertrophy [116,118],
serum phosphorus [117], and serum albumin leading to the conclusion that dialysis clear-
ance and dialysis duration cannot be regarded as equivalent factors (K 6= t). In addition,
there is some evidence that dialysis modality may also affect survival and volume control
such as in the case of hemodiafiltration vs. high flux dialysis [119,120], though this notion
remains admittedly somewhat controversial [121,122].

It appears that dialysis clearance does not say it all: the way we arrive at clearing
uremic toxins may affect a number of important clinical parameters, such as volume control
and the closely related triad of chronic inflammation, intestinal dysbiosis, and myocardial
stunning [123–125]. In contrast, nutritional assessments such as the subjective global
assessment of nutrition or the malnutrition-inflammation score seem to capture the effect
of several such clinical predictors, clearance-based parameters do not [86].

7. Conclusions

The human kidney is a multi-function organ with functions ranging from the clearance
of metabolic products and medications to the regulation of volume status, hormone secre-
tion, vitamin D metabolism, maintenance of ion and acid-base homeostasis, supporting
maintenance of anabolism, immune response, the intestinal microbiome, and cardiovas-
cular health. A decline in filtrating capacity assessed by surrogate markers such as eGFR
may predict the risk for end-stage kidney disease, mortality, and cardiovascular morbidity
in community based, mainly cross-sectional studies but may not correlate well with the
disease process in a particular individual, especially when looked at as an infrequently
taken snapshot without fully assessing the underlying context. Yet, this is precisely what is
often done.

Ageing, varying blood pressure and volume status, or cardiac output especially
with impaired autoregulation and/or ACEI, ARB, or calcineurin inhibitor use, dietary
inconsistencies, changes in muscle mass, muscle injury or a catabolic state, the presence or
absence of proteinuria, and in certain cases histological or ultrasonographic assessment
and eGFR slope should all be individually considered when trying to use eGFR for the
diagnosis of CKD. Overall, in order to avoid the pitfall of equating CKD with “Low eGFR
Disease”, we think that clinicians should regard eGFR as an initial screening tool and
should not arrive at a diagnosis of CKD without carefully assessing the full clinical context.
Furthermore, they should carefully adjust their risk assessment in an individual case
considering a host of factors including age, frailty, nutritional assessment, metabolic profile,
sarcopenia, volume status, proteinuria, blood pressure control, and many others. Perhaps
it is time to heed the wise from the past and stop equating the decline in a single laboratory
parameter, even one as seemingly sophisticated as eGFR, with chronic progressive organ
disease without carefully assessing the context in a given individual case.
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